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Using bacterial population dynamics to
count phages and their lysogens

Yuncong Geng1,2,6, Thu Vu Phuc Nguyen 1,3,5,6, Ehsan Homaee1,2 &
Ido Golding 1,2,3,4

Traditional assays for counting bacteriophages and their lysogens are labor-
intensive and perturbative to the host cells. Here, we present a high-
throughput infection method in a microplate reader, where the growth
dynamics of the infected culture is measured using the optical density (OD).
We find that the OD at which the culture lyses scales linearly with the loga-
rithmof the initial phage concentration, providing a way ofmeasuring phage
numbers over nine orders of magnitude and down to single-phage sensitiv-
ity. Interpreting the measured dynamics using a mathematical model allows
us to infer the phage growth rate, which is a function of the phage-cell
encounter rate, latent period, and burst size. Adding antibiotic selection
provides the ability to measure the rate of host lysogenization. Using this
method, we found that when E. coli growth slows down, the lytic growth rate
of lambda phages decreases, and the propensity for lysogeny increases,
demonstrating how host physiology influences the viral developmental
program.

An essential element in laboratory studies of bacteriophages is the
counting of phages and of cells undergoing lysogeny. The protocols
for performing these tasks typically consist of the following steps: (i)
pre-infection cell growth, (ii) incubation for phage adsorption, (iii)
triggering phage genome injection, (iv) post-infection cell recovery,
and (v) measurement of the infection outcome1–3. The procedure
involves centrifugation, incubation without aeration, and temperature
changes, thus strongly perturbing the pre-infection cellular state.
Consequently, the impact of host physiology on infection outcome—
often of significant interest4–6—is hard to evaluate. Furthermore,
measuring this outcome typically relies on plating and requires mul-
tiple dilutions to obtain countable numbers of plaques or colonies.
These low-throughput steps hinder scaling up the experiments, in turn
limiting the ability to perform systematic sampling of parameters of
interest.

In this work, we aim to overcome these deficiencies by devising a
high-throughput assay (Fig. 1) where phage infection takes place under
uninterrupted cell growth in a microplate reader, and the infection
outcome is monitored using the culture’s growth dynamics, read
continuously from the optical density (OD). Multiple samples under
different infection conditions, e.g., multiplicity of infection (MOI) or
growth media, can be assayed simultaneously. The post-infection
growth dynamics can be used to estimate the number of phages in an
unknown sample. Interpretedusing amodel for the coupled kineticsof
bacterial and viral populations, the measured dynamics further allow
inferring the phage-cell encounter rate, latent period, and burst size.
Finally, adding a single step of antibiotic selection provides the ability
to measure the probability of host lysogenization. Combining these
tools to characterize the infection of E. coli byphage lambda, we found
that as bacterial growth slows down, the lytic growth rate of the phage
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too decreases, and the propensity to enter and maintain the lysogenic
state increases.

Results
The optical density (OD) at whichmassive lysis begins is used to
measure the initial phage concentration
Wedeveloped our protocol using bacteriophage lambda, owing to the
system’s incomparable knowledge base7 and our lab’s experience with
it8–10. Pre-infection E. coli cultures (MG1655) were grown in LBM (LB
supplemented with 10mM MgSO4) in microplate wells at constant
temperature (37 oC) and aeration, and samples of phage (λ cI857
bor::kanR, hereafter λts, obligately lytic at 37 oC, ref. 11) were directly
added to the cultures during exponential phase (see “Methods”). The
absorbance at 595 nm (optical density, OD) of each culture, which can
be converted to bacterial concentration12,13, was recorded by the
microplate reader throughout the experiment. A typical growth curve
is shown in Fig. 1b. After an initial increase due to cell growth, a drop in
OD is observed, reflecting the well-documented phenomenon of
massive lysis14,15. Following a pause, the OD rises again and eventually
reaches saturation. The measured growth curves are highly repro-
ducible across biological repeats (Supplementary Fig. 1). Curves with
the same qualitative characteristics were obtained using several
lambda and E. coli strains, various growth media, as well as phages T4,
T5, and P1vir (Supplementary Fig. 2; see Supplementary Table 1 for list
of bacterial and phage strains used in this study).

When using the protocol above to infect bacteria of a given den-
sity by varying concentrations of phages, we observed that different
initial conditions resulted in clearly distinguishable growth curves
(Fig. 2a). In particular, the OD at which massive lysis begins (denoted
hereafter “lysis OD”) scales linearly with the logarithm of the initial
phage concentration (Fig. 2a). This linear scaling, which holds over 9
orders of magnitude, provides a simple means of counting phages: A
calibration curve is first obtained using serial dilution of a phage
sample with known concentration, and then used to convert the lysis
OD of an unknown sample to its phage concentration; no dilution or
plating is needed. A monotonic relation between lysis OD and initial
phage concentration was also found in other lambda strains (both

obligately lytic and temperate), other growthmedia, and in phages T4,
T5, and P1vir (Supplementary Fig. 3), suggesting that the method for
phage counting is broadly applicable.

To evaluate the accuracy of the method, we measured phage
concentrations in samples of four different phages: temperature-
sensitive lambda (λts), wild-type lambda (λ cIwt bor::kanR, hereafter λwt),
T5, and P1vir, each phage at three different concentrations, using both
the OD-based protocol and standard plaque counting (Fig. 2b; see
“Methods”). We found that the values obtained from the OD-based
method are typically within two-fold of those obtained via plating, and
at worse within four-fold (Fig. 2c). The variation among culture repli-
cates of the same sample covered a comparable range (Fig. 2d). Thus,
the OD-based method can reliably distinguish unknown samples hav-
ing an approximately two-fold difference in phage concentration. Both
the accuracy and precision can be moderately improved by inter-
polating between adjacent calibration points rather than using a single
line (Supplementary Fig. 4; see “Methods”). In terms of its sensitivity,
the assay can detect the presence of even a single phage: When the
average number of infecting phages per well was less than one, the
fraction of lysed cultures matched the expected fraction of wells with
non-zero phage numbers (Fig. 2e; see “Methods”). Thus, our phage
counting method involves no cost in sensitivity as compared to tra-
ditional plaque plating.

A mathematical model captures the growth dynamics of bac-
teria and phages and allows inference of infection parameters
Motivated by the interpretive power of the lysis ODwith regards to the
initial phage numbers, we reasoned that additional infection para-
meters may be encoded by the entirety of the measured curve16. To
infer these parameters, we performed infection at different MOIs and
followed the bacterial OD over time. To interpret the data, we for-
mulated a mathematical model describing the coupled dynamics of
four species: nutrients (N), uninfected cells (U), infected cells (I), and
phages (P), through three biological processes: cell growth, phage-cell
encounters, and cell lysis17 (Fig. 3a; see “Methods” for the full model
description and parameterization). We then proceeded to identify the
associated kinetic schemes and parameters as follows.
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Fig. 1 | A high-throughputmethod for counting phages and lysogenic cells in a
microplate reader. a Experimental pipeline. Bacterial cultures are grown and
infected in amicrowell plate reader, where the optical density (OD) is continuously
measured. To count phages and infer infection parameters, no additional experi-
mental manipulation is needed. To measure the frequency of lysogeny, a step of
antibiotic selection is added. Created with BioRender.com, released under a
Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International
license. b Representative data. Growth curves of E. coli cultures, infected by (top)

obligately lytic phage (λts at 37
oC), and (bottom) temperate phage (λts at 30

oC)
under antibiotic selection. Data shown in this panel are provided in the SourceData
file. c Analysis. Top, the OD at massive lysis is used to establish a calibration curve
for measuring phage concentration in an unknown sample. Middle, the entirety of
the growth curve is interpreted using a mathematical model for the coupled
dynamics of bacterial and phage populations, enabling the inference of infection
parameters. Bottom, extrapolation of the growth curves to the time of infection
allows measuring the frequency of lysogenization.
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(i) Cell growth: We assumed that the instantaneous growth rate g
depends on available nutrients via the Monod equation18: g(N) = vN/
(N +K), where the single species N represents the pool of growth-
limiting substrates in the medium. When multiple substrates are pre-
sent, as in complex media such as LBM (ref. 13.), they are consumed
sequentially, resulting in several growth phases, each characterized by
specific values of the maximal growth rate v and Monod constant K
(refs. 19,20). These parameters were inferred from the measured

growth curve of an uninfected cell culture, accounting for the reduced
cell size during slower growth13,21 (Fig. 3b, Supplementary Figs. 5, 6; see
“Methods”).

(ii) Phage infection: Phages and cells encounter each other with a
rate constant r. Following refs. 22,23, we assumed that an infected cell
goes throughM intermediate states (I1, I2,…, IM) before lysis, with equal
transition rates (= M/τ) from one state to the next. Consequently, the
time between infection and cell lysis (the latent period) follows an

Fig. 2 | The optical density (OD) at which massive lysis begins is used to mea-
sure the initial phage concentration. a OD-based phage counting. Left, solid
lines, growth curves of E. coliMG1655 cultures at 37 oC in LBM, infected by different
concentrations of λts (different colors). Dashed line, growth curve of an uninfected
culture. Right, theODatwhich the culture lyses scales linearly with the logarithmof
the initial phage concentrationsover 9ordersofmagnitude. Coloredmarkers, data;
error bars, standard errors of the mean (SEM) from n = 4 culture replicates. Black
line, linear fit. b Comparison of phage concentrations measured using the OD-
basedmethod and traditional plaque assay. Samples of λts, λwt, T5, and P1vir (green,
red, blue, and purple, respectively), each phage at three different concentrations,
were enumerated using the two methods. Markers, mean from n = 2 culture repli-
cates. Black line, y = x. Yellow shading, fold change ≤ 2 from the black line. c The
accuracy of OD-based phage counting. The fold change between the phage
concentrations measured using the OD-based method and the plaque assay,

calculated using the data in panel (b), is plotted. Markers, mean from n = 2 culture
replicates. Yellow shading, fold change ≤ 2. d The precision of OD-based phage
counting. The coefficient of variation (CV) between the culture replicates (n = 2) for
each sample is plotted. e Single-phage sensitivity of the counting assay. Left, purple
lines, growth curves of n = 32 cell cultures, each infected by ≈0.4 PFU, at 37 oC in
LBM supplemented with 0.2% maltose. In each subplot, the growth curve of an
uninfected sample (averaged over n = 10 culture replicates) is shown in gray. Mid-
dle, the difference in OD between the first local maximum and the subsequent
minimum for each culture (denoted ΔOD). Cultures are considered lysed if
ΔOD>0.3 (purple shading). Right, the expected fraction of wells with non-zero
phage numbers, estimated from plating, and the measured fraction of lysed cul-
tures. Error bar, SEM. All data shown in this figure are provided in the Source
Data file.
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Erlangdistributionwithmean τ and shapeparameterM. Thenumberof
phages released froman infected cell (the lyticburst size) is denoted as
B. For the sake of parsimony, our model ignores several documented
features, including the increase in cell size following infection8, the
contribution of cell debris to bacterial OD (ref. 24), and the loss of
infectious phage particles due to, e.g., degradation17. These simplifying
assumptions are discussed in “Methods”.

