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Intracellular spatial transcriptomic analysis
toolkit (InSTAnT)

Anurendra Kumar 1, Alex W. Schrader 2, Bhavay Aggarwal3,
Ali Ebrahimpour Boroojeny4, Marisa Asadian 2, JuYeon Lee2, You Jin Song5,
Sihai Dave Zhao 6,7 , Hee-Sun Han 2,7 & Saurabh Sinha 8,9

Imaging-based spatial transcriptomics technologies such asMultiplexed error-
robust fluorescence in situ hybridization (MERFISH) can capture cellular pro-
cesses in unparalleled detail. However, rigorous and robust analytical tools are
needed to unlock their full potential for discovering subcellular biological
patterns. We present Intracellular Spatial Transcriptomic Analysis Toolkit
(InSTAnT), a computational toolkit for extractingmolecular relationships from
spatial transcriptomics data at single molecule resolution. InSTAnT employs
specialized statistical tests and algorithms to detect gene pairs and modules
exhibiting intriguing patterns of co-localization, both within individual cells
and across the cellular landscape. We showcase the toolkit on five different
datasets representing two different cell lines, two brain structures, two spe-
cies, and three different technologies. We perform rigorous statistical
assessment of discovered co-localization patterns, find supporting evidence
from databases and RNA interactions, and identify associated subcellular
domains. We uncover several cell type and region-specific gene co-
localizations within the brain. Intra-cellular spatial patterns discovered by
InSTAnT mirror diverse molecular relationships, including RNA interactions
and shared sub-cellular localization or function, providing a rich compendium
of testable hypotheses regarding molecular functions.

A grand challenge in biology is to understand howmolecules and cells
cooperatively performhigher-level processes andhow theseprocesses
are coordinated. An emerging involves using single-cell sequencing
technologies to profile cellular composition and states at unprece-
dented resolution1,2. Spatial omics technologies further bolster this
approach by characterizing the spatial organization of molecules and
cells, providing insights into their functional organization. Most
existing analytic tools for extracting biological insights from spatial

data have focused on cell-level or coarser resolution analyses (Fig. 1a).
These include detecting spatially variable genes3,4, identifying cell
types and spatial domains5–7, and inferring cell-cell interaction8–10. This
is true also for grid-based spatial encoding technologies11,12, where the
grid size limits resolution to be super-cellular. Even with single-
molecule resolution technologies13–17, tissue-scale analyses mostly set
the unit of analysis to be a cell18. The focus on cell-level analyses is likely
due to the straightforward interpretations they provide, such as
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cellular arrangements around diseased phenotypes19, cellular
interactions20,21, and spatial context-dependent cell functions7,18,22,23.

Despite this initial progress, the focus on cell-level analyses has
left higher-resolution analyses of spatial omics data relatively unex-
plored. Analyzing subcellular expression patterns can add new
dimensions to our understanding of cell functions. For example, dec-
ades of work has highlighted the importance of RNA localization in
transcriptional regulation24–26, translational regulation27,28, protein
localization29,30 and protein complex assembly26. While traditional in
situ hybridization methods have revealed the functional implications
of RNA localization, those studies are mostly limited to a handful of
genes. New single-molecule resolution spatial transcriptomics tech-
nologies offer anunprecedentedwindow into thisworldof sub-cellular
organization, at far greater scale than before. For instance, Xia et al. 31

profiled the locations of transcripts from roughly 10,000genes to infer
the pseudotime ordering of cells using transcript distribution in nuclei
versus cytoplasm32,33 while the Bento34 toolkit identifies subcellular
domains of RNA localization, revealing molecular interactions invol-
ving RNA Binding Proteins (RBP)35,36.

A natural next step after localization of individual RNA species is
to consider spatial relationships between pairs of RNA molecules,
because molecular interactions and functional relationships are
mediated by physical proximity: direct interactions37, interactions with
common mediators34,38, interactions with organelles39, shared com-
partment localization40,41 etc. Indeed, colocalization frequencies are
used to characterize molecular interactions in super-resolution ima-
ging studies42, and directly measuring intermolecular distance is
common in the protein literature43. However, most of these studies
probe colocalization frequencies of a limited number of targets due to
technical constraints. One solution to this limitation is to analyze the
similarity of localization patterns instead of colocalization profiles.
Battich et al.44 inferred the spatial relationships of a large number of
RNA pairs from regular in situ hybridization experiments by char-
acterizing “localization features” of individual genes, showing genes
with similar spatial localization to have similar functions. The recent
development of transcriptome-scale singlemolecule-resolution spatial
transcriptomics technologies allows direct measurement of distances
between transcripts, affording us a more accurate view of spatial
relationships than indirect inference from similar localization patterns
of genes.

However, there have been no rigorous large-scale studies of RNA
colocalization and subcellular spatial relationships, and necessary
analytical tools do not exist. The rare tools that could be used34 or
adapted43 for the purpose have major limitations: one is not accom-
panied by significance tests that can produce valid p-values34 and
another relies on assumptions of high molecular counts and homo-
geneous spatial distributions43 that are typically violated in RNA data
(Table 1). Moreover, existing colocalizationmetrics apply to individual
cells and do not reveal spatial patterns that repeat across cells. Chen
et al.13 had considered such intercellular persistence of spatial rela-
tionships, but their approach is limited to a very coarse form of colo-
calization. Finally, the few existing statistical approaches are often not
available as easy-to-use software, limiting their use in reconstructing
colocalization maps.

Here, we introduce Intracellular Spatial Transcriptomics Analysis
Toolkit (InSTAnT), a set of robust methods for extracting subcellular
localization patterns of RNA. Its rigorous statistical foundation allows
us to detect reproducible results with low false positive rates. InSTAnT
identifies genepairswhose transcripts tend to appearwithindistanced
significantly more than by chance (“d-colocalized pairs”) and reports
the cellular domains where they appear. It employs formal statistical
procedures to account for various sources of confounding such as
overall transcript abundance, which is critical for highlighting spatial
patterns of biological significance. We present a statistical test for
persistent subcellular co-localization in many cells, which increases

specificity of co-localization discovery in the face of cell-to-cell vari-
abilities. The InSTAnT toolkit offer two analyses that are not offered in
existing frameworks: reporting colocalized pairs that are specific to
cell types, predetermined tissue regions or phenotypes, and testing if a
pair’s sub-cellular colocalization exhibits a tissue-level spatial pattern.
The latter combines sub-cellular and multi-cellular analyses of spatial
transcriptomics data. Both of these tools have the potential to reveal
new insights about mechanisms and functions related to sub-cellular
distribution of RNA species.

Demonstrative applications of the InSTAnT toolkit to a variety of
data sets representing threedifferent technologies (MERFISH, SeqFISH
+, Xenium), five different sources (including in-house MERFISH data),
and four biological contexts (cell lines or tissues) from human and
mouse identifies hundreds of d-colocalized gene pairs with low esti-
mated false positive rates and high reproducibility between replicates
and data sources. The identified gene pairs exhibit biologically rele-
vant higher order characteristics such as specificity to cell types and
brain regions as well as non-random spatial variability in the tissue
sample. We also find evidence of their possible relationship to RNA-
RNA or RNA-protein interactions, pathway-level co-functionality, and
localization to domains such as nuclear speckles. We also note a sig-
nificant tendency of extracellular matrix-related genes to exhibit d-
colocalization, suggesting widespread role for local translation. Our
results suggest that InSTAnT can recover known biology and generate
previously uncharacterized hypotheses about the functional role of
RNA spatial localization. We believe that the statistical concept of d-
colocalization introduced in this work will serve as a fundamental unit
of subcellular spatial transcriptomics analyses, similar to how co-
expression analysis has served as a core concept of transcriptomics
analysis.

