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On discovery of novel hub genes 
for ER+ and TN breast cancer types 
through RNA seq data analyses 
and classification models
Alishbah Saddiqa 1, Mahrukh Zakir 1, Mawara Sheikh 2, Zahid Muneer 1, Arsalan Hassan 1, 
Iqra Ali 1, Ihtisham Ul Haq 3, Azmat Ali Khan 4, Abdul Malik 5* & Abdul Rauf Siddiqi 1*

Breast cancer (BC) is a malignant neoplasm which is classified into various types defined by underlying 
molecular factors such as estrogen receptor positive (ER+), progesterone receptor positive (PR+), 
human epidermal growth factor positive (HER2+) and triple negative (TNBC). Early detection of 
ER+ and TNBC is crucial in the choice of diagnosis and appropriate treatment strategy. Here we report 
the key genes associated to ER+ and TNBC using RNA-Seq analysis and machine learning models. 
Three ER+ and TNBC RNA seq datasets comprising 164 patients in-toto were selected for standard 
NGS hierarchical data processing and data analyses protocols. Enrichment pathway analysis and 
network analysis was done and finally top hub genes were identified. To come with a reliable classifier 
which could distinguish the distinct transcriptome patterns associated to ER+ and TNBC, ML models 
were built employing Naïve Bayes, SVM and kNN. 1730 common DEG’s exhibiting significant logFC 
values with 0.05 p-value threshold were identified. A list of top ten hub genes were screened on the 
basis of maximal clique centrality (MCC) which included CDC20, CDK1, BUB1, AURKA, CDCA8, RRM2, 
TTK, CENPF, CEP55 and NDC80.These genes were found to be involved in crucial cell cycle pathways. 
k-Nearest Neighbor (kNN) model was observed to be best classifier with accuracy 84%, specificity 66% 
and sensitivity 95% to differentiate between ER+ and TNBC RNA-Seq transcriptomes. Our screened list 
of 10 hub genes can thus help unearth novel molecular signatures implicated in ER+ and TNBC onset, 
prognosis and design of novel protocols for breast cancer diagnostics and therapeutics.
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Breast cancer (BC) is a multifactorial heterogenous disease which is characterized by uncontrolled cell 
proliferation1,2. BC is the most prevalent cancer type which primarily affects women contributing a huge health 
burden on public and individual spendings. Breast cancer accounts for nearly 38.9% of all human cancer types. 
A GLOBOCAN survey for 2022 found that 11.6% of new cases of BC occurred in females, and the death rate was 
almost 6.9%3. The prevalence of breast cancer in Asia is about 40%4, and Pakistan reported about 1.38 million 
cases of breast cancer in 20155. Multiple genetical, hormonal and environmental factors are involved in causing 
breast cancer. Breast cancer affects mostly the females, originating from germ line mutations. Key genes found 
to be involved in breast cancer include BRCA1/BRCA26, TP537, PTEN8, STK119, CDH110,11.

Complex and diverse BC subtypes make it difficult to study the underlying pathways and risk factors respon-
sible for the onset of the disease. This necessitates a comprehensive understanding of the various pathways 
responsible for onset and proliferation of the disease; it also implicates that the genes involved in these pathways 
could be used for prevention, early detection, and personalized treatment approaches.

Aberrations in the expression of Estrogen Receptor (ER), Progesterone Receptor (PR) and Human epidermal 
growth factor receptor 2 (HER2) have been often associated to three distinct subtypes of breast cancer which are 
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observed both clinically and in molecular expression of hormonal imbalance. ER+ breast cancer is of consider-
able significance for several impacting factors associated to its diagnosis, prognosis, and treatment. ER+ breast 
cancer has been found to typically respond well to endocrine therapy in about 70% of cases12.

On the other hand triple negative breast cancer (TNBC) is another type of BC whose molecular characteristics 
vary from the aforementioned BC types, exhibiting no significant variation in behavior of estrogen receptor (ER), 
progesterone receptor (PR), and human epidermal growth factor receptor (HER-2)13,14. Approximately, 15–20% 
of all BCs diagnosed lies in the category of TNBC tumors15. Compared with other types of tumors, TNBC tumors 
have an aggressive appearance, a poor prognosis, and high recurrence rates16–23. Therefore, accurate identifica-
tion of differentially expressed genes (DEG) networks is needed for comprehensive understanding and distinct 
characterization of various breast cancer types.