We first fitted the model to the OD dynamics measured from
cultures grown in LBM and infected by phage lambda (λts) at 6 dif-
ferentMOIs (Fig. 3c). The change in cell size along the growth curve13,21

results in a non-constant conversion factor betweenOD (themeasured
variable) and cell density (the model output). To allow fitting, we used
our parametrization of cell growth above to describe how the cell’s

molar absorptivity varies as a function of nutrient abundance
(“Methods”), thenused this relation to convert themodel output toOD
and fitted this observable to the data.

The best-fit values for r, B, and τwere obtained by minimizing the
mean squared error (MSE) using simulated annealing25. We then used
Markov chain Monte Carlo (MCMC, ref. 26) to obtain an ensemble of
parameters. An initial (“null”) model, where the three infection para-
meters (r, B, and τ) are held constant, failed to capture the experi-
mental data (Supplementary Fig. 7). Motivated by reports regarding
the impact of the host’s growth rate on the infective cycle of several
phages27–29, we tested three alternativemodels (denoted “r-model”, “B-
model”, and “τ-model”), in which one of the parameters (r, B, τ) is a
linear function of the cell’s normalized instantaneous growth rate

Fig. 3 | A mathematical model captures the growth dynamics of phages and
bacteria and allows inference of infection parameters. a Model schematic and
equations. Circles, species tracked by the model. Arrows, transitions between
species. The transition rates are indicated next to the corresponding arrows.
bParameterization ofbacterial growth. TheODofE. coliMG1655 cultures at 37 oC in
LBM was followed over time. Left, a model describing nutrient-dependent growth
(black) captures the OD dynamics of uninfected cultures (gray; n = 4 culture
replicates); gold, the inferred time-dependent nutrient abundance. Right, the
maximumgrowth ratev atdifferent stagesof nutrient consumption (white andgray
shading). c A model where the rate of phage-cell encounter (r) depends on the
bacterial growth rate captures the measured OD dynamics in cultures infected by
lambda phages. The dependence of r on the normalized instantaneous growth rate
of the host cells (ϕ) is described by: r =max(0, rk · ϕ + r0). Colored markers, data

from infection at different initial phage concentrations. Colored lines, best fit of the
model. Colored shading, fits by the ensemble of parameters. Inset, the fitted
dependence of r on ϕ. For other model variants, see Supplementary Fig. 7. d The
mean squared error (MSE) of the different model variants when fitting to the
measured OD dynamics. e The model variant where r depends on the bacterial
growth rate successfully predicts the phage concentration over time in the infected
cultures. Colored markers, data from infection at different initial phage con-
centrations. Colored lines, predictions of the best-fit model; shading, predictions
by the ensemble parameters. For other model variants, see Supplementary Fig. 7.
f The dependence of the relative growth rate of the viral population (R) on the
relative growth rate of the host cells (ϕ). Colored markers, predictions of the best-
fit model; shading, predictions by the ensemble of parameters. All data shown in
this figure are provided in the Source Data file.
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(ϕ = g(N)/max(g(N))). These models all captured the data similarly well
(see Fig. 3c, d, Supplementary Fig. 7, and Supplementary Table 3).
Model fitting thus indicates that infection parameters depend on the
instantaneous growth rate. While the procedure did not pinpoint
through which parameter the dependence arises, the three model
variants yielded comparable estimates of the parameters (within ~3
fold range) during fast cell growth (doubling time≲ 30min, Supple-
mentary Fig. 8). Furthermore, the ensemble-averagedparameterswere
consistent with values reported in the literature11,30,31 and with our
measurements using standard phage protocols (Supplementary Fig. 9;
see “Methods”).

To evaluate the predictive power of our model, we next used the
inferred parameters to calculate the phage kinetics in the same cul-
tures whose OD was measured above. We tested these predictions by
sampling the cultures at 10 time points along the experiment
(“Methods”) and quantifying the phage concentrations using our OD-
basedmethod (Fig. 2 above).We found that, regardless of whether r, B,
or τ was set to depend on the cell’s growth rate, model predictions
closely captured the phage data (Fig. 3e and Supplementary Fig. 7; see
“Methods”). Thus, the uncertainty in the model structure and para-
meters did not diminish its predictive power. This success of our
model mirrors the performance of other so-called “sloppy” models in
systems biology32, where individual parameters are poorly constrained
but the ensemble of parameters nevertheless leads to accurate
predictions.

Utilizing a similar procedure, our model was also able to capture
the OD dynamics of infected cell cultures in minimal media
(M9 minimal broth supplemented with 0.4% glucose or 0.4% maltose,
M9Glu and M9Mal; see Supplementary Fig. 10). When analyzing
infection in these media, we observed that the best-fit parameters
tended to lie on a single plane in the space of (log10r, log10B, τ) (Sup-
plementary Fig. 10), suggesting that the three parameters were con-
strained beyond their individual uncertainties. Motivated by this
observation,wedefined the parameterR= r�B

exp τ�g*ð Þ, which describes the

relative growth rate of the viral population (“Methods”). The para-
meter g*, which is inferred from the plane of conserved parameters, is
of the same order as the bacterial growth rate in the experiment
(“Methods”). As expected, R exhibited lower uncertainty than the
individual infection parameters (Supplementary Fig. 10). Revisiting the
infection in LBM, we found that the dependence of R on the

instantaneous growth rate, as inferred from the three models where r,
B, or τ change with the growth rate, followed a single upward trend
(Fig. 3f). Furthermore, this trendmirrored the reportedbehavior of the
viral growth rate in T4 (refs. 27,28) (Supplementary Fig. 11). The
parameter R thus provides ameans of interpreting our model’s results
despite the uncertainty in its structure and parameters.

As noted above, the post-infection dynamics continue beyond the
lytic collapse. One noticeable feature is the subsequent recovery of
culture growth (Fig. 1b). This recovery is observed for all phages
examined, including λts (obligately lytic at 37 oC) and the virulent
phages T4 and T5 (Supplementary Fig. 2), thus does not reflect the
growth of lysogenic cells (discussed below). Rather, growth recovery
likely reflects the emergence of a resistant population33,34. Consistent
with this interpretation, adding to our model above a first-order
transition from uninfected (sensitive) to resistant cells34 captured the
observed growth recovery (Supplementary Fig. 12). The inferred rate
of switching into resistance, (5.5 ± 0.9) × 10−8 per min, was comparable
with a previously reported value34.

Imposing antibiotic selection after a single infection cycle allows
counting of lysogens
While the analysis above illuminated the lytic cycle of infecting phages,
our OD-based assay also provides the means to identify when the
alternative, lysogenic route is chosen. Comparing the OD dynamics of
cultures infected by temperate and virulent phages, we noticed that
the degree of population collapse during massive lysis was markedly
different in the two cases: Cultures infectedbywild-type lambdaphage
(λwt) showed a smaller drop in OD compared to those infected by the
obligately lytic strain (λts at 37

oC, Fig. 4a). We reasoned that the higher
survival in cultures infectedbywild-type phage reflects the presenceof
lysogenic cells, which then resume growth and are immune to further
infections35. This interpretation was confirmed by the antibiotic resis-
tance (kanR, conferred by the prophages) of the surviving cells fol-
lowing infection by λwt (Supplementary Fig. 13). Merely counting these
surviving cells is insufficient to infer the frequency of lysogeny per
infection, since the number reflects the entire history of the infected
culture, during which the infection conditions—e.g., growth rate and
MOI—continuously change. Since these conditions are expected to
influence the propensity to lysogenize8,36,37, it would be more infor-
mative to measure the occurrence of lysogeny after a single infection
cycle, during which the infection parameters are well-defined.
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Fig. 4 | Imposing antibiotic selection after a single infection cycle allows
counting of lysogens. a Difference in the population collapse between cultures
infected by a temperate phage (λwt, red) and obligately lytic mutant (λts, black).
Cultures of E. coliMG1655, grown at 37 oC in LBM,were both infected atmultiplicity
of infection (MOI) of approximately 10. bUsing the growth curves under antibiotic
selection to infer the fraction of cells undergoing lysogeny. Black line, OD of an
uninfected culture without selection. Lines in other colors, OD of cultures infected
by λts with different MOIs, under kanamycin selection. All cultures were grown in

LBM at 30 oC. Dashed lines, extrapolation of the OD back to t =0, to infer the initial
cell density. c The frequency of lysogeny as a function of MOI (adjusted for the
fraction of phage-infected cells). Circles and triangles, data obtained in n = 2
independent runs of the experiment; each sample in each run was measured using
n = 3 culture replicates. Error bars, SEM between the culture replicates. Red line,
model fit. Inset, the inferred probability of lysogenization as a function of the
single-cell MOI. All data shown in this figure are provided in the Source Data file.
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To achieve this goal, we again utilized the lambda strain carrying
an antibiotic resistance cassette (λts, cI857 bor::kanR). Following 15min
of microplate infection at 30 oC (where λts exhibits wild-type
phenotype11), the culture was diluted 250-fold into fresh medium,
reducing further infection3,38. After an additional 45min of growth,
kanamycin was added, allowing only lysogenic cells (carrying the
resistance-encoding prophage) to grow8,10,37 (Supplementary Fig. 14;
see “Methods”). The growth curves under selective media were then
extrapolated back to the time of dilution to infer the initial abundance
of lysogens (Fig. 4b). To validate our experimental approach, we used
it to measure the frequency of lysogeny of MG1655 by λts as a function
of MOI (adjusted for the fraction of cells infected within 15min; see
“Methods”). The measured curve (Fig. 4c) recapitulates data obtained
using a standard lysogenization protocol10. The data can be further
used to infer the corresponding single-cell MOI response, by utilizing
the Poissonian statistics of phage-cell encounters36. While similar
inference was performed previously8,10, the higher throughput of the
new protocol facilitates a finer sampling of MOI values, in turn con-
straining the single-cell relation better. Specifically, while earlier ana-
lysis indicated that infection by a minimum of two phages is required
for lysogeny10,36, we were able to identify a non-zero probability of
lysogenization during single-phage infection (Fig. 4c, inset). This
finding may help reconcile the bulk data with the gradual MOI
response observed in single-cell experiments8.