Results
Overview of InSTAnT
InSTAnT is a suite of statistical tools for spatial transcriptomics analysis
at sub-cellular resolution. It can discover intracellular spatial patterns
involving transcripts of multiple genes, leading to hypotheses
regarding their functional relationships. At its heart is a statistical test
to detect "proximalpairs”of genes by analyzing the spatial coordinates
of transcripts within that cell, available from single-molecule resolu-
tion spatial transcriptomics technologies13–17. Specifically, the “Prox-
imal Pairs” (PP) test determines if transcripts of a gene pair, in a given
cell, are located within a distance threshold d significantly more often
than expected by chance (Fig. 1b). Proximal pairs may represent var-
ious phenomena, e.g., direct or indirect interactions (detected at small
d), or shared transcript localization in organelles or subcellular com-
partments (large d). The chance expectationmay vary fromcell to cell,
depending on cell size and RNA density, so it is calculated empirically
based on the distances between all pairs of transcripts in a cell
regardless of gene identities. The test provides a p-value for each gene
pair, representing its departure from this expectation (Methods). The
scale parameter d is user-configurable, allowing the user to probe the
spatial texture at different scales, though in practice it is ultimately
limited by spatial resolution of the data. The PP test can be performed
in either two- or three-dimensional mode (PP-3D), depending on
whether or not data are available from multiple z-planes (Methods).

We define a “d-colocalized” gene pair to be a pair that is detected
as proximal pair by the PP test in significantlymany cells. This gives us
increased confidence in a spatial relationship between the two genes.
To detectd-colocalization, InSTAnTprovides a test called “Conditional
Poisson Binomial” (CPB) test that assigns a p-value to a gene pair based
on the number of cells in which it is found to be a proximal pair. This
test is basedona PoissonBinomial distribution and allows for different
cells having varying numbers of proximal pairs due to varying tran-
script counts and spatial distributions (Fig. 1c, Methods). Initially, we
noticed certain highly expressed genes to feature among d-colocalized
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Fig. 1 | Schematic of InSTAnT. a Categories of existing analytical toolkits and
methods for spatial transcriptomics (ST) datasets. Fewer methods perform sub-
cellular analysis by focusing on gene localization patterns. In contrast, InSTAnT
extracts colocalization patterns with statistical rigor. b Schematic of Proximal Pair
(PP) test to detect if transcripts of a gene pair (gene 1, gene 2) tend to occur near
each other (within distance d) in a single cell. A histogram of distances (δ) between
transcript pairs (regardless of gene identity) in the cell is used to calculate the
background probability of a transcript pair being near each other pðδ<dÞ, and the
number of such proximal pairs (K) of the pair (gene 1, gene 2) is assessed using a
Binomial test. c Simplified schematic of Conditional Poisson Binomial (CPB) test.
For a gene pair i,j, the random variable Xc

ij indicates if it is significant under the PP
test and follows Bernoulli distribution with parameter pc

0, estimated as the fraction
of all pairs that are significant in that cell. The sum Xij of X

c
ij over all cells follows a

Poisson Binomial distribution. The CPB test further adjusts pc
0 to be dependent on

the genes i,j (not illustrated here). d Schematic showing functionalities of the
InSTAnT toolkit. The input is spatial transcriptomics data with spatial coordinates
and gene identifier of each transcript. At the core of the toolkit is the PP test, which
reports a p-value for each gene pair in each cell, and these results can then be
utilized for various subsequent analysis, shown on the right. The CPB test can be
applied on the collection of cells, resulting in the global d-colocalization map;
significant pairs are also annotated with the cellular region where they tend to
colocalize: Perinuclear (PN) region, Cell Periphery (CP), Cytosol (Cyt) or Nucleus
(Nuc). The Differential colocalization routine can be employed to find cell type-
specific, region-specific or phenotype-specific colocalization patterns. Other rou-
tines can be used to test if a gene pair’s subcellular colocalization is spatially
modulated at the tissue level or to identify modules of genes that colocalize with
each other.
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pairs far more frequently (Supplementary Fig. 1). The CPB test de-
emphasizes pairs involving such genes by adjusting the null distribu-
tion of each pair to account for the global d-colocalization frequency
of the involved genes (Methods). The InSTAnT suite is available as a
python package with routines that return PP test results for every cell
and CPB test results across all cells, for each gene pair. To assist with
biological interpretation of the detected spatial relationships, it can
annotate each d-colocalized gene pair with the cellular regions where
its proximal transcripts tend to be found: nuclear, peri-nuclear, cyto-
solic and peri-membrane (Fig. 1d, Methods). In addition to reporting
pairs of d-colocalized genes, InSTAnT allows us to identify modules
of genes that are frequently colocalized across multiple cells
(details below).

InSTAnT provides a routine called “differential colocalization”
that determines if the cells exhibiting colocalization of a gene pair
(significant PP test p-value) are statistically enriched for a user-
provided cellular attribute. This functionality can be used for example
to detect if a spatial relationship is specific to a cell type, a particular
spatial region of intact tissue or even to cells from one experimental
condition versus another. It thus provides a window into the complex
biological factors that may influence, or are influenced by, RNA-RNA
proximity. Another InSTAnT routine that aids analysis of colocalization
in intact tissue, called “spatial modulation”, tests if a gene pair’s sub-
cellular colocalization is a spatially variable phenomenon at the tissue
level, analogous to current tools for detecting spatially variable genes
but at the level of gene pair colocalization rather than individual gene
expression.

Like other statistical phenomena such asdifferential expressionof
a gene or co-expression of a gene pair, the different kinds of spatial
patterns recovered by InSTAnT, such as d-colocalization, differential
colocalization and spatialmodulation,may serve as a starting point for
discovery of underlying biological relationships.

InSTAnT finds gene-gene relationships with high accuracy
We first applied InSTAnT to MERFISH data on human osteosarcoma
cells (U2-OS), which profiles 130 genes in 3237 cells45 (Methods),
identifying ‘proximal pairs’ within each cell and ‘d-colocalized pairs’
across all cells. An example of a highly significant d-colocalized pair is
THBS1-COL5A1, which appears as a proximal pair (PP test p-value <
0.001, at d = 4 µm) in ~67% of the 3,147 cells where both genes were
detected (Supplementary Fig. 3). We calculated false positive rates
(FPRs) by applying InSTAnT to a random baseline dataset established
by permuting the gene labels of all transcripts within each cell. We
used FPR estimates to select p-value thresholds for PP and CPB tests.
Overall, our tests suggested that hundreds of gene pairs exhibit the d-
colocalization phenomenon, out of all ~8,500 pairs possible with
130 genes.

We compared the PP test with the only existing method for sub-
cellular colocalization detection, the Colocalization Quotient used by
Bento34, finding the latter to exhibit significantly greater FPR estimated
as above (>90% Fig. 2a) and lower reproducibility (<10%, Supplemen-
tary Fig. 5). As shown in Fig. 2a (blue), at d = 4 µm the PP test identifies
sixty significant proximal pairs per cell with an estimated FPR below
10%. Smaller values of the scale parameter d yielded larger FPR values
(pink and orange, Fig. 2a), suggesting lower sensitivity of the test and/
or lesser frequency of proximal pairs in this regime. We arrived at
similar estimates of FPR through an entirely different approach that
exploits presence of “blank” gene probes in the data (Methods and
Supplementary Fig. 2). We found significantly lower FPR for the CPB
test (Fig. 2b). The only alternative approach for aggregating colocali-
zation information across cells is the bin-based based approach of
Chen et al.13 (Methods). This approach calculates the correlation
coefficient between transcript counts of a gene pair in four subcellular
regions (bins), and aggregates correlations across cells. The low sam-
ple count (four) used in correlation calculation may result in less Ta
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reliable colocalization quantification compared to the rigorous
p-values of the CPB test. Furthermore, the coarse binningmay result in
missed colocalized pairs at finer spatial resolutions, e.g., ~4 micron,
while InSTAnT robustly handles such resolution. These considerations
underscore the importance of InSTAnT’s rigorous statistical testing
procedures for reliable detection of spatial patterns.

Two previous studies have examined gene pair relationships
based on pre-defined localization features of individual genes34,44. This
is fundamentally different from our approach, since gene pairs with
similar localization are not necessarily the same as gene pairs whose
transcripts are located close to eachother.We comparedd-colocalized
pairs with those obtained using localization features of each gene
(Methods) and found <2% overlap (Supplementary Fig. 6, Supple-
mentary Fig. 7). d-colocalization is also distinct from the commonly
analyzed tissue-level phenomenon of spatially varying genes. Supple-
mentary Fig. 13 shows that some spatially variable genes are also sig-
nificantly colocalized with other genes inside cells, but this is not true
of the majority of genes, supporting a clear distinction between the
two phenomena.