This study is aimed at identifying the potential hub genes that contribute to both ER+ and TNBC development 
and progression. In order to determine the molecular basis of biological differences, integrated bioinformat-
ics analyses were performed including classification of the BC types based on machine learning models. DEG 
analyses were performed to delineate the transcriptomic profiles associated uniquely to ER+ and TNBC types 
on the basis of LogFC and P values; in the end hub gene were identified for both the types of BC which might 
serve as biomarkers for the disease. Our findings will contribute to better understanding of distinct phenotypes 
associated to ER+ and TNBC oncogenesis, and the development of novel diagnostic and therapeutic alternatives 
against the disease.

Materials and methods
RNA Seq datasets of ER+ and TNBC patients were retrieved from ArrayExpress. The datasets were quality 
checked, aligned; the duplicate reads were removed, and differentially expressed genes were identified on GAL-
AXY suit24. DAVID and Cytoscape were employed to analyze pathways and networks associated with the disease 
and to determine which genes are involved in the pathogenesis of breast cancer25,26. Machine learning classifiers 
including Support Vector Machine, Naïve Bayes and k-Nearest Neighbor were employed for generating a clas-
sification model to distinguish both the BC subtypes.

Dataset description
ER+ and TNBC RNA Seq datasets were obtained from ArrayExpress27 repository which is a curated database 
for high-throughput sequenced data. The datasets used in the study are E-GEOD-58135, E-MTAB-4993 and 
E-GEOD-45419 and the description of dataset is provided in (Table 1). ArrayExpress is linked to European 
Nucleotide Archive (ENA), a nucleotide database that provides nucleotide sequencing data, sequence assembly 
information, and functional annotations. The datasets were uploaded on Galaxy server (https://​usega​laxy.​eu/) 
for processing via ENA28. An overview of the layout of various processes employed in the study is presented in 
(Fig. 1).

Data pre‑processing
Data preprocessing was done by using FASTQC and FASTQ Groomer on the samples. HISAT2 was used for 
dataset alignment because of its high efficiency. “MarkDuplicates” was used to compare sequences and reads 
in the SAM file by measuring 5` positions of the reads or sequences or paired reads. Afterwards, “RmDup” was 
used to remove the duplicate reads. An RNA-expression analysis of datasets was conducted by “featureCounts”, 
which counts both DNA and RNA expression.

Identification of differential expressed genes
A quality-controlled normalized data set was used for supervised analysis comparing gene expression levels 
between ER+ and TNBC samples using DESeq2. Genes with p value < 0.05 and fold change < −1 and > 1 were 
statistically considered significant.

Machine learning
Expression file data was used to build mathematical models employing supervised machine learning classifiers. 
Three different supervised ML classifiers including SVM29, Naïve bayes30 and kNN30 were used to predict the 
accuracy, sensitivity and specificity of the model.

Functional enrichment analysis
Database for Annotation, Visualization and Integrated Discovery (DAVID) (https://​david.​ncifc​rf.​gov/) was used 
for the functional annotation of GO terms and the analysis of KEGG pathway enrichment. DAVID is a widely 

Table 1.   Datasets description.

No Datasets ArrayExpress accession no ENA accession no ER+ samples TN samples

1 Breast cancer RNA seq E-GEOD-58135 ENA-SRP042620 45 42

2 Whole transcriptome profiling of 63 breast 
cancer tumors E-MTAB-4993 ENA-ERP016798 51 12

3 An integrated model of the transcriptome land-
scape of HER-2 positive breast cancer E-GEOD-45419 ENA-SRP019936 8 8

https://usegalaxy.eu/
https://david.ncifcrf.gov/
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used resource for evaluating the functional significance of quantitative gene expression profiles25. The analysis 
of molecular or biological function GO terms and enrichment of pathways analysis was performed for candi-
date DEGs with a p-value cutoff of < 0.05 were considered significant. An online tool called REVIGO (Available 
online: http://​revigo.​irb.​hr/) was utilized to summarize and visualize long lists of GO terms31. The GO terms 
were clustered and represented in a scatter plot using a semantic similarity measure.