The propensity to enter and maintain lysogeny increases as
bacterial growth slows down
Finally, we combined the tools devised above to investigate how the
propensities at which lambda enters and exits the lysogenic state
change with the host’s growth rate. To probe the probability of lyso-
genization as a function of growth rate, we performed infection at
different stages of cell growth (Fig. 5a) and utilized the lysogen
counting method (Fig. 4 above) to measure the frequency of lysogeny
at varying MOIs (see “Methods”). The lysogeny-vs.-MOI curve at each
growth rate (Fig. 5b)was thenused to infer the single-cell propensity to
lysogenize (Supplementary Fig. 15 and Supplementary Table 4; see
“Methods”). Our analysis revealed that, upon infection by a single
phage, the propensity to lysogenize decreases approximately expo-
nentially with growth rate (Fig. 5c). This finding is consistent with
previous reports of increased lysogenization in stationary37,39 and
starved cells36,40, but places them in the broader context of growth-rate
dependent lysogenization—often presumed41 but (to the best of our
knowledge) not previously shown. Upon co-infection by two phages,
the probability of lysogenization in growing cells increases 40–80 fold
(Fig. 5d), suggesting that viral self-counting drives the cell fate choice10.
However, this feature is absent in stationary cells, where higher MOI
does not significantly increase lysogenization (Fig. 5d and Supple-
mentary Fig. 16). Utilizing the inferred single-cell lysogenization curves
allowed us to reproduce the experimentallymeasured “fate diagram”10

depicting the population-averaged frequencyof lysogeny as a function
of MOI and bacterial growth rate (Fig. 5e).

After examining the choice to enter lysogeny,we aimed to identify
how the reverse process, i.e., spontaneous induction where lysogenic
cells stochastically switch to the lytic pathway11,41, depends on the
bacterial growth rate. To that end, we tracked the growth of lysogenic
cells over 24 h (MG1655 λts, grown at 30 oC in LB supplemented with
10mM MgSO4 and 0.2% glucose, the latter added to reduce phage
adsorption to cells14,42). At various time points, corresponding to dif-
ferent bacterial growth rates, phages were extracted11 and enumerated
using our phage counting method (Fig. 2 above; see “Methods”). The
coupled growth dynamics of lysogenic bacteria and released phages
(Fig. 5f) were interpreted using a mathematical model (Fig. 5g) analo-
gous to that in Fig. 3 above. Here, wemodeled spontaneous induction
as a first-order transition from lysogenic cells (L) to induced cells (I1)
with rate constant ki. The latent period was modeled as before, with

induced cells undergoing several intermediate states (I2, …, IM) until
lysis (see “Methods” for the full model, and Supplementary Table 5 for
parameter values). The model was able to capture the OD and phage
dynamics (Fig. 5f and Supplementary Fig. 17) under the assumption
that the spontaneous induction rate is a linear function of the growth
rate, increasing from approx. 0 in slow-growing cells (doubling
time≥ 70min) to ≈1.1 × 10−5 induction events per minute for early-
exponential cells (doubling time≈ 30min) (insets of Fig. 5f and Sup-
plementary Fig. 17). The latter value is similar to the estimate by ref. 11,
but, as in the case of lysogenization above, our inference generalizes it
across the entire growth curve of the culture. The inferred trend is also
consistent with the recent report that the rate of spontaneous SOS
activation, the driver of lytic induction11, increases with growth rate43.

Discussion
The simple pipeline presented here (Fig. 1 above) enables the counting
of bacteriophages in unknown samples and the inference of phage-cell
encounter rate, latent period, burst size, and frequencies of entering
and exiting dormancy. Streamlining the infection protocol necessi-
tated a removal of several steps commonly included, in particular, cell
concentration via centrifugation to accelerate phage adsorption, and a
temperature upshift to synchronize phage entry1–3. Despite these
shortcuts, the infection procedure yielded reproducible dynamics,
whichwere interpretable through theuseofmathematicalmodeling as
described above. The simplified procedure has the added benefits of
reduced perturbation to host physiology and the capacity to system-
atically scan infection parameters in a high-throughput manner.

Our phage counting method (Fig. 2 above) is logarithmic in nat-
ure, in that the measured feature (lysis OD) reflects the logarithm of
the initial phage concentration. We consider this an advantage: When
using traditional plaque counting to quantify an unknown phage
sample, one has to plate serial dilutions of the sample to arrive at a
countable number of plaques per plate1–3. This serial dilution is a
bottleneck in the quantification of samples, one that our approach
overcomes by offering a dynamic range of multiple orders of magni-
tude (e.g., 9 for lambda in LBM, Fig. 2a). If amore precisemeasurement
is needed, one canconceivably combine the two approaches, using the
OD-based method to infer the order of magnitude and to choose the
appropriate dilution for plaque counting.

Interpretedusing amodel for the coupled kineticsof bacterial and
viral populations, our data indicates a correlation between the lytic
growth rate of the viral population and the growth rate of the bacterial
hosts (Fig. 3 above). The finding that viral growth rate is higher in
faster-growing cells suggests that the physiology of the host constrains
viral development, consistent with previous reports in phage T4
(refs. 27,28) (Supplementary Fig. 11). Our current measurements for
lambda were done under conditions where the bacterial growth rate
changes over time. We therefore cannot rule out a possible depen-
dence on the growth history of the culture, arising through, e.g., the
residual activity ofmetabolic pathways used by the cells in response to
previous nutrient substrates44, or the accumulation of secreted sig-
naling molecules andmetabolites45–47, which may change the chemical
properties of the growth medium over time48,49.

Beyond the characterization of lytic reproduction, our analysis of
the rates for entering and exiting lysogeny suggests that viral dor-
mancy is prioritized as the growth of the bacterial host slows down:
during infection, the probability of lysogenization increases in slower-
growing cells (Fig. 5c); once lysogeny is established, slower-growing
cells exhibit a lower rate of spontaneous induction into the lytic state
(Fig. 5f). As above, our measurements cannot distinguish between the
effect of the instantaneous growth rate and the cumulative growth
history of the culture. However, the idea that slow growth promotes
lysogeny coheres with the accepted view for lambda41 and other
temperate phages6, premised on the rationale that slower growing
cells would have reduced capacity for a successful lytic reproduction.
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The data presented here provides a quantitative test for this narrative.
In terms of its mechanistic underpinnings, multiple regulatory inter-
actions feed from the signaling molecules encoding information on
cellular growth (ppGpp, cAMP), through cellular proteases (FtsH, Lon,
RecA) and ribonucleases (RNase III), into the phage decision
circuitry7,50. Our data suggests that, as long speculated, these myriad
regulatory interactions enable the phage to sense and respond to its
host’s growth rate, providing yet another example for temperate
phages’ ability to process information in order to choose their devel-
opmental path optimally5,51,52.

The dominant feature in the growth curves of infected cultures
was a single peak followed by massive lysis, a feature whose

quantitative characteristics were used for the inference of infection
parameters. However, more complex dynamics were observed,
reproducibly, under certain infection conditions.Whereas someof the
additional growth features—the survival of lysogens, and the growth
recovery of resistant cells—were addressable by our model, other
features remain outside it. Notably, multiple cycles of growth and lysis
were observed following infection at high concentrations of lambda,
T4, and T5 (Supplementary Fig. 18). These repeated cycles suggest a
transient cellular state of insusceptibility to phage infection34,53,54, and
highlight the potential role of population heterogeneity, a subject that
merits further investigation. We expect even richer dynamics to
emerge under infection scenarios that involve additional phage-host
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interactions, such as phage-mediated quorum sensing55–57, or, con-
versely, bacterial anti-phage systems58–60.Webelieve that the approach
presented here, combining high-throughput infection with modeling-
based interpretation, will prove valuable in illuminating such cases.

Methods
Bacterial strains and phages
All strains used in this study are listed in Supplementary Table 1. In
most experiments involving phage lambda, we used a temperature-
sensitive phage strain, λ cI857 bor::kanR, hereafter λts, and an isogenic
strain without the cI mutation, λ cIwt bor::kanR, hereafter λwt. Phages
carrying the cI857 allele cannot establish ormaintain lysogeny at 37 °C
or above11. We therefore used λts at 38

oC ±0.5 °C as an obligately lytic
variant of lambda, and λwt as the correspondingwild-type variant. Both
phage strains also harbor a kanamycin resistance cassette, which was
used to select for lysogenic cells. Other phages (T4, T5, and P1vir) were
used as described in “Phage preparation” below.

Growth media and conditions
Growth media. The medium used in most experiments was LB (Len-
nox formulation)2, comprising (w/v) 1% tryptone (BD Biosciences),
0.5% yeast extract (BD Biosciences), and 0.5% NaCl (Fisher Scientific);
the pH was adjusted using 1mM NaOH (Fisher Scientific). LBM is LB
supplementedwith 10mMMgSO4 (Fisher Scientific). LBMMand LBGM
are LBM supplemented with 0.2% maltose (Fisher Scientific) or 0.2%
glucose (Fisher Scientific)11. In experiments involving T5 and P1vir
phages, LB was supplemented with 1mM or 5mM CaCl2 (Fisher Sci-
entific), respectively61,62.

Othermedia used in this study are as follows. Tryptone broth (TB)
is composed of (w/v) 1% tryptone and 0.8% NaCl, and TBM is TB sup-
plemented with 10mM MgSO4. Minimal media are based on the
M9 minimal salts broth media without a carbon source (Teknova).
M9Mal and M9Glu are M9 broth supplemented with 0.4% maltose or
0.4% glucose, respectively. For the plaque formation assay10,63, NZYM
medium was prepared using (w/v) 2.2% NZYM powder (Teknova); the
pH was adjusted using 10mM NaOH.

Agar plates and soft agar were prepared by supplementing the
liquid medium with (w/v) 1.5% and 0.7% agar (BD Biosciences),
respectively10.

Growth conditions. To prepare overnight cell cultures, fresh colonies
on LB agar plates (supplemented with 50μgmL−1 kanamycin, Fisher
Scientific, for lysogenic strains) were inoculated into 2mL of medium
(as specified for each experiment below) in 14mL round-bottom test
tubes (Falcon).Overnight cultureswere grown for approx. 16 h at 30 oC
with aeration (220 rpm shaking). The overnight cultures were diluted
into experimental (“overday”) culture as described in each
experiment below.

Measuring the optical density
Throughout this work, we used two different instruments tomeasure
the optical density (OD): (i) When growing cells in bulk cultures, a
SmartSpec Plus spectrophotometer (Bio-Rad) was used to measure
the OD at a wavelength of 600 nm and a path length of 1 cm. The
corresponding values are denoted below as ODspec. (ii) During
growth in the plate reader, the instrument (TECAN Infinite F200 Pro
or TECAN M Nano) measured the OD at 595 nm and a path length
determined by the depth of liquid in the well (≈ 3mm in our
experiments). We denoted these values, used in the analysis of
growth dynamics, simply as “OD”. The two measurements differ by a
scaling factor, ODspec ÷ OD= 4.51 ± 0.05.