Our next assessment focused on the replicability of d-colocaliza-
tion findings across four biological replicates of the U2OS data set45.
We identified the most significant gene pairs (CPB test, d = 4 µm) in
each replicate and observed that ~80% of the top 50–400 gene pairs
are common between replicates (Fig. 2c), supporting the reproduci-
bility of the reported pairs. The same assessment on randomized
versions of the replicates yielded ~5% or less replicability expected by
chance. We also tested the extent to which d-colocalization phenom-
ena persist across independent MERFISH experiments. For this, we
generated the spatial transcriptomemapofU2OS cells using our home
built MERFISH platform (Methods). We used InSTAnT to identify
d-colocalized gene pairs from our dataset and compared the top K
gene pairs (for varying K) between the Moffitt et al. and our data. As
shown in Fig. 2d, about 50–60% of the identified gene pairs are shared
between these two studies, with the chance expectation (established
via randomized versions of the two datasets) being < 10%. As another
reference point, a similar comparison of the top co-expressed gene
pairs (detected using correlation of cellular transcript counts) also
shows ~50–55% of commonality between the two studies (Supple-
mentary Fig. 4b). Taken together, these reproducibility analyses

suggest that the d-colocalized gene pairs reported by InSTAnT capture
real biological phenomena or relationships.

InSTAnT constructs global d-colocalization maps
The CPB test identified 304 d-colocalized gene pairs at an FPR of < 2%
(p < 0.0001), with d = 4 µm (~5% of the diameter of an average cell)
(Supplementary Data 1). These gene pairs constitute the global d-
colocalization map. InSTAnT provides annotations of the cellular
regionswhere eachgenepair tends to colocalize, revealing perinuclear
and nuclear colocalization asmost frequent (Fig. 3a–c, Supplementary
Fig. 8). We also noted a few gene pairs to colocalize in the cytosolic or
cell periphery regions (see Fig. 3d, e for examples).

A d-colocalizationmap is expected to capture different biology at
different values of d. The maps created at d = 1 µm (Supplementary
Data 2) and4 µmare substantially different (Fig. 3f):while 94pairswere
common to the top 304 significant pairs of eithermap, 190 of the pairs
in thed=4maphadCPB testp value >0.1 in thed= 1map, and 178gene
pairs were similarly exclusive to the d = 1 map. Two examples of such
scale-specific pairs are SPTBN1-TLN1 (detected with d >= 4) and LUZP1-
SAMD12 (onlywithd = 1). (Also see Supplementary Fig. 9). These results
illustrate scale-dependence of the colocalization phenomenon and
suggests multiple types of underlying biological relationships, though
some part of the exclusivity is likely to be due to varying sensitivity of
the test at different d values.

Reconstructing gene-gene co-expression networks is a common
analysis performed with non-spatial single cell RNA-seq data46. To test
if the globald-colocalizationmap reflects such co-expressionnetworks
or if it reveals a different type of relationship, we derived a
co-expression network from cell-level transcript counts in the same
MERFISHdata and foundover 70%of the pairs in either “co-expressed”
or “colocalized” set to be exclusive to that set (Supplementary Fig. 10,
Supplementary Data 3). This shows that d-colocalization relationships
are not revealed through conventional co-expression analysis, and
probe a new type of information.

In addition to constructing a basic global map, InSTAnT can run
the PP test in a “intra-nucleus”mode where the analysis, including null
distribution estimation, is limited to subnuclear transcripts. The
default (whole-cell) mode disregards the selective enrichment of a
gene in certain subcellular regions, and nucleus-enriched genes may

Fig. 2 | Assessment of InSTAnT on U2OS MERFISH data. a Estimates of false
positive rates (FPR) on U2OS MERFISH data, at varying p-value thresholds for PP
test (at three different values of distance threshold d) and at varying colocation
quotient scores used by Bento. (Bento was set to use number of neighbor K = 10;
this corresponds to d ~ 5.5mu.) FPR is calculated by comparing the average number
of significant pairs per cell on randomized data to the average number on real data.
The estimated FPR (y) is plotted against the average number of significant pairs
detected per cell (x). b Estimates of FPR of the CPB test plotted against number of
detected gene pairs, at varying p-value thresholds (p value < 0.02 for d = 1, p
value < 0.01 for d = 2, p value < 0.002 for d = 4). Results are shown for three dif-
ferent values of the distance threshold d. The number of significant pairs on

randomizeddata is compared to thenumber (at the samep-value threshold) on real
data to obtain an FPR estimate at that threshold. c Reproducibility of CPB test
results across replicates of a dataset. For each pair of replicates (out of four), the K
most significant pairs (by CPB test) in either replicate are compared, and the per-
centage of shared pairs (out of K) reported (blue). The exercise was repeated for
randomized versions of the replicates to obtain random baselines (grey).
d Reproducibility of CPB test results across different datasets. Each replicate of the
Moffit et al. MERFISH data set was compared to our MERFISH data for U2OS to
obtain percentages of common d-colocalized pairs (blue). Corresponding random
baselines are shown in grey.
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dominate detected co-localized pairs (Supplementary Fig. 11). The
intra-nucleus mode effectively removes such bias. We observed many
gene pairs with greater statistical significance in the intra-nucleus
analysis compared to whole-cell analysis, despite smaller numbers of
transcripts examined. Such pairs promise to reveal biologically
meaningful spatial patterns that arise from colocalization to sub-
nuclear structures, organelles and domains.

d-colocalization maps suggest functional relationships
One plausible mechanism for d-colocalization is direct or indirect
interaction between two RNAs. To test this, we computed an RNA
interaction score (“RRI score”) for all gene pairs using RNAplex47. We
recreated the d-colocalization map with d set to 300 nm (MERFISH
resolution between pixels is 167 nm) to capture the greater proximity
expected of interacting RNAs, and using a stricter CPB test p-value (1e-
5) to control FPR (FPR = 0%). We found significant overlap between
gene pairs having high RRI scores and d-colocalized pairs (Hypergeo-
metric p-value 0.02, Fig. 3g, Methods, Supplementary Data 4). This
analysis suggests that RNA-RNA interactions may underlie some of the
relationships in a global d-colocalization map at a suitably small value
of the scale parameter.

Furthermore, we found that the d-colocalized gene pairs were
enriched with functionally related gene pairs as defined based on
KEGG pathway or Gene Ontology (GO) annotations (Methods)
(Fig. 3h). The highest enrichment happened with molecular function
GO terms, where 461 functionally related pairs and 303 d-colocalized
pairs had an overlap of 56 pairs (p-value 2.8E-16), all of which were
annotated with the term “protein binding”. These results suggest that
d-colocalization of a gene pairmay have biological consequences such
as colocalization of their protein products or protein binding to form a
ribonucleoprotein complex.

Intriguingly, the map indicates that some colocalized RNA pairs
proxy for protein-RNA interactions. The most prominent pair in the
intra-nucleus analysis at d=2 µm is MALAT1-SRRM2, with a CPB test
p-valueof 1.05e-18 (see Fig. 3i, SupplementaryFig. 11). It is detected as a
proximal pair in 6.2% of the nuclei, the most for any pair involving
either SRRM2 or MALAT1. Notably, SRRM2 protein is a key marker of
nuclear speckles (NS), organizing NS formation via liquid
condensation48, and lncRNA MALAT1 is localized to NS49, suggesting
that the detected intra-nuclear d-colocalization of these two RNAsmay
be related to their colocalization in NS. This is an intriguing possibility,
since NS localization of SRRM2protein does not imply or necessitate a