Network analysis
To evaluate the interactive relationships among DEGs, STRING (Available online: https://​string-​db.​org/) was 
utilized to construct a network of PPI (protein-protein interactions)32,33. The cutoff standard was set to a confident 
interaction score of > 0.4 to eliminate PPI interactions that are inconsistent. Thus, a PPI network with a strong 
degree of confidence was obtained. The STRING tool results were then combined with Cytoscape software34 to 
visualize PPI interactions of statistically significant DEGs35. Cytohubba was used to constructs a sub-network 
of hub genes based on maximal clique centrality (MCC) algorithm in such a way that molecular species are 
represented as nodes and their intermolecular interactions are known as links or edges between those nodes36. 
Thickness of lines between nodes and edges represents the affinity of interaction. Thicker the line stronger will 
be the interaction and vice versa.

Expression of hub genes
Using cancer data analysis portal (UALCAN, (https://​ualcan.​path.​uab.​edu/​analy​sis.​html) a web-based tool for 
analyzing hub gene expression, and clinical data from The Cancer Genome Atlas (TCGA), a box and whisker 
plot was generated showing gene expression levels in different cancers and their subtypes at various levels of 
sub-stages37. CDK1,CDC20,CDCA8,RRM2,NDC80,CEP55,CENPF,BUB1,TTK and AURKA were significantly 
overexpressed in breast cancer tissues based on menopause status than in normal tissues38.

Ethics approval and consent to participate
We further confirm that any aspect of the work covered in this manuscript has not involved human patients and 
thus requires no ethical approval of any relevant body.
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Figure 1.   Data processing and analysis workflow.

http://revigo.irb.hr/
https://string-db.org/
https://ualcan.path.uab.edu/analysis.html
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Results
Result of differential expression
The raw read data was aligned against Hg38Chr using HISAT2; the duplicates were identified and removed 
using MarkDuplicates and RmDup, respectively. R package DESeq2 was employed to figure out the differentially 
expressed genes from feature count files of SAM format. DESeq2 generated histogram, MA and PC plot for each 
dataset shown in (Figs. 2–4). The common DEG’s among three RNA Seq datasets were obtained by Venny tool 
(https://​bioin​fogp.​cnb.​csic.​es/​tools/​venny/)39, 1730 overlapping genes were identified among three datasets as 
shown in (Fig. 5).

Figure 2.   The PC plot (A), Dispersion estimates (B), histogram (C) and MA plot (D) were created by DESeq2 
tool of E-GEOD-45419 dataset. (A) PC plot shows two phenotypes: ER+ and TN. They are grouped on the basis 
of expression. (B) Dispersion estimates quantify the level of variability in gene expression across samples. Blue 
dots represent low dispersion estimates of genes and it shows the gene expression is relatively stable while the 
black dots represent high dispersion estimates. The red line shows the mean or median dispersion estimates. 
The blue dot close to red line indicated stable expression and the black dots close to red line suggests that the 
expression values are more variable. (C) Histogram shows the DEG’s grouped into bins or the frequency of 
genes. (D) MA plot the differences between measurements based on ER+ and TN by transforming the data by 
using log ratio and mean average. The red color shows the dispersion of differentially expressed genes while grey 
color shows no variation.

https://bioinfogp.cnb.csic.es/tools/venny/
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Classification outcomes
Classification models were built to differentiate BC samples based on DEG’s identified byDESeq2 tool. The clas-
sification algorithms including SVM, Naïve Bayes and kNN were employed on the training dataset of 134 samples 
and test dataset comprising of 32 samples. The train and test datasets were used as input data for the classifier. 
The accuracy level rose up to 84% in the validation stage of the kNN algorithm whereas the accuracy achieved 
in SVM was the lowest as 71% while the accuracy of Naïve Bayes was observed to be 81%. All the samples were 
successfully classified by the models, the results are shown in (Fig. 6) and (Table 2) respectively.