Phage preparation
Preparing lambda phages. We followed the protocols in refs. 11,40 to
produce crude phage lysates. For the temperature-sensitive λts, we
performed a heat induction of the lysogens. Briefly, an overnight cul-
ture of MG1655 λts was diluted 1000-fold into LBGM in a baffled
Erlenmeyer flask, and incubated at 30 oC with mild shaking (180 rpm).
Upon reaching ODspec ≈0.4, the culture was incubated in a water bath
at 42 oC with 180 rpm shaking for 15min, then at 37 oC with 180 rpm
shaking for 1 h until ODspec dropped below0.05. For λwt, weperformed
a chemical induction using mitomycin C (MMC, Fisher Scientific).
Briefly, an overnight culture of MG1655 λwt was diluted 1000-fold into
LBGM in a baffled Erlenmeyer flask, and incubated at 37 oC with mild
shaking (180 rpm). At ODspec ≈0.4, 10μgmL−1 of MMC was added to
the culture. The flask was wrapped in foil, and incubation (37 oC,
180 rpm shaking) was resumed for 2–3 h. Lysis was determined to be
complete when the ODspec dropped below 0.2.

Following either heat or MMC induction, the lysed culture was
supplemented with 5% chloroform, and incubated at room tempera-
ture (RT) for 15min. The lysate was centrifuged at 4000 × g for 10min
at 4 oC to pellet the debris, and the clear supernatant was extracted,
supplemented with 0.3% chloroform, and stored at 4 oC until use.
Standard plaque formation assays were performed, using NZYM agar,
to determine the phage titers (≈1010 plaque-forming units, PFU mL−1).

When higher titers were required, we used the crude induction
lysates (produced using heat induction) to perform phage precipita-
tion using polyethylene glycol (PEG), followed by resuspension of the
phage pellets in SM buffer (Teknova) as described in ref. 64. These
additional steps increased the phage titer to ≈ 1011 PFU mL−1.

Preparing other phages. Phages T4, T5, and P1vir were produced by
infecting cell cultures, as described in ref. 2. Briefly, cultures ofMG1655
were grown at 37 oC in LB (supplemented with 1mM CaCl2 for T5, as
described in ref. 61, or 5mM CaCl2 for P1vir, as described in ref. 62).
When the culture reached ODspec ≈0.2, approximately 107 PFUs of T4,
T5, or P1vir were added to the cultures. The infected cultures were

Fig. 5 | The propensity to enter and maintain lysogeny increases as bacterial
growth slows down. a Performing infection at different growth rates. Black line,
the growth rate, as a function of OD, of an uninfected culture of E. coli MG1655
grown at 30 oC in LBM; gray shading, SEM from n = 3 culture replicates. Red mar-
kers, the growth rate at which lambda phages (λts) were added. Inset, the growth
curve of the same culture. b The frequency of lysogeny as a function of MOI
(adjusted for the fraction of phage-infected cells), measured at different bacterial
growth rates. Circles and triangles, data obtained in n = 2 independent runs of the
experiment; each sample in each run was measured using n = 2 culture replicates.
Error bars, SEM between the culture replicates. Red lines, model fits. c The inferred
probability of lysogenization in cells with MOI = 1 as a function of growth rate.
Markers, fitted values from the two independent runs of the experiment (shown in
panelb). Red line, exponential fit, serving as a guide to the eye. Red shading, fitting
uncertainty obtained by bootstrapping. d The inferred ratio of lysogenization
probabilities at MOI = 2 and MOI = 1, as a function of growth rate. Markers, fitted

values from the two independent runs of the experiment (shown in panel b). Red
line, linear fit, serving as a guide to the eye. Red shading, fitting uncertainty
obtained by bootstrapping. Stationary cells (yellow highlight) do not exhibit an
increase in the probability of lysogeny between MOI = 1 and MOI = 2. e The fre-
quency of lysogeny as a function of MOI and growth rate. Left, interpolated
experimental data. Right, model prediction. f The OD (red) and the concentration
of free phages (blue) during growth of lysogens. MG1655 λts was grown at 30 oC in
LBM supplemented with 0.2% glucose. Markers, experimental data. Lines, fit of a
model where the rate of phage-cell encounter (r) depends on the bacterial growth
rate. Inset, the inferred rate of spontaneous induction (ki) as a function of the
normalized instantaneous bacterial growth rate (ϕ). For other model variants, see
Supplementary Fig. 17. g Schematic and equations of themodel used for capturing
the data in panel (f). Circles, species tracked by the model. Arrows, transitions
between species. The transition rates are indicated next to the corresponding
arrows. All data shown in this figure are provided in the Source Data file.
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incubated at 37 oC without shaking for 15min, then shaking was
resumed until lysis was observed (approximately 3–4 h). Chloroform
treatment and centrifugation were then performed as described for
lambda phages.

Microplate-based infection assay for measuring phage
concentrations
Calibration curves using known phage concentrations. To perform
the calibration assay for infection by λts in LBM, a 10-fold serial dilution
of λts phages, with concentrations spanning from 6 × 102 PFUmL−1 to
6 × 1011 PFUmL−1, was prepared in SM buffer. An overnight culture of
MG1655 in LB was diluted 1:500 into LBM in a baffled Erlenmeyer flask.
The culture was then grown at 37 oC with 220 rpm shaking. Upon
reaching ODspec ≈0.1, the culture was diluted 1:10 into LBM and ali-
quoted into a clear 48-well flat-bottom microplate (COSTAR), with
each well containing 500μL of culture. As negative controls for cell
growth, some wells containing blank LBM were included in the
microplate. The microplate was then placed into the plate reader,
incubated at 38 oC with shaking (orbital mode, 1mm amplitude), and
the OD was recorded every 5min. After 30min of growth in the plate
reader, 10μL of phages at different concentrationswere added to each
well. We included two replicates for each phage concentration. As
negative controls for phage infection, we included two uninfected
cultures to which blank SM buffer was added. After phage addition,
incubation was resumed for at least 12 h.

The average OD in the wells with blank LBM was first subtracted
fromall ODmeasurements.Next, we identified thefirst localmaximum
in the growth curve for each culture, which, for infected cultures,
corresponds to the onset of massive lysis. We term this OD value the
“lysis OD”. For lambda phages infecting cells in LBM medium, the
relationship between the lysisODand the logarithmof the initial phage
concentration is approximately linear (Fig. 2a). The calibration curve
was obtained by fitting a linear equation:

y= k � x + b, ð1Þ

where y is the lysisODand x is the logarithmbase 10of the initial phage
concentration in PFU mL−1.

We also performed the calibration assay for infection in other
growth media, other lambda strains, and other phages. For infections
in complex media (LB, LB supplemented with CaCl2, and TBM), the
calibration curves were analyzed using Eq. (1). For infections in mini-
mal media (M9Glu and M9Mal), the lysis OD was found to be
approximately a power functionof the initial phage concentration. The
calibration curve was obtained by fitting the following equation:

log10y= k � x +b, ð2Þ

where y and x are defined the same way as in Eq. (1). All calibration
curves under different infection conditions are shown in Supplemen-
tary Fig. 3.

Measuring phage concentrations in unknown samples. For a sample
with unknown phage concentration, the infection protocol was per-
formed, and the lysis ODwas identified, using the procedure described
above. The calibration curve (Eq. (1)), obtained using the same host
strain, phage strain, and infection condition, was used to calculate the
unknown phage concentration corresponding to this lysis OD.

Measuring phage concentrations in samples extracted from
infected cultures. To measure the phage concentrations in the
infected cultures during cell growth (Fig. 3e), we extracted phages as
follows. At each time point (before phage addition, then at 1, 2, 3, 4, 5,
6, 7, 8, and 20 h after phage addition), 5 µL of the infected cultures
were taken from the wells and diluted into 495μL of LBM media

(a 1:100 dilution). Then, 25μL of chloroform (final concentration, 5%)
was added to each culture, followed by vortexing for 10 s, to lyse the
cells11. Phage lysates were stored at 4 oC, and the phage counting
procedure was used to measure the phage concentration in each
sample.

Quantifying the precision and accuracy of the phage
counting method
Sample preparation and infection. To quantify the precision and
accuracy of our phage-countingmethod, we subjected samples of four
different phages (λts, λwt, T5, and P1vir), each phage at three different
concentrations, to a single-blind test. Here, one person prepared the
unknown samples by diluting the phage stocks in SM buffer to reach
different target concentrations, and used the plaque formation assay
to measure the phage concentrations in these samples. If the target
concentration was more than approx. 104 PFUmL−1, duplicate dilution
series (in SM) were prepared to reach approx. 104 PFUmL−1. Each
dilution series, or the original unknown sample if there was no further
dilution, was plated on replicate agar plates, and the number of pla-
ques was counted to calculate the phage concentration. Another per-
son received the unknown phage samples and performed the OD-
based measurement to measure the phage concentrations. The con-
centration of each unknown sample was measured using duplicate
cultures, and the calibration curve (of the same phage, bacterial host,
and growth condition) was obtained using the same microplate as the
unknown samples.

Data analysis. The comparison between the plaque-based and OD-
based counts, the latter inferred using a single fitted line through the
lysisODvalues of all calibration samples (Eq. (1)), is shown in Fig. 2b. To
evaluate the accuracy of the method (Fig. 2c), we calculated the fold
change between phage concentrations measured using the OD-based
method and the plaque assay:

Fold change=
ConcentrationOD�based

Concentrationplaque�based
: ð3Þ

To evaluate the precision of the method, for each unknown
sample, we quantified the coefficient of variation (CV) of the OD-based
phage counts between the replicate cultures. This result is shown
in Fig. 2d.

In Supplementary Fig. 4, we present the accuracy and precision of
the method following an alternative analysis, where we interpolated
between the two points on the calibration curve that immediately
precede and succeed the lysis OD of each unknown sample, and used
this interpolation to infer the phage concentrations in the sample.

Detecting single phages using the OD-based method
Sample preparation and infection. A solution of λts was diluted in SM
to reach a concentration of ≈104 PFUmL−1. The concentration was
confirmed using a plaque assay on NZYM agar plates10. Immediately
before infection, the phage solution was further diluted 1:200 in SM
(thus reaching 38 PFUmL−1, or 0.38 PFU in 10μLon average—measured
using the plaque assay). Cells were cultured in LBMM and aliquoted
into a 48-well microplate as described above in “Microplate-based
infection assay for measuring phage concentrations”. After 30min of
growth in the plate reader, 10μL of phage solution (containing, on
average, 0.38 PFU) were added to each culture well. We included 32
replicates of cultures with phages and 10 replicates without phages.
After phage addition, incubation was resumed, and the OD was
recorded for 48 h.

When the same assay was performed in LBM, we noticed that the
fraction of lysed cultures (analyzed asdescribedbelow)was lower than
our theoretical expectation. We reasoned that the cultures in LBM had
entered the stationary phase beforemassive lysis occurred. To extend
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the rangeofODoverwhich the cultures cangrowbefore saturation,we
therefore used LBMM in this assay instead.