Fig. 3 | Characterization and validation of d-colocalization maps. a Regional
annotation (nuclear, perinuclear, cytoplasm or peri-membrane) of all d-colocalized
gene pairs detected in U2OS MERFISH data. Proximally located transcripts of a
d-colocalized gene pair across all cells are recorded and aggregated over all cells to
obtain the most and second-most frequent regional annotations. b–e Examples of
d-colocalized gene pairs annotated as nuclear (b), perinuclear (c), cytosolic (d) and
cell periphery (e), respectively. Shown is one of many cells in which the respective
gene pair was significant by the PP test. fNegative log p-value from the CPB test for
all gene pairs, atd = 1micron andd = 4micron. An example of a gene pair specific to
each d is highlighted. gOverlap of the set of d-colocalized gene pairs (d = 300nm)
with gene pairs with high RNA-RNA interaction (RRI > 35) scores (Hypergeometric

test p-value of 0.02, due to 8 gene pairs common to both sets). h Hypergeometric
test shows enrichment of set of d-colocalized pairs with set of functionally related
gene pairs. A gene pair is functionally related if both genes are annotatedwith same
GO terms (Cellular Component, Molecular Function, Biological Process) or Kegg
pathways. iNucleus of a cell showing transcripts ofMALAT1 and SRRM2. The PP test
p-value for this nucleus is 4.3e-19. jCytoscape visualization of top 109 d-colocalized
gene pairs (CPB p-value < 1e-10) detected at d = 2 on SeqFISH+ data on NIH/3T3 cell
line. We noted a large module of genes related to extracellular matrix (green
nodes), encoding proteins that are either components of the ECM or known for
remodeling ECM or mediating ECM-cell interactions.
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similar localization of its mRNA. To see whether lncRNA MALAT1 and
mRNA SRRM2 colocalize near NS, we co-stainedMALAT1, SRRM2 RNA,
and SON in U2-OS cells using single-molecule FISH and immunos-
taining (Fig. 4). Consistent with the InSTAnT result, most SRRM2 RNAs
are d-colocalized with MALAT1 in SRRM2 positive cells (99±1%, N=13
cells). The overlaid SON signals show that most d-colocalizedMALAT1-
SRRM2 pairs are within 1 µm distance from NS (92±4% for SRRM2 exon
and 88 ± 8% for SRRM2 intron). It is well known that SRRM2 protein
signals overlaps with SON signals48; thus, our result shows the
d-colocalization of SRRM2mRNA and pre-mRNA with SRRM2 proteins
in nucleus. Further, these results suggest that d-colocalization maps
can be used to study biomolecular condensates such as NS.

To demonstrate InSTAnT’s applicability to data from diverse
technologies, we used it to construct a global d-colocalizationmap (d=
2 µm) from SeqFISH+ data on a mouse fibroblast cell line14 (Methods).
The dataset consists of 3726 genes and 179 cells after preprocessing.
Among the most significant pairs in this map, we noted a remarkable
enrichment for functions related to extracellular matrix (ECM) (Fig. 3j,
Supplementary Data 5, Supplementary note A) and cell adhesion,
consistent with reports of localized translation of ECM/adhesion
proteins50–52 in perinuclear or peri membrane regions as well as loca-
lization and non-coding functions of mRNAs at focal adhesions53. Our
findings suggest suchmRNA localizationmayplay awidespread role in
ECM-cell interactions.

InSTAnT analysis of brain data reveals cell type- and behavior-
specific colocalization
We next used InSTAnT to analyze MERFISH data54 on 5149 cells from
the hypothalamic preoptic region in mouse. The data feature seven
z-planes and were thus analyzed with the PP-3D test of proximal pairs
(d set to 2 µm). This brain dataset includes nine different cell types
(Fig. 5d), sowe used theDifferential Colocalizationmodule of InSTAnT
for insights into cell type differences in colocalization. Given a binary
(yes/no) annotation of each cell – in this case whether it belongs to a
cell type or not – this module uses a sequence of statistical tests
(Methods, Fig. 5b) to find gene pairs specific to a cell type: those that
appear as proximal pairs (PP test) more frequently in the one cell type
than others. These are further divided into two classes – those where
cell type specificity may arise simply because one of the genes in the
pair is expressed specifically in that cell type (Category 1) and those

whose association goes beyond what would be expected from the cell
type-specificity of either gene’s expression (Category 2) (Methods).
Between these two categories we found more than fifty gene pairs
specific to one of the six most abundant cell types (Fig. 5a, Supple-
mentary Data 6). Many of these top pairs have plausible mechanisms
for being proximal (examples below), such as localized translation of
proteins for relevant molecular pathways, reiterating the potential of
d-colocalization to capture underlying phenomena.

The top gene pairs in Category 1 specific to astrocytes involve the
genes Aqp4 (Aquaporin 4), Ttyh2 (Tweety Family Member 2), Cxcl14
(CXC motif chemokine ligand 14) and Mlc1 (Modulator of VRAC cur-
rent 1) (p-value of cell type association < 1.1E-20). Figure 5c illustrates
for the pair Cxcl14-Mlc1, which is a proximal pair in cells of most types,
but with a higher frequency in astrocytes, leading to the statistically
detected specificity.Cxcl14 transcripts are known to be enriched in and
possibly locally translated in peripheral astrocyte processes (PAPs)55,
and MLC1 protein is localized in PAPs56. We speculate that Mlc1 tran-
scripts are also subject to local translation in PAPs, leading to the
observed colocalization of Cxcl14 andMlc1 in astrocytes. Additionally,
MLC1 protein forms a complex with AQP4 in cultured astrocytes57 and
localizes to the cellmembrane55,58 providing a functional implication of
Mlc1-Aqp4 RNA differential colocalization.

The toppair inCategory 2 (Fig. 5e, SupplementaryData 7) consists
of transmembrane proteins Gpr165 (G protein-coupled receptor 165)
and uc011zyl.1 (adhesion molecule with Ig-like domain 2) and is sig-
nificantly associated with inhibitory neurons, while Gpr165 and Omp
(Olfactory marker protein59) form a colocalized pair specific to exci-
tatory neurons (Supplementary Fig. 12). This example illustrates that
different colocalized pairs involving a common gene (Gpr165) can
statistically mark different cell types.

We also identified differentially colocalized gene pairs that mark
cellular function (Supplementary Data 6), e.g., Esr1 (estrogen receptor
1) and Npy2r (Neuropeptide Y receptor Y2) are colocalized specifically
in inhibitory neurons compared to excitatory neurons (p-value 1.28E-8,
see Fig. 5f, Supplementary Data 7). Prior work shows that the expres-
sion of these two genes underlies a social behavioral switch in virgin
mice via activation of a specific subtype of neurons60, suggesting a
functional implication of Esr1-Npy2r colocalization.

In search of colocalization patterns related to phenotypic varia-
tion,weused theDifferential Colocalization routineonMERFISHdata54

Fig. 4 | Colocalizationof SRRM2andMALAT1 inNuclear Speckles. a SRRM2 exon
(red), SRRM2 intron (cyan), andMALAT1 (yellow). RNAs labeledwith smFISHprobes
in fixed U-2 OS cells. Dashed gray lines indicate the nuclear boundaries, and solid
gray lines indicate cytosolic boundaries. b Selected nuclear region shown in the
orange box in a, showing high co-localization rate of SRRM2 exon mRNAs with
MALAT1 lncRNAs in the nucleus. As expected, the SRRM2 intron puncta co-localize
with SRRM2 exon puncta. c SRRM2 exon mRNA (red), MALAT1 lncRNA (cyan), and
SON protein (yellow) labeled in the same nucleus as b. Orange circles indicate

co-localization of SRRM2 exon puncta and MALAT1 puncta, most of the SRRM2
exons co-localize withMALAT1. SON protein was selected to label nuclear speckles.
Many co-localized RNA pairs are nearby to SON protein. d Similar as (c), plotting
SRRM2 intron (red) withMALAT1 lncRNA and SON protein, orange arrows indicate
SRRM2 intron puncta that co-localize with MALAT1 puncta. Similar to SRRM2 exon
puncta, SRRM2 intron puncta tend to be near SON protein. The experiment was
performed once and co-localization ratewas calculated using 13 cells. Scale bars for
(a–d) is 10 µm.
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from brains of mice with behavioral differences and identified gene
pairs that colocalize specifically to male mice exhibiting aggressive
behavior, compared to naïve mice (Methods, Supplementary note B).
The top reported pair in category 2 is Cbln2-Pak3 (Supplementary
Data 8). Cbln2 (cerebellin-2) is functionally associated with aggressive
behavior61 and PAK3 (protein-activated kinase 3) has been linked to
aggressive behavior in humans62. Both proteins are localized to den-
drites and involved in dendritic spine formation63,64, and contributes to
synapse formation or transmission65,66. Moreover, Pak3mRNA has also
been found to be enriched in dendrites compared to somata67, sug-
gesting local synthesis of the protein for its dendritic functions. These
observations suggest that the recorded function of the corresponding
proteins in aggression may manifest at the sub-cellular level through
their respective tendencies to localize in and be synthesized in
dendrites.