Pathway analysis
Gene enrichment analysis and KEGG pathways of 1730 common DEG’s were identified by using DAVID tool. 
The biological processes (BP), molecular functions (MF) and cell components (CC) were obtained which are 
shown in (Tables 3–5) respectively. Genes were involved in different biological pathways including mammary 

Figure 3.   The PC plot (A) Dispersion estimates (B) histogram (C) and MA plot (D) were created by DESeq2 
tool of E-MTAB-4993 dataset. (A) PC plot shows two phenotypes: ER+ and TN. They are grouped on the basis 
of expression. (B) Dispersion estimates quantify the level of variability in gene expression across samples. Blue 
dots represent low dispersion estimates of genes and it shows the gene expression is relatively stable while the 
black dots represent high dispersion estimates. The red line shows the mean or median dispersion estimates. 
The blue dot close to red line indicated stable expression and the black dots close to red line suggests that the 
expression values are more variable.(C) Histogram shows the DEG’s grouped into bins or the frequency of 
genes. (D)MA plot the differences between measurements based on ER+ and TN by transforming the data by 
using log ratio and mean average. The red color shows the dispersion of differentially expressed genes while grey 
color shows no variation.
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gland alveolus development (GO:0060749), response to drug (GO:0042493), natural killer cell mediated cyto-
toxicity (GO:0042267), regulation of insulin secretion (GO:0050796), peripheral nervous system development 
(GO:0007422), cAMP-mediated signaling (GO:0019933), and regulation of cell growth (GO:0001558), as 
detailed in (Table 3). The GO molecular function analysis revealed the involvement of DEGs in phosphati-
dylinositol phospholipase C activity (GO:0004435), mRNA 5’ UTR binding (GO:0048027), and calcium ion 
binding (GO:0005509), Table 4. In addition, CC group genes were mainly enriched in the extracellular space 
(GO:0005615), basolateral plasma membrane (GO:0016323), and extracellular region (GO:0005576), (Table 5). 
Furthermore, we classified DEGs associated with different biological pathways according to the KEGG reference 
database using the DAVID method (P < 0.05; FDR < 0.05). The KEGG pathway analysis showed the association 
of DEG’s in cell cycle, Insulin secretion, pathways in cancer and prostate cancer. The results are exhibited in 
(Table 6). REVIGO was used to visualize gene ontology in form of scatter plot. The scatter plot depicts semantic 
similarity between GO terms on x-axis, whereas the y-axis indicates p-value or significance, the plot is shown 
in (Fig. 7). The x-axis shows that terms that are functionally closely related. A lower p-value indicates a greater 

Figure 4.   The PC plot (A) Dispersion estimates (B) histogram (C) and MA plot (D) were created by DESeq2 
tool of E-MTAB-58135 dataset. (A) PC plot shows two phenotypes: ER+ and TN. They are grouped on the basis 
of expression. (B) Dispersion estimates quantify the level of variability in gene expression across samples. Blue 
dots represent low dispersion estimates of genes and it shows the gene expression is relatively stable while the 
black dots represent high dispersion estimates. The red line shows the mean or median dispersion estimates. 
The blue dot close to red line indicated stable expression and the black dots close to red line suggests that the 
expression values are more variable. (C) Histogram shows the DEG’s grouped into bins or the frequency of 
genes. (D) MA plot the differences between measurements based on ER+ and TN by transforming the data by 
using log ratio and mean average. The red color shows the dispersion of differentially expressed genes while grey 
color shows no variation.
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significance for terms positioned higher on the y-axis. GO hierarchies can be represented by different colors in 
the scatter plot.

Network analysis
In network analysis, the gene interacting network was constructed by STRING and was visualized by Cystoscape. 
Network was constructed for 1730 differentially expressed genes which consisted of 1505 nodes and 9714 edges, 

Figure 5.   The Venn diagram shows that 1730 common DEG’s were found in the datasets.

Figure 6.   Results of SVM (A), Naïve Bayes (B) and kNN (C) respectively.
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(Fig. 8); the interaction between the two nodes determined the co-relation. In Cytohubba, the MCC algorithm 
measures the centrality of nodes by analyzing their involvement in large cliques. A network structure and con-
nectivity can be determined by identifying hub genes. The top 10 Hub genes identified were: CDC20, CDK1, 
BUB1, AURKA, CDCA8, RRM2, TTK, CENPF, CEP55 and NDC80, the network involving the aforementioned 
genes is shown in(Fig. 9).

Hub genes expression analysis
Transcriptional and translational expression levels of all hub genes were significantly higher (P = 0.05) in cancer-
ous tissues compared with normal tissues. Furthermore, based on patient menopause status, hub gene expression 

Table 2.   Classifier’s results.