Predicting the expected number of lysed cultures. We denoted the
average number of phage particles in 10μL as λ (dictated by the
experimental design). The number of phage particles in each of the
10μL aliquots (X) is expected to follow the Poisson distribution:

P X = xð Þ= λxe�λ

x!
: ð4Þ

The probability that there is a non-zero number of phage particles
in that aliquot volume, π0, is:

π0 =P X >0ð Þ= 1� P X =0ð Þ= 1� e�λ, ð5Þ

with λ =0.38, π0 = 0.316.
Among N independent cultures, the number of cultures contain-

ing a non-zero number of phage particles (Y) follows the Binomial
distribution:

P Y = yð Þ= N

y

� �
πy
0 1� π0

� �N�y
: ð6Þ

Using Eq. (6), we calculated the expected number of Y in N = 32
independent cultures. The expected fraction of lysed cultures, Y/N,
and the SEM obtained from bootstrapping, are shown in Fig. 2e, right.

Identifying lysed cultures. Massive lysis was identified as described
above in “Microplate-based infection assay for measuring phage con-
centrations”. We note that for uninfected cells over 48 h of growth, the
ODdisplayed aminor decline during the stationary phase, presumably
due to cell death65. However, this decline is not as drastic as that in
massive lysis (Fig. 2e, left). Therefore, to quantitatively distinguish
massive lysis from the death phase, we calculated the difference in OD
between the first local maximum and the subsequent minimum for
each culture (denoted ΔOD). For the infected samples, the values of
ΔOD fell into two distinct groups (Fig. 2e, middle). One group
(ΔOD<0.3, arbitrarily chosen) was similar to the uninfected cultures,
and was classified as unlysed. The other (ΔOD ≥0.3) was recorded as
lysed. Themeasured fraction of lysed cultures (10 out of 32 cultures) is
shown in Fig. 2e, right.

Performing a binomial test. We defined π0 as in Eq. (5), and π as the
observed probability that the 10 µL phage aliquot leads to massive
lysis. If a single phage leads to massive lysis, π should be equal to π0.
We performed a two-tailed binomial test66 to test the following
hypothesis:H0:π =π0.Denoting theobservednumber of lysis events in
N infected cultures as k, we calculated the two-tailed p-value as follows:

p=
X
i2I

P Y = ið Þ=
X
i2I

N

i

� �
πi
0 1� π0

� �N�i, ð7Þ

where I was defined as I = i : P Y = ið Þ<P Y = kð Þ� �
. With N = 32 and

k = 10, the calculated p-value was 0.849; as a result, we accepted the
null hypothesis and concluded that our assay can detect single phages
at the expected efficiency.

Modeling the OD dynamics of phages and bacteria during
infection
Weaimed to capture the population dynamics, up to but excluding the
recovery of bacterial growth (Fig. 1b). Following refs. 17,34, we used a
set of ordinary differential equations (ODE) to describe the dynamics
of nutrient resources (N), uninfected cells (U), infected cells (I), and
free phages (P). The assumptions of the model, shown in Fig. 3a, are
summarized below.

(1) Cell growth: As in ref. 18, we assumed the instantaneous growth
rate of uninfected cells g(N) depends on the nutrients (N), in the
following manner:

g Nð Þ= v � N
N +K

, ð8Þ

whereK is theMonod constant and v is themaximal growth rate under
a given nutrient.
(2) Phage-cell encounter: We assumed that phages (P) and cells (U

and I) encounter each other with a second-order rate constant r
The encounter of phages and uninfected cells (U) results in the
production of infected cells (I) (ref. 17).

(3) Nutrient consumption: The infected cells (I) are assumed to con-
sume nutrient resources even if they do not grow and divide.
Therefore, the rate of resource consumption is proportional to
the combined densities of uninfected and infected cells, the
instantaneous growth rate g(N), and a conversion efficiency
parameter e that relates cell growth to nutrient consumption17.

(4) Cell lysis: We assumed the infected cells go through M inter-
mediate states (I1, I2, …, IM) before lysis, and the transition rates
fromone state to the next are identical (M/τ) (refs. 22,23). The exit
from the last state (IM) leads to cell lysis. Therefore, the time
between infection and cell lysis (the latent period) follows an
Erlang distribution with mean τ and shape parameter M. The lar-
ger M is, the narrower the latent period distribution.

(5) Phage release: The number of phages released upon cell lysis
(burst size67) is denoted as B.

Taken together, the population dynamics of nutrient resources,
bacterial cells, and free phages obey the following equations (Eq. (9)):

dN
dt

= � e � U +
XM
i=1

Ii

 !
� g Nð Þ,

dU
dt

=U � g Nð Þ � r � U � P,
dI1
dt

= r � U � P �M
τ
� I1,

dIi
dt

=
M
τ
� Ii�1 � Ii
� �

for i= 2, 3, . . . ,M,

dP
dt

=B �M
τ
� IM � r � U +

XM
i=1

Ii

 !
� P:

ð9Þ

Parameterization of cell growth
We assumed nutrients are consumed sequentially19,20 through X pha-
ses. In eachphase (i), cell growth is controlledbyone limiting substrate
via substrate-specific vi and Ki, where i = 1, 2, …, X. The transition
between these phases is defined by the thresholds θi, where θ0 = 1 (the
first growth phase with maximum nutrient), and θX (the final growth
phase) = 0. When N decreases below θi, the substrate i is considered
exhausted, and cells begin to consumesubstrate i + 1.We also assumed
that the conversion factor from cell growth to nutrient consumption is
e. Therefore, the dynamics of nutrients and cells in the absence of
infection are described by the following equations (Eq. (10)):

When θi ≤N < θi�1,
dN
dt = � e � U � vi � N

N +Ki
,

dU
dt =U � vi � N

N +Ki
:

ð10Þ

We scanned X from 1 to 3, and fitted the model above to the OD
dynamics of uninfected cultures with initial conditions N(0) = 1 and
Uð0Þ= OD 0ð Þ

ϵ 0ð Þ , whereOD(t) is the measured OD of uninfected cultures at
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time t and ε(t) is the relative molar absorptivity of the cell (normalized
for the optical path length). Fitting was performed by minimizing the
following objective function using a simulated annealing algorithm25:

R vi
� �

, Ki

� �
, θi
� �

, e
� �

=
X
t2T0

OD tð Þ � bU tð Þε tð Þ
h i

,
2

ð11Þ

where bU tð Þ is the model-predicted density of uninfected cells and T0 is
the set of time points where OD was measured.

For minimal media (M9Glu and M9Mal), we note that cell growth
took place at an approximately constant growth rate up to massive
lysis, irrespective of the initial phage concentration (Supplementary
Figs. 3h, i). Therefore, we assumed a constant ε0 = 10−9 CFU−1 mL
(ref. 13) over time, where OD= 1 corresponds to 109 colony-forming
units permL (CFUmL−1). As expected, the growth inM9Glu andM9Mal
was describable using X = 1, with a single set of v andK (Supplementary
Fig. 6). The fitted values of v and K are shown in Supplementary
Table 2, and the errors were obtained from repeated runs of simulated
annealing (N = 10).

For LB-based media (i.e., LBM, LBGM), we expected ε to change
with the cell size21, hence, with the growth rate13. Since in our model,
the growth rate is a function of the nutrient concentrationN, we chose
to describe ε as a function of N. To do so, we first utilized the data by
Sezonov et al. 13, which measured ODspec and cell concentration for E.
coli cells along the growth in LB at 37 oC (Supplementary Fig. 5a). We
obtained ε(t) by converting ODspec to OD (as described above in
“Measuring the optical density”) and dividing it by the measured cell
concentration at the corresponding time point. Then, we fitted Eq. (11)
to the data and found that X = 3 well captures the growth in LBM
(Fig. 3b) and growth in LBGM up to and including the first plateau in
OD (Supplementary Fig. 6). Thefitted values of vi,Ki andθi are shown in
Supplementary Table 2, and the errors were obtained from repeated
runs of simulated annealing (N = 10). By combining ε(t) (Supplemen-
tary Fig. 5a) and the nutrient profile N(t) (obtained from the growth
model, Supplementary Fig. 5b), we obtained a relation between ε andN
(i.e., ε(N)), which was approximated by a polynomial model (Supple-
mentary Fig. 5c).

Parameterization of the number of intermediate infected
states (M)
We sought to find the optimal value of M (see Eq. (9)) to model the
infection dynamics by phage lambda. Considering a population of
synchronously infected cells, we described the dynamics immediately
after the infection using the following equation:

dI1
dt = � M

τ � I1,
dIi
dt =

M
τ � Ii�1 � Ii
� �

for i= 2, 3, . . . ,M,

dP
dt =B � Mτ � IM � r � U +

PM
i=1

Ii

� �
� P,

ð12Þ

where Ii describes the different states of the infected cells between
phage-cell encounter and cell lysis (i = 1, 2, …, M).

To estimateM, we fitted the mean latent period τ and burst size B
to the phage dynamics from a one-step experiment, where cells were
synchronously infected (Supplementary Fig. 9). In this experiment, the
phage concentrationsmeasured at each time point, denoted as PFU(t),
reflect both the free phages and the infected cells, both of which
formed plaques. Therefore, the initial conditions for the model-
predicted species are I1 = PFU(0), Ii(0) = 0 for i = 2, 3,…,M, and P(0) = 0.
We then scannedM from 1 to 16 (Supplementary Fig. 19a); for eachM,
we minimized the following objective function using simulated

annealing:

R Mð Þ=
X
t2To

PFU tð Þ
PFUð0Þ �

P̂ðtÞ+PM
i= 1 Î iðtÞ

PFUð0Þ

" #2
, ð13Þ

where To is the set of time points where phage concentrations were
measured, P̂ tð Þ is the predicted phage concentration, and

PM
i = 1 Î iðtÞ is

the predicted infected cell concentration.
As shown in Supplementary Fig. 19b, as M becomes larger, the

residual becomes smaller, and the fitted B and τ converge. For the sake
of saving computational time, we chose M = 5 for all the following
models. We confirmed that increasingM value results in no significant
changes to the model inference (see “Examining alternative model
assumptions” below).

Parameterization of phage-cell encounter rate, latent period,
and burst size
General strategy. After cell growth has been parameterized and M
has been chosen, the remaining parameters in Eq. (9) are the phage-
cell encounter rate r, latent period τ, and burst size B. This section
describes the procedure of inferring these parameters for models
where they are held constant (i.e., for infection inminimalmedia, and
the null model for infection in LBM). For the case where r, B, or τ
changes with bacterial growth rate, the details are described below in
“Characterizing the dependence of infection parameters on
growth rate”.

Briefly, to estimate r, B, and τ, we performed simulated annealing
to find a best-fit parameter, followed by a Markov Chain Monte Carlo
(MCMC) search to obtain an ensemble of parameters. Below are the
details.