InSTAnT reveals tissue-level spatial variations of colocalization
patterns
Brain tissue iswell-known to be spatially heterogeneous, sowe applied
InSTAnT’s Differential Colocalization module to explore if colocaliza-
tion is specific to certain brain regions. We analyzed Xenium data68 on
the mouse brain (d = 750 nm), focusing on cells from three adjacent

regions – the dentate gyrus (DG) and areas CA3 and CA1 – of the
hippocampus (Fig. 6a). We identified six category 2 gene pairs whose
colocalization is specific to one of these three regions versus others
(Methods, Supplementary Data 9). These included the pair Gad1-Pvalb
that colocalizes specifically to CA3 and CA1 relative to the Dentate
gyrus (Fig. 6b,c). Gad1 encodes glutamate decarboxylase 1 and is a
marker of inhibitory GABAergic neurons69 and interneurons70. Pvalb
(Parvalbumin) encodes a calcium-binding protein that is often asso-
ciated with a subclass of inhibitory interneurons (PVALB+
interneurons)71. Deficit of the Gad1 product in hippocampal PVALB+
interneurons has functional consequences and disease associations72,
suggesting an underlying molecular relationship for the observed
region-specific colocalization.

Complementary to the differential colocalization module that
reports colocalization specific to pre-annotated regions, InSTAnT
provides a “Spatial Modulation” routine to identify colocalized pairs
with tissue-level spatial variation in an unbiased manner. This func-
tionality is similar to discovery of spatially varying genes3,4, but spe-
cialized for gene colocalization instead of individual gene expression.
It is based on a probabilistic model for calculating data likelihood
under the hypothesis of spatial modulated colocalization, for a gene
pair (Fig. 6d). Pairs with log likelihood ratio above a threshold

Fig. 5 | Cell type-specificity of d-colocalized pairs in mouse hypothalamus
preoptic region. a Bar plot showing number of cell type-specific pairs for each cell
type using Differential Colocalization routine. (“Od” stands for oligodendrocytes.)
b Flow chart showing how a differentially colocalized pair is classified into one of
the two categories depending on whether either gene is a marker of that cell type.
c Example of a category 1 pair, found to be a proximal pair inmany cells of different
types but significantly more frequently in astrocytes. Shown is the percentage of
cells of each typewhere the gene pair is significant in the PP test. The gene pair is of

category 1 because both genes are marker genes. d t-SNE plot of all cells annotated
with cell typeassignments obtained fromMoffit et al. Thegene count for each cell is
aggregated by summing their transcript count across seven z-slices. e Example of a
category 2 pair, specific to inhibitory neurons. Eachblack star is a cell where thepair
was significant under PP test. f Example of a category 2 gene pair specific to inhi-
bitory neurons compared to excitatory neurons. (Cell type- specificity was defined
based on a two-way comparison here, in contrast to the one-versus-all comparison
used for examples in a, c, e.).
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(obtained using randomization of data) are designated as spatially
modulated.

We used the Spatial Modulation routine to study how d-colocali-
zation varies across the mouse hypothalamic region, using MERFISH
data54, finding 45 spatially modulated pairs (Supplementary Data 10).
Thirty eight of these pairs exhibited colocalization in a cell type-
specific manner (p-value 5E-6, Bonferroni corrected p value < 0.05).
For instance, the gene pair Sgk1-Ttyh2 – the strongest spatially
modulated pair (LLR 228, Fig. 6g) – colocalizes far more frequently in
mature oligodendrocytes than others (Hypergeometric test p-value
2.8e-178, Fig. 6e). Prior work suggests both of these genes to function
in oligodendrocyte response to stress73–75 and this co-functional rela-
tionship may underlie their oligodendrocyte-specific colocalization.
We found one spatially modulated gene pair Gad1-Syt2 (LLR 26,
Fig. 6f, h) whose colocalization is not specific to any cell type
(Hypergeometric test p-value > 0.05 for every cell type). GAD1 is
responsible for producing GABA69, while SYT2 facilitates the release of
neurotransmitters (including GABA) into the synaptic cleft and has
been seen colocalized with the vesicular GABA transporter VGAT76.
Their spatially modulated colocalization may be pointing to their
cooperation in neurotransmission processes and synchronized release
of neurotransmitters77. In summary, the above examples of brain
region-specific and spatially modulated d-colocalization provide a rich
pool of potential functional relationships for future exploration.

InSTAnT reveals modules of genes colocalizing with each other
We noted above multiple instances of “gene modules”, i.e., sets of
genes exhibiting pair-wise d-colocalization. Drawing inspiration from

these observations and from the popular concept of co-expression
modules78, we implemented routines that systematically retrieve d-
colocalization gene modules.

InSTAnT provides two complementary “Module Discovery” rou-
tines. The first routine, called Global Colocalization Clustering (GCC),
identifies modules by representing the CPB test results as a matrix of
gene-gene d-colocalization strengths and clustering rows and columns
of thismatrix (Methods). Figure 7a shows the results of such clustering
for U2OS data, revealing two modules (top left) whose compositions
are shown in Fig. 7b.ModuleM1 (Fig. 7d,e) consists of 14 genes, with 84
of 91 pairs being significantly d-colocalized, almost always with peri-
nuclear region annotation. Gene Ontology enrichment analysis of the
module revealed shared annotations (p-value < 0.05, Fig. 7c) related to
cytoskeleton and ribonucleoprotein complexes. mRNA-cytoskeletal
associations have been long known to play a key role in mRNA trans-
port and targeting to specific subcellular locations, partly mediated by
RBPs and ribonucleoprotein complexes79,80.

A module reported by GCC comprises gene pairs whose d-colo-
calization is supported bymany cells, but these supporting cells differ
for different gene pairs and very few cells may have the entire module
colocalized. Motivated by this, InSTAnT includes a second module
discovery routine, called “Frequent Subgraph Mining” (FSM)81, that
seeks a network of genes “colocalized” inmany cells. (Colocalization of
a network in a cell means that every edge in that network is a proximal
gene pair in that cell (Fig. 7f).) FSM can be used to find networks with a
pre-specified minimum size (numbers of nodes and edges) that are
supported by a large number of cells (Methods). For illustration, we
used FSM on the brain MERFISH data54 to search for fully connected

Fig. 6 | InSTAnT detects d-colocalization patterns with tissue-level spatial
variation in mouse hypothalamus preoptic region. a Xenium data from mouse
brain, with cells in analyzed regions - CA1 (orange), CA3(pink) and Dentate Gyrus
(blue) in hippocampus – shown in color. b Enrichment of a category 2 gene pair
(Pvalb, Gad1) in CA3 and CA1 cells. Enrichment is obtained as ratio of fraction of
cells with proximal pairs in one region vs other two regions. cA sample cell showing
the colocalization of the pair Pvalb, Gad1 (z axis not shown). d Probabilistic gra-
phical model to detect spatially modulated gene pair. In a graph where nodes
represent cells and edges represent spatial proximity, each cell isfirstflaggedbased
onwhether the gene pair is significant by PP test in that cell. The likelihood function
is a product over all cells of a weighted sum of plocal , the local density of flagged

cells in cell’s neighborhood, andpglobal , a free parameter. Theweightw is also a free
parameter. A likelihood ratio score is computed to compare this model to a null
model where the local (spatial) information is not used. e t-SNE plot of a spatially
modulated d-colocalized gene pair (Sgk1, Ttyh2) showing that it is a proximal pair
(black stars) significantly more often inMature Oligodendrocytes (OD) though it is
detected in other cell types as well. (See Fig. 5d for cell type annotations.) g Cells in
spatial coordinates, shown in blue if the gene pair of (e) – Sgk1, Ttyh2 – is a proximal
pair, in orange if the cell is Mature OD but Sgk1, Ttyh2 is not a proximal pair, and in
grey otherwise. (f, h) t-SNE plot (f) and spatial plot (h) of a gene pair (Gad1, Syt2)
that is spatially modulated but not specific to any cell type.
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networks (“cliques”) with at least four genes and found a singlemodule
– Sgk1, Ttyh2, Ndrg1 and Ermn (Fig. 7g) – that is colocalized in 72 cells,
far greater than the support of the nextmost frequent four-gene clique
(26 cells) (Fig. 7i–k). We also found that the six gene pairs comprising
this module are differentially colocalized in mature oligodendrocytes
and the module is significantly associated (p-value 8.3e-3) with myelin
sheath82–85 (Fig. 7h). We speculate that their co-localization in specific
partitions inside cells reflects coordinated transport and translation in
mature oligodendrocytes, which are known for their role in
myelination86.