Classifier Sensitivity Specificity Accuracy Accuracy Percentage (%)

SVM 0.666 0.85 0.71875 72

kNN 0.95 0.6666 0.84375 84

Naive byes 0.667 0.9 0.8125 81

Table 3.   Biological processes in which genes are involved.

Category Term Description Count P-value

BP GO:0060749 Mammary gland alveolus development 6 5.90E-04

BP GO:0042493 Response to drug 27 7.21E-04

BP GO:0042267 Natural killer cell mediated cytotoxicity 6 7.88E-04

BP GO:0050796 Regulation of insulin secretion 10 0.002232

BP GO:0007422 Peripheral nervous system development 6 0.003154

BP GO:0007626 Locomotory behavior 11 0.003233

BP GO:0008284 Positive regulation of cell proliferation 34 0.003703

BP GO:0019933 cAMP-mediated signaling 7 0.005342

BP GO:0001558 Regulation of cell growth 10 0.007388

Table 4.   Molecular Functions in which genes are involved.

Category Term Description Count P-value

MF GO:0004435 Phosphatidylinositol phospholipase C activity 6 0.005084

MF GO:0046703 Natural killer cell lectin-like receptor binding 4 0.005309

MF GO:0048027 mRNA 5’-UTR binding 4 0.005309

MF GO:0001158 Enhancer sequence-specific DNA binding 5 0.009123

MF GO:0005509 Calcium ion binding 45 0.009493

MF GO:0015254 Glycerol channel activity 4 0.012641

MF GO:0043565 Sequence-specific DNA binding 34 0.013999

MF GO:0008236 Serine-type peptidase activity 8 0.017159

MF GO:0008134 Transcription factor binding 21 0.019617

Table 5.   Cellular Components in which genes are involved.

Category Term Description Count P-value

CC GO:0005615 Extracellular space 96 8.27E-07

CC GO:0016323 Basolateral plasma membrane 19 7.34E-04

CC GO:0005576 Extracellular region 91 0.005143

CC GO:0005581 Collagen trimer 11 0.005922

CC GO:0005578 Proteinaceous extracellular matrix 21 0.011515

CC GO:0019897 Extrinsic component of plasma membrane 5 0.020575
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levels were significantly higher in breast cancer samples than in normal samples in patients at different cancer 
stages as shown by box and whisker plots at (Fig. 10).

Discussion
In this study three RNA-Seq datasets comprising of ER+ and TNBC samples were studied, having been-processed, 
aligned, screened and filtered for duplicates, and finally processed for calculation of expression counts; thus 
1730 overlapping DEG’s were identified which served as the training and test dataset for classification models to 
identify transcriptomic patterns which may help differentiate between ER+ and TNBC. The DEG’s of ER+ and 

Table 6.   KEGG Pathways of DEGs.

Category Term Description Count P-value

KEGG pathway hsa04110 Cell cycle 18 8.72E-06

KEGG pathway hsa04911 Insulin secretion 13 1.40E-04

KEGG pathway hsa05200 Pathways in cancer 32 2.37E-04

KEGG pathway hsa04925 Aldosterone synthesis and secretion 12 3.76E-04

KEGG pathway hsa04024 cAMP signaling pathway 20 3.81E-04

KEGG pathway hsa05214 Glioma 10 0.001105

KEGG pathway hsa04114 Oocyte meiosis 13 0.001653

KEGG pathway hsa04916 Melanogenesis 12 0.002226

KEGG pathway hsa04915 Estrogen signaling pathway 11 0.006429

KEGG pathway hsa04923 Regulation of lipolysis in adipocytes 8 0.006937

KEGG pathway hsa05215 Prostate cancer 10 0.008809

KEGG pathway hsa04020 Calcium signaling pathway 15 0.013324

KEGG pathway hsa04115 p53 signaling pathway 8 0.017886

Figure 7.   The Scatterplot represents the cluster representatives (i.e. terms remaining after the redundancy 
reduction) in a two-dimensional space derived by applying multidimensional scaling to a matrix of the GO term 
semantic similarities.
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TN samples were filtered on the basis of logFC and p-values. Pathway and network analysis of the selected DEG’s 
was performed at DAVID25 and Cytoscape26. Classification models were built based on three different algorithms 
to successfully differentiate between ER+ and TNBC types. The accuracy, sensitivity and specificity of the clas-
sifiers were estimated. Highest accuracy was exhibited by kNN classifier that is 84% as compared to other two 
classifiers SVM and Naïve Bayes whose accuracy was 72 and 81% respectively. Thus, kNN was found to be a best 
classifier between ER+ and TNBC types.