Obtaining the best-fit parameters. We fitted Eq. (9) to the OD
dynamics of cultures infected at different MOIs. For infection in LBM,
the OD dynamics of cultures infected at six different phage con-
centrations (1.2 × 108, 1.2 × 107, 1.2 × 106, 1.2 × 105, 1.2 × 104, and 1.2 × 103

PFUmL−1) were used for fitting. For infection in M9Glu, the OD
dynamics of cultures infected at five phage concentrations (7.4 × 106,
7.4 × 105, 7.4 × 104, 7.4 × 103, and 7.4 × 102 PFUmL−1) were used for fit-
ting. For infection in M9Mal, the OD dynamics of cultures infected at
six phage concentrations (7.4 × 106, 7.4 × 105, 7.4 × 104, 7.4 × 103,
7.4 × 102, and 7.4 × 101 PFUmL−1) were used for fitting.

We used j to index the infection conditions (i.e., initial phage
concentrations), and the system was initialized with N(0) = 1,
Uð0Þ= ODj 0ð Þ

ϵðNð0ÞÞ, Ii (0) = 0 for i = 1, 2, 3,…, M. Fitting was then performed
by minimizing the following objective function using simulated
annealing:

R r,B, τð Þ=
XJ
j = 1

X
t2To,j

1
To

�� �� bUj tð Þ+
PM

i= 1 Î i,j tð Þ
h i

� ϵ bNj tð Þ
	 


� ODj tð Þ
maxODj tð Þ �minODj tð Þ

24 352

,

ð14Þ

where J is the total number of infection conditions, bNjðtÞ, bUjðtÞ andPM
i = 1 Î i,jðtÞ are the model-predicted dynamics of nutrient, uninfected

cells and infected cells for infection condition j, and ODj(t) is the
measured OD dynamics. To,j is the set of time points where the
measuredOD concentrations were used for fitting, and |To,j| is the total
number of time points. To reduce the computational burden, for
infection by λts in LBM, only the data points whose second-order time-
derivative d2OD

dt2
(approximated using the centered finite differences) is

greater than 3.5 × 10−5 were used in fitting. The values of the best-fit
parameters for all infection conditions are listed in Supplementary
Table 3.
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Obtaining the ensemble of parameters. We then performed an
MCMC search using the Python package ‘emcee’, employing a
uniform prior (the range of the prior is described in Supplementary
Table 3) and initializing from the best-fit values. Each chain was run
with 100 walkers over 6000 iterations, with a burn-in period of
3300-iterations. The chains were further thinned, and every 20th
sample was retained. The resulting chain contained 13,500 samples
for each parameter, and the distributions are shown in Supple-
mentary Fig. 8 (for infection in LBM) and Supplementary Fig. 10 (for
infection in minimal media). We further sampled 200 instances
from the resulting chains, while ensuring that each parameter fell
within the 95% confidence interval of its marginal distribution. The
resulted samples constitute the ensemble of parameters, which was
used for the following purposes:
(1) Demonstrating the agreement of the model with the data. See

Supplementary Fig. 7a formodeling ODdynamics in LBMwith the
null model and Supplementary Fig. 10a, b for modeling OD
dynamics in minimal media.

(2) Predicting the phage dynamics. See “Predicting phage dynamics
for infection in LBM” below for method description, and Supple-
mentary Fig. 7d for phage dynamics prediction in LBM with the
null model.

(3) Characterizing the relative growth rate of the viral population (R).
See “Characterizing the relative growth rate of the viral popula-
tion” below for method description and Supplementary
Figs. 10e–h for characterizing R for infection in minimal media.

The values for the best-fit parameters, the range of the prior, and
the range of the ensemble of parameters for the above models are
provided in Supplementary Table 3.

Characterizing the dependence of infection parameters on
growth rate
As shown in Supplementary Fig. 7a, when assuming a constant phage-
cell encounter rate r, latent period τ, and burst size B, the model failed
to capture the OD dynamics for infection in LBM. Motivated by pre-
vious reports regarding the impact of host’s growth rate on the
infection cycle of several phages27–29, we tested three alternative
models (denoted as “r-model”, “B-model”, and “τ-model”), inwhich one
of the parameters (r, B, τ) is a linear function of the cell’s normalized
instantaneous growth rate (ϕ = g(N)/max(g(N))). For LBM,
max(g(N)) = v1/(1 +K1) = 0.035min−1. The specific model assumptions
are listed below:
(1) r-model: B and τ are constant, and r =max(0, rk · ϕ + r0), where rk

and r0 are the slope and intercept of the linear function.
(2) B-model: r and τ are constant, and B =max(0, Bk ·ϕ + B0), where Bk

and B0 are the slope and intercept of the linear function.
(3) τ-model: r and B are constant, and τ =max(20, τk ·ϕ + τ0), where τk

and τ0 are the slope and intercept of the linear function.

We fitted each model to the OD dynamics of cultures infected in
LBM and obtained the ensemble of parameters using the method
described above in “Parameterization of phage-cell encounter rate,
latent period and burst size”. The fitting results are shown in Fig. 3c
(for the “r-model”), Supplementary Fig. 7b (for the “B-model”) and
Supplementary Fig. 7c (for the “τ-model”). The range of the ensemble
of parameters for those models is provided in Supplementary
Table 3.

Predicting phage dynamics for infection in LBM
We used the infection parameters in LBM to predict the phage
dynamics and compared it with the measured concentrations of pha-
ges extracted from the same cultures. We assumed that the intracel-
lular phage particles only getmature in the terminal infected state (M).
Since the extracted phages contain both free (released) and

intracellular phage particles, the predicted phage concentration is
given by:

P̂allðtÞ= P̂ðtÞ+B � ÎM ðtÞ: ð15Þ

Themodel predictions are shown in Fig. 3e (for the “r-model”) and
Supplementary Figs. 7d–f (for thenullmodel, “B-model” and “τ-model”).

Characterizing the relative growth rate of the viral population
Examining infection parameters for minimal media and defining R.
To assess whether the infection parameters are further constrained,
we analyzed the infection in minimal media and plotted the
ensemble of parameters sampled from MCMC (as described
above in “Parameterization of phage-cell encounter rate, latent period
and burst size”) in the space of (log10r, log10B, τ). We noticed
that they lie approximately on a single plane, described by
τ = α × [log10r + log10B] + β (see Supplementary Figs. 10e, f). Motivated
by this observation, we defined a new parameter, R:

R=
r � B

expðτ � g*Þ , ð16Þ

where g* denotes a characteristic growth rate (see below), obtained by
fitting the expression to the data.

To test if R exhibits a lower uncertainty than the individual
infectionparameters, we calculated the coefficient of variation (CV) for
the individual infection parameters and R. Notably, in most cases, the
CV of R is smaller than the CV of individual infection parameters,
except for the CV of τ inM9Glu (=0.012, slightly smaller than the CV of
R, = 0.015). This supports the idea that R is a robust quantity that
constrains the individual infection parameters. The distribution and
CV of infection parameters and R in minimal media are shown in
Supplementary Figs. 10c, d, 10g, h.

Interpreting R as the relative growth rate of viral population. To
motivate the interpretation of R as the relative growth rate of the viral
population, we used the following simplified model. We assumed an
exponentially growing bacterial population U(t) with growth rate g*.
When phage loss due to adsorption is negligible, the production of
phages at time t canbe accounted for by the encounter of bacteria and
phages at time t − τ and the subsequent release of free phages by the
infected cells:

dPðtÞ
dt

= r � U t � τð Þ � P t � τð Þ � B: ð17Þ

We further assumed that before massive lysis, the effect of infec-
tion on bacterial concentration is negligible. We therefore have U(t −
τ) =U(t)/exp(τ ⋅ g*). Plugging this expression into Eq. (17), we found:

dPðtÞ
dt

=
r � B

expðτ � g*Þ � U tð Þ � P t � τð Þ=R � U tð Þ � P t � τð Þ: ð18Þ

Therefore, R can be interpreted as a rate parameter that describes
the relative growth rate of viral population (normalized for cell con-
centration). Consistent with this interpretation, the fitted parameter g*,
which was inferred from the plane of conserved parameters (Supple-
mentary Figs. 10g, h), is of the same order ofmagnitude as the bacterial
growth rate: for M9Mal, g* is 0.052min−1, and the bacterial growth rate
is 0.010min−1; for M9Glu, g* is 0.035min−1, and the bacterial growth
rate is 0.012min−1. However, the derivation above relies on simplified
assumptions regarding cell growth and infection. Further theoretical
investigation is needed to derive the growth rate of phages, in analogy
to the approach undertaken for chemostat growth in refs. 27,68.

Examining the relative growth rate of lambda phages in LBM. To
further investigate whether R effectively constrains infection
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parameters in LBM, we plotted R, obtained from the ensemble of
parameters from the three models (“r-model”, “B-model”, and “τ-
model”), as a function of the normalized instantaneous growth rate
(ϕ). We found that R(ϕ) exhibited a consistent increasing trend with
the growth rate across all three models (see Fig. 3f).

Examining the relative growth rate of T4 phage in different growth
conditions. We also examined the relative growth rate of T4 phages
under different growth conditions, as reported in the literature. Two
studies investigating the infection parameters of T4 phages as a
function of bacterial growth rate yielded seemingly conflicting results.
Nabergoj et al. 27, which assessed the individual infection parameters
of T4 at varying bacterial growth rates in a chemostat, observed a
decrease in r and τwith the bacterial growth rate, and an increase in B.
Hadas et al. 28, which examined these parameters in batch cultureswith
different carbon sources, reported an increasing trend in r and B with
the bacterial growth rate, along with a non-monotonic trend in τ.

We sought to reconcile these findings by examining whether R
could offer a unified explanation for both studies. To this end, we
plotted R as a function of bacterial growth rate (g) for both studies. For
Nabergoj et al.27, we utilized the fitted relationships of r, B, and τ as
functions of growth rate (ref. 27) to calculate R, using Eq. (16). For
Hadas et al.28, we used their measured parameters to compute R, from
the following growth conditions: LB supplemented with 0.4% glucose
(LBG), LBG supplemented with penicillin (LBG+Pn), and M9 minimal
medium supplemented with 0.4% glucose (Glu), 0.4% glycerol (Gly), or
0.4% acetate (Acet). The results, depicted in Supplementary Fig. 11,
suggest a consistent increasing trend of R with bacterial growth rate
across both studies.

Modeling bacterial recovery
We aimed to incorporate the recovery after massive lysis into the
model. Following ref. 17, we assumed that three processes contribute
to this recovery: (1) Growth of cells that are resistant to phage infec-
tion; (2) Conversion from lysed cells to debris, whichcontributes to the
measured OD; and (3) Recycling of nutrients from cell debris into the
nutrients, which foster cell growth. We denoted the resistant popula-
tion as R and cell debris asD. We assumed that the resistant cells were
produced from uninfected cells (U) with a first-order transition rate km
(refs. 17,34), and all lysed cells were converted to cell debris instanta-
neously. The content of each lysed cell was recycled as nutrients (N)
with a conversion factor kf. Finally, we assumed that the debris from
each lysed cell contributed to OD with a 10% molar absorptivity of an
intact cell (see “Examining alternative model assumptions” below for
derivation). The model schematic is shown in Supplementary Fig. 12a.