Discussions
In this work, we present the InSTAnT toolkit to screen for subcellular
colocalization patterns of RNA pairs and modules in an unbiased
manner, through rigorous statistical analysis of single-molecule

resolution spatial transcriptomics data. We define these patterns as
new statistical phenomena that may point to biological relationships
such as RNA-RNA interactions, formation of condensates, co-trans-
portation, and shared subcellular localization. InSTAnT is a suite of
statistical tests, at the heart of which lie the PP test that finds coloca-
lized gene pairs in each cell individually. Its findings are then analyzed
further bymultiple routines to derivemore global patterns, such as (1)
d-colocalization (CPB test) that represents patterns seen persistently
across cells, (2) differential colocalization between two pre-annotated
groups of cells, (3) tissue-level spatial modulation of subcellular colo-
calization patterns, and (4) colocalized gene modules (GCC and FSM).
We emphasize that the co-localization analyses of InsTAnT probes
distinct phenomena compared to the localization profiles and
co-expression profiles, as evidenced by small overlap between the
identified pairs from each analysis.

Fig. 7 | Genemodulediscovery. aGlobalColocalizationClustering (GCC): Globald-
colocalization map for U2OS data, represented as a matrix of -log(p-value) of CPB
test for gene pairs, is subjected to hierarchical clustering to reveal two gene
modules. b Closer view of the two modules (M1, M2) discovered by GCC, shown
after thresholding p-values at 1e-4 (FPR < 2%). cGeneOntology (GO) terms enriched
in gene module M1, shown with the fold enrichment over random expectation.
(Criterion for selection: Fisher exactp value < 0.03)d, eTwo cells illustrating spatial
distribution of transcripts of M1 genes (colored dots) along with all other tran-
scripts (grey). Each color corresponds to a gene. f Schematic illustration of differ-
ence between Global Colocalization Clustering (GCC) and Frequent Subgraph
Mining (FSM). In each row, the three graphs on the left show proximal pair

relationships (edges) involving genes g1, g2, g3, in three different cells. In either
case, GCC reports the 3-gene module as the global map includes each of the three
gene pairs. FSM, on the other hand, finds the 3-gene clique to occur frequently in
the bottom scenario but not in the top scenario. g A 4-genemodule detected using
FSM on brain data. h Gene ontology terms enriched in the 4-gene module of g.
(Criterion of selection: Fisher exact p value < 0.03). i Histogram of “support” of all
possible 4-gene cliques. Support refers to the number of cells where all pairwise
relationships in the 4-gene set are significant by the PP test. The clique of g has a
support of 72, far greater than all other cliques. j, k Example of two cells supporting
the 4-genemodule of g. Each color represents a transcript of one of the four genes,
grey represents all other transcripts.
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We employed InSTAnT to detect hundreds of colocalized gene
pairs on humanU2OS cell line,mouse fibroblast cell line (NIH/3T3) and
regionsofmousebraindata, and their further examination suggested a
variety of underlying molecular relationships: RNA-RNA interactions
(Fig. 3g), protein-protein interaction or shared pathway membership
(Fig. 3h), ECM-cell interactions (Fig. 3j) and RNA-protein interactions
(Fig. 4). We have observed different types of biological relationships
when using different values of “d”. For instance, small d (< 1 um) was
used to find an enrichment of RNA-RNA physical interactions (pre-
dicted using RNAPlex) among colocalized pairs, a medium “d” (=2 um)
was used for the analysis that led us to identify MALAT1-SRRM2 as
colocalized in nuclear speckles, while d=4um in u2-os data identified
RNAs that tend to be around perinuclear space or ER (which are larger
features). Our brain data analysis shows that some RNA colocalized
pairs may be cell type- or brain region-specific, show spatial modula-
tion, and share functional annotation with other colocalizing pairs.We
noted examples where InSTAnT-derived colocalization patterns pro-
vide specific, testable biological insights that are not available from
other methods. For instance, multiple data sets revealed genes related
to extracellular matrix and cell adhesion to colocalize at transcript
level, leading to a hypothesis of widespread local translation of cor-
responding proteins.

We found that the rigorous statistical foundation of InSTAnT has
a dramatic impact on the accuracy (low FPR and high reproducibility)
of detecting subcellular patterns. The detected patterns can also
include rare events. For instance, in spatial modulation analysis,
some detected gene pairs were specific to ependymal cells, which is a
rare cell type (~ 1% of cells) in our dataset. InSTAnT may be used to
represent a cell as a graph where nodes represent genes and edges
represent proximal pairs. Such a graph, along with the transcript
count vector commonly used to represent an individual cell, may
prove powerful in single cell analytics, allowing us to discover cell
types through amore nuanced clustering of cells than possible using
count vectors alone. Overall, InSTAnT may be used to generate a
robust compendium of testable hypotheses that enhance our
understanding of molecular functions, opening new horizons for
experimentation and discovery.

Methods
Source data
Source data are provided with this paper.

Statistics and reproducibility
MERFISH data were generated on one sample of U2OS cell line
(described above), and the data included thousands of cells as samples
for INSTANT analysis. Experiment for SRRM2-MALAT1 interaction
(Fig. 4a) was performed once and the colocalization rate was aggre-
gated over cells.

InSTAnT user guide
InSTAnT tools have tunable parameters that can be selected based on
the user’s requirement. We selected the scale parameter d based on
the average cell’s diameter and CPB False Positive Rate (2%) esti-
mates. The user can also obtain region annotations of a gene pair’s
colocalization if the data include masks for cell and nucleus bound-
aries. Similarly, they may run cell type/region specificity analysis if
the data include cell type or region information. We advise caution
when using InSTAnT with small distance thresholds, such as 1 µm or
less, as the false positive rates in this regime can be high. This is due
to the fact that colocalizationwith small distance is relatively rare and
the estimate of null probability of a pair of transcripts being prox-
imal, a key aspect of the PP test, is error-prone in such cases. We
believe that higher number of transcripts and improved optical
resolution17,e.g., through expansion microscopy, may alleviate this
problem.

Comparison with Bento
We used Bento34 from the official GitHub repository (version 90f4ab4).
Weused the function for colocation- “coloc_quotient()” athttps://github.
com/ckmah/bento-tools/blob/master/bento/tools/_colocation.py. The
original function uses an AnnData object to load data. However, we
wrote scripts to load input data in csv format. The rest of the function
was used as it is. We used K=10 in our experiments (d~5.5 mu). We also
explored setting distance d=4 mu but noted worse FPR in this setting.

Comparison of Proximal pairs with gene pairs having similar
localization features
We sought to compare the results of the PP test with the approach of
Battich et al.44 that is based on localization features. However, since
their code is not easy to use, we used a function fromBento34, that uses
a very similar approach based on pre-defined localization features of
transcripts. The features used were- nucleus_inner_proximity, nucleu-
s_outer_proximity, l_half_radius, l_max, l_max_gradient, l_min_gradient,
l_monotony, cell_inner_asymmetry, nucleus_inner_asymmetry, nucleu-
s_outer_asymmetry, point_dispersion, and nucleus_dispersion. The
authors of Bento34 had made these features available for a SeqFISH+
data set on a mouse fibroblast cell line, hence we performed our
comparison on this data set. Note that this function and themethod of
Battich et al.44 do not aim to identify gene pairs whose transcripts tend
to be near each other; rather, they separately characterize the location
of (transcripts of) each gene and report gene pairs with similar loca-
lizations in a cell. We found that this approach reports very different
gene pairs compared to Instant (PP test), with <2% or fewer of the top
500 pairs in any one cell being common. For illustration purposes, we
present one example of a gene pair deemed significantly d-colocalized
by Instant PP test but not identified by the localization feature-based
method, and one converse example (Supplementary Fig. 7).