Figure 8.   Network of differentially expressed genes by String. The thick lines indicate significant association, 
functional similarity or co-regulation between the genes while thin lines represent low level interactions. Genes 
associated with thin lines still exhibit level of association but the significance is relatively low.
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The DEG’s were identified across three RNA-Seq datasets, and three classification models, Support Vector 
Machine (SVM), Naïve Bayes, and k-Nearest Neighbors (kNN), were built to distinguish between ER+ and TNBC 
samples which is clinically extremely important for diagnosis and the choice of therapeutic alternatives. Often 
a miss diagnosis of TNBC i.e. false negative TNBC cases, which are mistakenly diagnosed as ER+ , lead to a lot 
of clinical complications and vice versa We therefore improvised ml classifiers training upon aforementioned 
DEG data to come up with a protocol which could help improving the current methodology for BC. To evalu-
ate the effectiveness of each model in correctly discriminating between ER+ and TNBC cases and minimizing 
false positives, performance metrics such as accuracy, sensitivity and specificity were used. This comprehensive 
analysis not only elucidates the key molecular signatures which could serve to discriminate ER+ from TNBC 
but also underscores the utility of machine learning methodologies in enhancing the accuracy of BC diagnosis.

Results of GO analyses including CC, MF, BP showed that these overlapping DEG’s were primarily enriched 
in extracellular space and are associated with cell cycle, positive regulation of cell proliferation, cAMP-mediated 
signaling, transcription factor binding, sequence-specific DNA binding, calcium ion binding. In addition, the 
KEGG pathway enrichment analysis indicated that these overlapping DEGs were significantly enriched in path-
ways in cancer, cAMP signaling pathway, cell cycle, oocyte meiosis, estrogen signaling pathway, p53 signaling 
pathway and calcium signaling pathway. These enriched gene function and KEGG pathways provide insights 
regarding the molecular mechanism of ER+ and TNBC progression. Our analyses led to the inference that 
CDC20, CDK1, BUB1, AURKA, CDCA8, RRM2, TTK, CENPF, CEP55, and NDC80 serve as hub genes in the 
progression of ER+ and TN and also a predictor for the worst survival rates of BC patients. As illustrated in 
TCGA analysis, the breast cancer samples in multiple clinicopathological subgroups, the ten hub genes were 
consistently overexpressed (p0.05) in patients.

Previous studies have revealed that CDK1, BUB1, AURKA, CDCA8, RRM2, TTK, CENPF, CEP55 and NDC80 
are implicated in cell cycle and associated with tumorigenesis. The CDK1, also known as CDC2, is involved in 
the precise division of cells40. In the TNBC clinical subtype of breast cancer, inhibiting CDK1 expression can 
suppress tumor cell growth and induce apoptosis41. In addition, BUB1 is one of the key mitotic checkpoint genes 
whose expression level is closely correlated with the proliferation of carcinoma cells42–44. RRM2, a breast cancer 
hub gene has been found to be closely associated with tumor growth, invasion, angiogenesis, tumor metastasis, 
as well as the prognosis of patients with breast cancer45,46. Furthermore, protein kinase TTK is capable of phos-
phorylating both serine and threonine simultaneously. The TTK plays a crucial role in cell division and is highly 
expressed in a wide variety of malignant tumors47.