Accordingly, we modified Eq. (9) to describe the dynamics of
nutrients (N), uninfected cells (U), infected cells (Ii), free phages (P),
resistant cells (R) and cell debris (D):

dN
dt

= � e � U +R +
XM
i=1

Ii

 !
� g Nð Þ+ kf �

M
τ
� IM ,

dU
dt

=U � g Nð Þ � r � U � P � km � U,

dI1
dt

= r � U � P �M
τ
� I1,

dIi
dt

=
M
τ
� Ii�1 � Ii
� �

for i= 2, 3, . . . ,M,

dP
dt

=B �M
τ
� IM � r � U +

XM
i=1

Ii

 !
� P,

dR
dt

=R � g Nð Þ+ km � U,

dD
dt

=
M
τ
� IM :

ð19Þ

Since g was parameterized from the OD dynamics of uninfected cul-
tures, and r, B and τ were parameterized from early-stage infection
data using the “r-model” (as described above), the only remaining
unknown parameters are km and kf. We fitted km and kf by minimizing
the following objective function:

R km, kf

	 

=
XJ
j = 1

X
t2To,j

1
To

�� �� ½bUjðtÞ+ R̂jðtÞ+0:1 � D̂jðtÞ+
PM

i= 1 Î i,jðtÞ� � ϵ bNjðtÞ
	 


�ODj tð Þ
maxODj tð Þ �minODj tð Þ

24 352

:

ð20Þ

We then obtained the ensemble of parameters using the method
described above in “Characterizing the dependence of infection
parameters on growth rate” and predicted the phage dynamics using
the method described above in “Predicting phage dynamics for
infection in LBM”. The fitting results are shown in Supplementary
Fig. 12b. The predictions are shown in Supplementary Fig. 12c.

Examining model assumptions
Ignoring the inactivation of infectious phage particles. While some
models have incorporated the inactivation of infectious phage parti-
cles due to non-infective processes such as degradation69, our model
omitted this term. Examination of measured phage concentrations
over time (see Supplementary Fig. 12c) revealed no significant drop in
phage concentration following massive lysis. For instance, for infec-
tion in LBMwith an initial phage concentration of ~103 PFUmL−1 (where
the phage concentration displayed the greatest reduction among the
six infection conditions examined), the phage concentration
decreased from 4.1 × 1010 PFUmL−1 at t = 8 h to 1.4 × 1010 PFUmL−1 at
t = 20h, corresponding to a 3.9% inactivation per hour. Given that our
model focuses on infection over a shorter time scale (the initial ~6 h),
we contend that the effects of phage particle inactivation are
negligible.

Ignoring the contribution of cell debris to OD. Whenmodeling early-
stage infection, our model also ignored the contribution of cell debris
to bacterial OD (ref. 24), since we consider that contribution to be
small. For instance, for infection in LBM with an initial phage con-
centration of ~103 PFUmL−1, the lysis OD and the minimal OD after
massive lysis were approximately 0.8 and 0.1, respectively (see Sup-
plementary Fig. 12c). Thus, even assuming that the latter OD solely
originates from debris released from the peak, each dead cell’s con-
tribution to OD is ~12% that of a live cell. For the sake of simplicity, we
neglected this contribution.

Evaluating the effect of assumingM = 10.While ourmodel usedM = 5
to represent the number of intermediate infected states (see Eq. (9)),
previousmodels have used other values, e.g.,M = 8 (ref. 23) andM = 10
(ref. 22). To evaluate the effect of a largerM value, we assumedM = 10
and fitted the OD dynamics of infected cultures in LBM using the “r-
model”. Examining the fitting results, we found that there is minimal
change in the distribution of r, B, τ compared to the model withM = 5
(see Supplementary Fig. 19d). Furthermore, the inferred value of the
relative growth rate of the viral population, R, only displayed a small
shift (from 3× 10−10mL−1 min−1 atM = 5 to 4 × 10−10 mL−1 min−1 atM = 10),
and the quality of fitting the OD dynamics, and of predicting phage
dynamics, were not improved (see Supplementary Figs. 19c, 19d, 19f).
Therefore, to reduce computational time when fitting the data, we
decided not to use a larger M value.

Evaluating the effect of cell elongation after infection. It was pre-
viously reported that cells elongate upon infection8. However, our
model assumed that infected cells contribute to OD in the same
manner as uninfected cells. Here, we explored the hypothesis that the
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increased contribution to OD by infected cells would impact model
inference.

To do so, we used the data in ref. 21, where themolar absorptivity
(ε) of ampicillin-treated E. coli cells (~ 30μm long) was reported to be
3-fold that of the exponentially growing cells.Weused the 3-fold factor
in our model as the upper bound for the change in ε of infected cells.
Specifically, we assumed that the molar absorptivity of infected cells
(ε(Ii(t))) grows exponentially with their infection state (i), with the
terminal state (M) having a 3-fold ε of the corresponding uninfected
cells under the same growth condition:

ε IiðtÞ
� �

= 3
i
M � ε N tð Þð Þ for i= 1, 2, . . . ,M: ð21Þ

We then fitted the OD dynamics of infected cultures in LBM with
the r-model by minimizing the following objective function:

R r,B, τð Þ=
XJ
j = 1

X
t2To,j

1
To

�� �� bUjðtÞ � ε bNjðtÞ
	 


+
PM

i = 1 ½̂Ii,jðtÞ � 3
i
M � ε bNjðtÞ

	 

� � ODj tð Þ

maxODj tð Þ �minODj tð Þ

264
375
2

:

ð22Þ

We found that incorporating this feature led to a modest ~2 fold
change in the inferred values of r and B, and no change in τ, compared
to the original model where infected and uninfected cells have the
same molar absorptivity (see Supplementary Fig. 20c). Furthermore,
the inferred value of the relative growth rate of the viral population, R,
was almost unchanged, and the quality of fitting the OD dynamics, and
of predicting phage dynamics, were not improved (see Supplementary
Figs. 20a, b, d). Consequently, for simplicity, we decided not to
incorporate any change in absorptivity of infected cells.

Quantifying the proportion of lysogens among surviving cells in
phage-infected cultures
To verify that the surviving cells in cultures infected by λwt were
lysogens, we leveraged the fact that λwt harbors a kanamycin resistance
cassette11. After the cell culture infected at an initial phage con-
centration of≈ 2 × 107 PFUmL−1 had exhibitedmassive lysis, the culture
was extracted and diluted 4 × 104-fold using 1 × PBS. Diluted cells were
plated on agar plates made using LB or LB supplemented with
50μgmL−1 kanamycin. The numbers of colonies were used to calculate
the total number of cells in the infected culture and the number of
lysogenic cells (resistant to kanamycin). The results, shown in Sup-
plementary Fig. 13, indicated that >99% of the surviving cells were
lysogens.

Measuring thenumberofphages releasedby lambda lysogens at
different growth rates
This assay is modified from ref. 11. Briefly, an overnight culture of
MG1655 λts in LB, supplemented with 50 µgmL−1 kanamycin, was cen-
trifuged, and the supernatant (containing free phages released during
overnight growth)was removed. The cell pelletwas resuspended in the
same volume of fresh LBGM, and further diluted 1000-fold in LBGM.
500μL of this diluted culture was aliquoted into replicate wells in a
clear 48-well flat-bottom microplate (COSTAR). The plate was incu-
bated for 24 h at 30 oC with shaking.

We sampled the bacterial cultures when they were first inocu-
lated, and when the blank-subtracted OD reached approximately 0.01,
0.02, 0.04, 0.25, 0.30, 0.50, and 1.00. At each time point, the entire
500 µL of the cultures from two wells were extracted, and 25μL of
chloroform (final concentration, 5%) was added to each sample, fol-
lowed by vortexing for 10 s. Phage lysates were stored at 4 oC, and the
OD-based phage counting procedure was used to measure the phage
concentrations, with the calibration curve obtained by infection of the
same phage strain in LBM (Fig. 2a).

Modeling spontaneous induction
We assumed the lysogenic cells (L) switch to the induced state (Ii) with
a first-order transition rate ki (the spontaneous induction rate), and
that ki is a linear function of the normalized instantaneous cell growth
rate (ϕ): ki =max ð0, kik

� ϕ+ kib
Þ. The induced cells undergo M inter-

mediate states (I1, I2,…, IM) before reaching lysis, similar to the infected
cells in models that describe infected cultures (see “Modeling the OD
dynamics of phages and bacteria during infection” above). The
released phages get adsorbed to the glucose-grown cells at a rate 10-
fold lower than that of cells grown in maltose-supplemented
medium42. The model schematic is shown in Fig. 5g. Accordingly, we
modified Eq. (9) to describe the dynamics of nutrients (N), lysogens (L),
induced cells (Ii) and free phages (P):

dN
dt

= � e � L+
XM
i=1

Ii

 !
� g Nð Þ,

dL
dt

= L � g Nð Þ � ki � L,
dI1
dt

= ki � L�
M
τ
� I1,

dIi
dt

=
M
τ
� Ii�1 � Ii
� �

for i= 2, 3, . . . ,M,

dP
dt

=B �M
τ
� IM � 0:1 � r � L+

XM
i=1

Ii

 !
:

ð23Þ

To parameterize the growth rate, the growth curves of cultures in
LBGM up to and including the first plateau were fitted to Eq. (10). The
datawaswell describedby three growthphases (X = 3) (Supplementary
Fig. 6). Thefittedparameter values are listed in Supplementary Table 2.

We then parameterized Eq. (23) using the “r-model”, “B-model”
and “τ-model” respectively. For eachmodel, the parameters for r,B and
τ were obtained from the fitting of the corresponding model to
infection dynamics in LBM. The remaining parameters (kik and kib)
were fitted to themeasured dynamics of OD and phage concentration,
by minimizing the following objective function:

Rðkik ,kibÞ= 1
Toj j
P
t2To

L̂ðtÞ+
PM

i= 1
Î iðtÞ

� �
�ϵ bN tð Þ
	 


�OD tð Þ
maxOD tð Þ�minOD tð Þ

24 352

+ 1
TPj j
P
t2TP

log P̂ðtÞ+B�̂IM ðtÞ½ ��logP tð Þ
max logP tð Þð Þ�min logP tð Þð Þ

h i2
,

ð24Þ

where L̂ðtÞ is the model-predicted dynamics of lysogenic cells, P(t) is
the measured phage dynamics, Tp is the set of time points where the
phage concentrations are measured, and |Tp| is the total number of
time points. The other notations are the same as in Eq. (14).

Additionally, we tested an alternative set of models where no
phage adsorption is allowed, following the same fitting strategy as
above. The fitting result are shown in Fig. 5f (for “r-model” with phage
adsorption) and Supplementary Fig. 17 (for other models), with the
fitting parameters provided in Supplementary Table 5.