Implementation of Chen et al. (Bin based method)
We followed the method described in Chen et al.13. First, we divided
each cell into 2 by 2 regions (bins). For each gene, fraction of occur-
rence in each bin was calculated. Enrichment of a gene in a bin was
calculated as ratio of the observed fraction in a given region to average
fraction of all genes in the same region. Next, Pearson correlation of
region-to-region variation in enrichment of a gene pair was calculated
for each cell. For each gene pair, we removed the cells that had one of
the genes as constant across four bins (and therefore correlation is not
defined). Finally, for each gene pair, we take median of correlation
across all cells as a global measure of their colocalization. Note that (a)
the spatial resolutionof this approach is quite low (about a quarter of a
cells area/volume), and (b) correlation coefficients are calculated from
four samples at a time, leading to unreliable estimates, which are then
averaged.

False positive rate (FPR)
We generate random baseline dataset established by permuting the
gene labels of all transcripts within each cell, which recapitulates the
spatial patterns of the original data but not the gene-gene relation-
ships. The gene pairs obtained with InSTAnT on real data comprise
true positives (TP) and false positives (FP). The gene pairs found under
the randomdata are assumed to be false positives (FP). FPR is obtained
by comparing the number of detected pairs obtained on randomized
data with number of detected pairs on real data. Since thousands of
cells are independently randomized (gene labels of transcripts in an
individual cell are shuffled), this procedure makes use of an extensive
level of randomization. Ten of the 140 genes probed in the U2OS
MERFISH data set were “blanks”, meaning that they do not represent
any particular RNA or other molecule. Any gene pair involving such
blank “genes”, if found to d-colocalize, is clearly a false positive. This
provided us another opportunity to assess the false positive errors in
our global co-localization map. We recorded the fraction of such false
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positives among predicted pairs at varying levels of significance
(Supplement Fig. 3).

Hyperparameter selection
U2OS MERFISH dataset: d was chosen to be 4 microns, which corre-
sponded to ~5% of average diameter of a cell. The p-value threshold
was chosen to be 0.001 for PP test and 0.0001 for CPB test that
resulted in CPB FPR < 2%.

Hypothalamus brain MERFISH dataset: d was chosen to be 2
microns, which corresponded to ~5% of average diameter of a cell. The
p-value threshold was chosen to be 0.001 for PP test. For differential
colocalization, we use p-value threshold of 5e-6 (Bonferroni corrected
hypergeometricp-value 0.05) for unconditional p-value obtained from
Hypergeometric test. Same parameters were used for behavior
analysis.

NIH/3T3 SeqFISH+ dataset: d was chosen to be 2 microns, which
corresponds to ~0.5% of average diameter of a cell. The p-value
threshold was chosen to be 0.01 for PP test. CPB estimated FPR is ~0%
for top 109 pairs (Fig. 3j).

Hippocampus brain Xenium dataset: d was chosen to be 0.75
micron that corresponds to ~3.5% of average diameter. The p-value
threshold was chosen to be 0.01 for PP test. For differential colocali-
zation, we use p-value threshold of 5e-6 (Bonferroni corrected hyper-
geometric p-value 0.05) for unconditional p-value obtained from
Hypergeometric test.

Proximal pair (PP) test
PP test reports proximal pairs of genes in a particular cell. A gene
pair gi, gj is a proximal pair in a cell if their transcripts are proximally
located (separated by distance d or less) significantly more often
than expected by chance. The null probability p is estimated from
the distances between all pairs of transcripts (regardless of gene
identities) in the cell, by calculating the fraction of transcript pairs
that are proximally located. Let ti and tj denote the transcript
counts of genes gi, gj respectively in the cell, let T = titj and let K be
the number of proximally located transcript pairs of these genes.
The PP test performs a Binomial test providing a p-value (one-sided)
for gi, gj as

p� value
�
gi, gj

�
=BinomialðT ,p,KÞ ð1Þ

PP-3D test
PP-3D is an extension of PP test to handle three-dimensional data in the
form of 2D (x-y) locations of transcripts in each of multiple z-planes.
We assume that data from different planes are independent and
identically distributed. The newdistribution is the sumof independent
Binomial distributions (with the same parameter), which is also a
Binomial distribution. The null probability of two transcripts being
proximal is estimated as a weighted combination of estimated null
probability for each of the z-planes,

p �
P

z lzpzP
z lz

ð2Þ

where, pz denotes the null probability for z-th plane, lz denotes the
total number of transcripts in z-th slice. T and K are also aggregated
across z-planes:

T =
X

z

Tz

K =
X

z

Kz

where Kz is total number of proximal transcript pairs and Tz is total
number of transcript pairs (of gi, gj) in z-th plane. PP-3D calculates a
p-value for each gene pair as p-valueðgi, gjÞ=BinomialðT ,p,KÞ.

Conditional poisson binomial (CPB) test
CPB test detects a d-colocalized gene pair, i.e., a gene pair that is a
proximal pair in significantly many cells. It assigns a p-value (one-
sided) to the number of cells in which a gene pair is found to be
proximal pair detected using PP test. We first describe a simpler ver-
sion of the test (“unconditional Poisson Binomial” or UPB) test that
assumes that all gene pairs are equally likely to be proximal pair in a
cell but allows for the fact that different cells may have different
number of proximal pairs. Let Xc

ij be a binary variable denoting if gi, gj

are a proximal pair in c-th cell. Xc
ij is assumed to follow a Bernoulli

distribution with parameter pc
0, which is estimated as the fraction of

proximal gene pairs in the cell:

pc
0 = �

P
k ≤ lX

c
k,lP

k ≤ l1
=

P
k ≤ lX

c
k,l

n

2

� � ð3Þ

where n denotes total number of genes. This estimate of pc
0 assumes

that all gene pairs can be a proximal pair. To incorporate the fact that a
gene pair cannot be a proximal pair if either of the genes is not
expressed in the cell, the above estimate is modified as,

pc
0 �

P
k ≤ lX

c
k,lP

Ik ≤ l gk , gl

� � ð4Þ

where Iðgk , glÞ is an indicator function that equals to 1 iff both gk and gl

are expressed.
CPB test is amodified version of theUPB test that accounts for the

possibility that all genepairs are not equally likely to be colocalized in a
cell and sets the Bernoulli parameter (pc

0 above) to be gene pair-
dependent. Let zi denote total number of proximal pairs having gene i
as one of the genes, aggregated across all cells, i.e.,

zi =
X

j ≤ c

Xc
ij ð5Þ

We use these global summary statistics to model the prior prob-
abilityΠij that a proximalpair detected in a cell is the genepair gi, gj, as
follows:

Πij �
zizjP
i ≤ jzizj

ð6Þ

This model de-emphasizes gene pairs comprising genes that are
frequently found to be in proximal pairs across cells. Now, the Ber-
noulli parameter for variable Xc

ij is estimated as

pc
ij � 1� 1� Πij

� �P
i ≤ j

Xc
ij ð7Þ

The total number of cells where gi, gj is a proximal pair follows a
Poisson Binomial distribution

Xm

c= 1

Xc
ij ∼Poisson Binomial ðp1

ij , . . . ,p
m
ij Þ ð8Þ

Subcellular annotation of a d-colocalized gene pair
A d-colocalized pair is annotated by cellular region where the gene
pair’s proximal pairs tend to be found. We define four categories –
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Nucleus (Nuc), Peri-Nucleus (PN), Cytosol (Cyto) and Cell Periphery
(CP). Proximal pairs in each cell are annotated by cellular region and is
aggregated across cells to yield primary and secondary category.
Perinuclear (PN) region is defined as including xmicrons on either side
of the nuclear membrane, while Cell Periphery (CP) is defined as
regions in cytoplasm within y microns of the cell membrane.
Remaining regions are designated as Cytosol (Cyt) or Nucleus (Nuc).
We chose x = 2 micron which corresponded to ~35% of nucleus tran-
scripts being annotated as perinuclear, and y = 4 micron which cor-
responds to ~35% cytosolic transcripts being annotated as cell
periphery.