Approximately 73% of patients with breast cancer overexpress Aurora kinase A (AURKA), a kinase essen-
tial to cell division and particularly the process of chromosome segregation during mitosis48,49. AURKA plays 
an important role in spindle assembly, centrosome maturation, and chromosome alignment49. Breast cancer 
development is negatively affected by the overexpression of AURKA. Similarly, CDCA8, also known as cell 
division cycle associated 8, is a part of the chromosomal passenger complex. It plays a crucial role in mitosis by 
regulating chromosome alignment and segregation at the centromeres50. Centromere protein F (CENPF) has 
previously been reported to be a marker of cell proliferation in several human malignancies, including breast 
cancer51,52. The centrosome protein 55 (CEP55) is an important microtubule-binding protein that is located in 
the centrosome of interphase cells and in the midbody of metaphase cells. It has been observed that CEP55 is 
overexpressed in several cancer types, such as colon, lung, and breast cancer53. It has been shown that NDC80, 
CDK1, and CCNB1 play key roles in breast cancer pathophysiology, such as regulating the growth and invasion 
of the cancer54. In accordance with our research, these hub genes might serve as potential biomarkers for the 
early-stage diagnosis and prognosis of ER+ and TNBC breast cancer. Thus, aberrations in their expression level 
(logFC) can be associated to the onset of breast cancer. As a consequence of this inference, we also pursued 

Figure 9.   Top 10 hub genes are identified based on MCC algorithm.
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to develop ML models which could successfully distinguish the RNA Seq profile of an ER+ or TNBC affected 
individual from the normal healthy individuals, as our datasets include the patients both in the early-stage metas-
tasis stage of the BC. Seven of the ten hub genes identified in the study, CDK1, CDC20, CEP55, CENPF, BUB1, 
TTK and AURKA have been associated with ER+ immune signature in various studies but they have not been 
research for their association in TNBC as of now. This study comes up with another three hub genes CDCA80, 
RRM2 and NDC80 which may help to potentially re-refine the unique immune signature for ER+ and TNBC. 

Figure 10.   Box and whisker plot exhibiting expression profiles of ten hub-genes at various menopausal stages 
shows statistically significant differences among premenopausal, perimenopausal and postmenopausal patients 
compared to normal controls based on data from The cancer genome atlas (TCGA) database.
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Putatively the ten hub genes identified here may also help revise the immune signatures for TNBC and also to 
distinguish it from rest of BC types.

Of course, these genes have been reported earlier on the basis of various gene association studies to be 
immune signatures of TNBC. But this study is first of its kind which clearly illustrates that association on the 
basis of experimental evidence as exhibited by transcriptomic datasets. The analysis also hypothesizes that the 
key features in variation in expression of these hub genes may also be associated to the BC.

RNA seq analyses of three datasets comprising of 134 samples, also illustrates that these genes may serve 
as biomarkers or immune signatures distinctly for ER+ and TNBC types. Therefore, we not only report the 
transcriptomic attributes associated to TNBC etiology but also a set of genes which are also associated to the 
other uncontrolled BC type such as ER+ . Our models along with identified hub genes provide for key features 
exclusively associated with both of the BC types.

Globally, breast cancer is one of the most prevalent cancers affecting women. In advanced stages of breast 
cancer, the disease can spread to the entire body through blood vessels and lymphatics, resulting in death directly 
caused by the disease. In spite of the promising results of advanced therapies for controlling breast cancer prior 
to metastasis, the treatment of advanced stage breast cancer remains a challenge. The therapies for preventing 
breast cancer recurrence and metastasis are also scarce. Hence, finding biomarkers which could help improving 
the diagnosis strategies, monitoring the metastasis of breast cancer, and understanding its peculiar mechanisms 
is of utmost importance.

Conclusion
The current study, involving three extensive datasets containing 134 ER+ and TNBC transcriptomes, led to the 
identification of 1730 differentially expressed genes uniquely associated to ER+ and TNBC individuals. The hub 
genes can serve as biomarkers for the diagnosis and/or prognosis of ER+ and TNBC patients. Pathway enrich-
ment analysis and network analysis revealed the key signaling pathways implicated by these genes. Classification 
models based on SVM, Naïve Bayes and kNN were built on datasets. These models were ranked on the basis of 
accuracy, specificity and sensitivity. kNN was ranked as best classifier with sensitivity of 95%, accuracy of 84%, 
and specificity of 66%,. We successfully demonstrated that transcriptome analysis integrated with ML classifiers 
can be used to improve diagnosis of ER+ and TNBC patients.

Data availability
Datasets are available on ArrayExpress database with following Accession numbers. Accession No: 
E-GEOD-58135, E-MTAB-4993 and E-GEOD-45419.
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