We found that, in the absence of phage adsorption, all three
models (“r-model”, “B-model” and “τ-model”) reproduce the data, and
the fitted induction rates ki all increase with the growth rate (see
Supplementary Figs. 17a–c). When adsorption is introduced, the “B-
model” cannot reproduce the data, while the “r-model” and “τ-model”
are able to do so. For the latter twomodels, the inferred induction rate
ki increases with growth rate, exhibiting a similar trend to the models
without adsorption (see Fig. 5f for “r-model” and Supplementary
Figs. 17d, e for “B-model” and “τ-model”). Therefore, regardless of
whether phage adsorption is included in the model, the fitting results
suggest that the spontaneous induction rate increases with the bac-
terial growth rate.
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Measuring the frequency of lysogeny as a function of MOI and
growth rate
Infecting at different MOIs at a given growth rate. For this assay, we
adapted the bulk lysogenization protocol from refs. 8,10, but instead
of plating for colonies to measure the concentration of cells, we used
the growth dynamics of the infected bacterial cultures as described
below. This assay was used to produce the data shown in Fig. 4b, c.

A 2-fold dilution series of λts (harboring a kanamycin resistance
cassette) was prepared in LBM. The concentrations of phages in this
dilution series ranged from ≈ 5 × 107 PFUmL−1 to ≈ 2 × 1011 PFUmL−1. To
prepare cells, an overnight culture of MG1655 in LB was diluted 1:500
into LBM in a baffled Erlenmeyer flask. This culture was grown at 30 oC
with aeration (220 rpmshaking). Upon reachingODspec≈0.1, 500μLof
the culture was aliquoted into different wells of a clear 48-well flat-
bottom microplate (COSTAR). This plate (“infection plate”) was incu-
bated for 30min at 30 oC with shaking in a plate reader, where the OD
was recorded every 5min.

After 30min, 10μL of phages at different concentrations were
added to different wells, resulting in infected bacterial cultures at
multiplicity of infection, MOI, ranging from ~0.02 to ~100. As negative
controls for phage infection,we includeduninfected cultures, towhich
blank SM buffer was added. The infection plate was incubated with
shaking at 30 oC for 15min to allow phages to infect cells. Then, 2μL of
each sample was diluted into 500μL of LBM in another 48-well
microplate (“detection plate”), pre-warmed at 30 oC. The detection
plate was incubated with shaking at 30 oC for 45min. Then, each
sample was supplemented with kanamycin (final concentration,
50μgmL−1), and incubated for 24 h.

For the uninfected samples, some wells were supplemented with
50μgmL−1 kanamycin, serving as a negative control for infection,
whereas some were not subjected to selection, providing an estimate
for the total density of cells in the infection mixture (analyzed as
described below).

Infecting at different MOIs and growth rates. This assay was used to
produce the data shown in Fig. 5b. To obtain cells at different growth
rates, we first prepared a culture of MG1655 in LBM at 30 oC. At
ODspec ≈0.1, this culture was diluted into fresh LBM in different baffled
Erlenmeyer flasks (5 cultures, dilution ratios ranging from 1:50 to
undiluted). These cultures with different initial ODspec were grown at
30 oC for 3 h (final ODspec ranging from ~0.2 to ~2.5). Then, 200μL of
these cultures and the overnight culture (ODspec ≈ 5), were aliquoted
into different wells of a 96-well “infection plate”, yielding 6 infection
series at different growth rates. These cultures were grown for 30min
at 30 oC before phage addition.

Infection was performed using phages in a 5× dilution series (6
levels, ranging from ≈ 8 × 107 PFUmL−1 to ≈ 2 × 1011 PFUmL−1). The
infected samples were grown for 30min; then, 1μL of each sample in
the infection plate was diluted into 200μL of pre-warmed LBM sup-
plemented with 50μgmL−1 kanamycin in another 96-well microplate
(“detection plate”). The detection plate was incubated with shaking at
30 oC for 24 h. The detection plate also contained the uninfected
control cultures with and without kanamycin selection. Here, kana-
mycin selection was introduced immediately after the dilution step.
Growth in fresh medium without kanamycin selection was omitted to
ensure that the density of lysogens we measured reflected lysogen-
ization at the original growth rates.

Data analysis. The growth rate at which infection was performed, g,
was calculated by fitting the following equation to the growth curves of
each sample during the 30-minute duration before phageswere added.

N tð Þ=N0 × e
g�t , ð25Þ

where N0 is the initial cell concentration, and g is the growth rate.
Fitting was performed in logarithmic space.

Following previous studies8,10, we defined the frequency of lyso-
geny as the fraction of kanamycin-resistant lysogenic cells (L0) among
all cells in the infected cultures (T0):

flysogeny =
L0
T0

: ð26Þ

We inferred L0 and T0 by extrapolating the growth curves of the
infected cell cultures under selection L(t), and the uninfected without
selection T(t) to t = 0, defined as the time the samples in the infection
plate were diluted into the detection plate (Fig. 4b). This was done by
fitting Eq. (25) to L(t) and T(t) for OD between ~0.02 and ~0.1. We note
that in this case, the parameter g reflects the growth rate in the
detection plate, not the growth rates at which infection was
performed.

Inferring the single-cell probability of lysogenization
Model description. Following refs. 8,10,17,36, we assumed the
following:

(1) Phage-cell encounters follow Poisson statistics. As a result, the
single-cell MOI, n, is described by the following distribution:

Pn =
aMð Þne�aM

n!
, ð27Þ

whereM is the average MOI in the infection mixture, and a is a scaling
factor that accounts for the infection efficiency and the accuracy in
measuring phage and cell concentrations.

(2) The probability of lysogenization, Qn, is a function of the
single-cellMOI,n. Unlike refs. 8,10,36 which assumed coinfection by at
least MOI* phages is required for lysogeny, we adopted the more
general approach described in ref. 17, which allows for non-zero
probability of lysogenization at n <MOI*:

Qn =

0 forn=0

q1 forn= 1

q2 forn= 2

. . .

qMOI* forn≥MOI*:

8>>>>>><>>>>>>:
ð28Þ

The observed frequency of lysogeny, flysogeny, as a function of the
averageMOI,M, is found by summing the product of Pn andQn over all
possible values of n:

flysogeny =
X1
n=0

PnQn: ð29Þ

We scanned the value ofMOI* from 1 to 3, and found thatMOI* = 2
best captured the lysogenization data by wild-type, replication-
competent lambda phages in exponentially growing cells (consistent
with refs. 10,36). For MOI* = 2, Eq. (29) becomes:

f lysogeny =P1q1 +q2

X1
n= 2

PðnÞ= P1q1 + 1� P0 � P1

� �
q2: ð30Þ

Eq. (30) was used to fit the lysogeny data shown in Fig. 4c.

Incorporating the reduced frequency of lysogeny at high MOI. At
some growth rates, we observed a reduction in the frequency of
lysogeny at very high MOI (consistent with previous reports8,36). To
capture this reduction, we introduced into Eq. (29) an additional
repression term, Rn, which decreases the probability of lysogenization
when a cell is infected at high n values. We parameterized Rn as an

Article https://doi.org/10.1038/s41467-024-51913-6

Nature Communications |         (2024) 15:7814 15

www.nature.com/naturecommunications


exponential decay with a rate of k:

Rn =
1 for0≤ n<MOI*

e�k n�MOI*ð Þ forn ≥ MOI*:

(
ð31Þ

For up to n =MOI*, Rn = 1, thus the single-cell probability of
lysogenization is simply Qn. With this additional term, Eq. (29)
becomes:

flysogeny =
X1
n=0

PnQnRn, ð32Þ

and Eq. (30) becomes:

flysogeny =P1q1 +q2

X1
n= 2

PnRn: ð33Þ

For MOI* = 1 (used to fit data in stationary cells in Supplementary
Fig. 16), the frequency of lysogeny is:

flysogeny =q1

X1
n= 1

PnRn: ð34Þ

Model fitting. To capture the lysogeny-vs.-MOI curve measured at
each bacterial growth rate, fitting was performed by minimizing the
following objective function:

R a, q1, q2, k
� �

=
X
M

log flysogeny � log f̂lysogeny
h i2

, ð35Þ

where f̂ lysogeny are the model-predicted frequencies of lysogeny, and
flysogeny are the experimentallymeasured values. Fittingwasperformed
in logarithmic space because the MOI and the frequencies of lysogeny
span several orders of magnitude. We also imposed a constraint of
q1 ≤ q2. Fitting results are shown in Figs. 4c and 5b, with the average
MOI rescaled using the parameter a as done in ref. 10.

We note that the best-fit values of the parameter a, when plotted
as a function of the bacterial density, are in agreement with the theo-
retically predicted efficiency of phage adsorption38 (Supplementary
Fig. 21a). This agreement lends further credence to our measurements
and the fitting procedure.

Predicting the frequency of lysogeny as a function of bothMOI and
growth rates. To predict the parameters a, q1, q2, and k at an arbitrary
growth rate g, the best-fit values of these parameters at each sampled
growth rate were used to fit the following phenomenological expres-
sions:

loga=β2g
2 + β1g +β0,

log q1 = β1g +β0,

log q2 =
β1g +β0 forg < g*

β2g + β1 � β2

� �
g* +β0 for g ≥ g*,

(

k =

0 for g < g1

� g � g1

� �
g � g2

� �
forg1 ≤ g < g2

0 for g ≥ g2:

8><>:
ð36Þ

The results of these parameterizations are shown in Supplemen-
tary Fig. 21b (for q1, also reproduced in Fig. 5c), and the parameter
values (with bootstrap standard errors) are shown in Supplementary
Table 4.

To predict the frequency of lysogeny as a function of both MOI
(M) andgrowth rate (g), we scanned theMOIbetween 10−3 and 100, and
the growth rate between 0 and 1.25 h−1. For each growth rate (g), the
parameter values in Supplementary Table 4 and Eq. (36) were used to

calculate the values of a, q1, q2, and k These parameter values and Eqs.
(27), (31), and (33) were used to calculate the predicted frequency of
lysogeny for different MOI values (M). The “fate diagram”, depicting
the frequency of lysogeny as a function of both MOI and growth rates,
is shown in Fig. 5e.

This model prediction was compared with the experimental data
(Fig. 5e). Here, the sampled data points (6 growth rates, each with 6
MOI values) were interpolated using the triangulation-based natural
neighbor method and further smoothed using a 2D median filter, as
done in ref. 70.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data and statistics underlying the figures of this publication are
provided in the Source Data file. In addition, raw datasets generated in
this study (required to run the customPython andMATLAB scripts; see
Code Availability) have been deposited at https://github.com/
gengyuncong/PhageCounting. Source data are provided with
this paper.

Code availability
Custom scripts (written in Python 3.8.5 using Jupyter Notebook and
MATLAB 2020a–2023b) developed in this study for data analysis and
model fitting have been deposited at https://github.com/
gengyuncong/PhageCounting.
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