RNA-RNA interaction (RRI)
For RRI, we set distance d to be 300 nm (resolution ofMERFISH data is
200nm). The small distancewas chosen to capturegenepairswhosed-
colocalizationmay be explaineddue to the binding of their transcripts.
To control FPR at small distance, we used stricter p-value threshold of
1e-5 that resulted in 60 d-colocalized pairs (FPR~0%). We used
RNAplex47 to compute the RRI scores. For this, we retrieved the
nucleotide sequences from the Ensembl database87 and got the spe-
cific transcript id to get the correct spliced form. RNAplex has been
shown to be among themost accurate tools while being fast enough to
compute the scores for gene pairswith their full transcripts. Finally, we
performed a hypergeometric test on d-colocalized pairs and pairswith
RRI score greater than a fixed threshold (RRI > 35). 8 out of 60
d-colocalized pairs had high RRI scores that led to significant overlap
(p-value = 0.02).

Enrichment analysis
To understand the biological mechanism or consequences of d-colo-
calization, we tested if the compendium of d-colocalized gene pairs
has significant overlapwith functionally related gene pairs.Wedefine a
gene pair to be functionally related if both genes are present in same
KEGGpathway or are annotated with same GO terms more than K
times. K was chosen such thatnumber of gene pairs is similar across
d-colocalized and functionally related set. This partially offsets the
confounding impact of set size variations when performing multiple
gene set enrichment tests. In our analysis, K (MF) = 2, K (BP) =1, K (CC) =
3, K (pathway) = 1. We performed a hypergeometric test between
d-colocalized pairs and functionally related set.

Differential colocalization of a gene pair
InSTAnT employs a series of statistical tests to categorize a pair based
on its specificity to a cell type, region or phenotype. First, it tests the
association between cells where a gene pair was deemed a significant
proximal pair and cells of a particular type (e.g., inhibitory neurons),
using a Hypergeometric test. (This process is repeated for every cell
type). If such an association is found to be statistically significant, it is
subjected to further tests to determine if the cell type specificity arises
simply because one of the genes in the pair is expressed specifically in
that cell type. For this, InSTAnT utilizes a version of the generalized
Hypergeometric test that tests for an association between two sets
conditional on a third set88, as described below. In this case, the third
set comprises the cells with high expression of one of the genes in
the pair.

LetU be the set of all cells,M be the set of cells of a particular cell
type, O be the set of cells where a gene pair is deemed a proximal pair
and E be the set of cells with high expression of one of the genes in the
pair. M, O and E are subsets of U. The threshold for high gene
expression used in defining E is chosen such that size (E) = size (M). Let
M \ Ej j= γ, M \ Oj j= λ, E \ Oj j=α |. The Hypergeometric test p-value of
association betweenM andO is given by the probability that a random
set of size |O| has an overlap (intersection) of size greater than or equal
to λwithM. However, wewish to test if the overlapbetweenM andO is
significant beyond what is expected not from a random set of size |O|

but a random set of this size that respects the known overlap between
M and E and between E andO. For this, we calculate probability of the
overlap betweenM and a random set of |Oj being greater than or equal
to λ conditional on the observed overlap between M and E and that
between E and O, as follows:

Pmin Mj j, Oj jð Þ
k = λ

Pk
β=0

γ

β

� �
m� γ

k � β

� �
n1 � γ

α � β

� �
Uj j � Mj j � Ej j+ γ
Oj j � α � k +β

� �

Ej j
α

� �
Uj j � Ej j
Oj j � α

� � ð9Þ

This is an example of multivariate hypergeometric distribution.
We use scipy.stats.multivariate_hypergeom package for multivariate
hypergeometric distribution.

For each gene pair that is associated with a cell type, InSTAnT
performs the above test twice, each time conditioning on a set E
defined by the high expression cells for one of the genes of the pair.
Significant p-values in both tests thus performed indicate that the cell
type-specificity of the d-colocalized gene pair is significant beyond
what is expected from the specificity of either gene’s expression.
Furthermore, InSTAnT tests if either gene of the pair is a marker of the
cell type, defined as any gene among the top 10 by association between
their expression and the cell type. A marker gene is found by con-
ducting Hypergeometric test of overlap between O and E.

Using the above tests, InSTAnT categorizes a gene pair vis-à-vis
specificity as follows: If the gene pair is significantly associated with a
cell type/region/phenotype (first test above), then it belongs to Cate-
gory 2 if the association is significant by the Hypergeometric test
conditional onhigh expression cells of both genes andneither gene is a
marker of the cell type, otherwise it belongs to Category 1.

Probabilistic graphical model for spatial modulation
InSTAnT uses a likelihood ratio test to determine if sub-cellular colo-
calization of a d-colocalized gene pair is spatially modulated at the
tissue level. Informally, this means that the cells in which the gene pair
is deemed to be a proximal pair are non-randomly distributed in the
physical space.

The probabilisticmodel is formulated around a graphwith a node
for each cell and edges between neighboring cells. Two cells are
neighboring cells if they are locatedwithin a configurable distance (set
to 100 micron in our tests). Each node is associated with a binary
variable sc that indicates whether the specific gene pair (say gi, gj) is a
proximal pair in the corresponding cell c, as detected by the PP test.
The variable sc is assumed to be a Bernoulli-distributed variable. The
null hypothesis is that the Bernoulli parameter is a global constant
pglobal shared across all cells, i.e., it does not depend on the cell c and
thus on its spatial location:

H0: sc ∼Ber pglobal
� �

ð10Þ

pglobal is estimated as the fraction of cells where the gene pair
gi, gj is a proximal pair, which is its maximum likelihood estimate. In
the alternative hypothesis, the model assumes that the distribution of
variable sc depends on the fraction of cells c’ in the neighborhood of c
for which s0c = 1: Let p

local be the fraction of cells c0 in the neighborhood
of c for which s0c = 1:

H1: sc ∼Ber wplocal + 1�wð Þpglobal
� �

ð11Þ

0 < w < 1

The parameters pglobal ,plocal ,w are learnt by maximizing like-
lihood. Weight w controls the contribution of local neighborhood.
InSTAnT calculates the log likelihood ratio (LLR) for each gene pair in
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the d-colocalization map and pairs with LLR above a threshold are
designated as spatially modulated. The threshold is obtained by ran-
dom permutation of the of sc values of cells, repeating the above test
and selecting the highest LLR score (over all gene pairs) seen on the
randomized data. This allows us to detect spatially clustered dis-
tributions of cells supporting gi, gj colocalization.

Module discovery: global colocalization clustering (GCC)
GCC is a procedure to analyze a d-colocalization map to identify sub-
sets of genes that exhibit a high frequency of pairwise d-colocalization
relationships. To this end, it represents the d-colocalization map as an
n x n matrix (n = number of genes) whose entries are the negative
logarithm of p-values of gene pairs from the CPB test and performs a
hierarchical clustering of rows and columns using Euclidean distance
withWard criterion. (The constant 1e-64 is added to all the p-values to
handle zero p-values prior to taking logarithms).

Module discovery: frequent subgraph mining (FSM)
FSM seeks a network of genes that is “colocalized” inmany cells, where
colocalization of a network in an individual cell means that every gene
pair connectedbyanedge in thatnetwork is a proximalpair in that cell.
It constructs a colocalization graph for each cell with genes as nodes
and edges representing proximal gene pairs from PP test. It then uses
an efficient graphmining tool called gSPAN54 to detect subgraphs with
a pre-specified minimum size (numbers of nodes and edges) that are
supported by a pre-specified minimum number of cells.

MERFISH imaging and analysis
Cell line Source and Authentication: U2OS Cell lines were purchased
from ATCC, original donor white female. Cell lines were authenticated
by Cancer center at Illinois using the followingmethod: Amplifiedwith
AmpFISTR Identifiler Plus PCR Amplification Kit and analyzed on the
Applied Biosystems 3730/ GeneMapper 6.

General cell culture conditions. U2 OS cells were cultured inminimal
essential medium (MEM) from ATCC with 1 mM sodium pyruvate, 10%
fetal bovine serum (FBS), and 1% penicillin-streptomycin (Pen-Strep).
The cells were obtained from ATCC and maintained using the
recommended protocol.

MERFISH sample preparation. U2 OS MERFISH samples were pre-
pared using a previously published method89. MERFISH encoding
probe sequences were originally from the Zhuang lab(ref. 89), and can
be found in the “ZhuangU2OS probes” SourceData file. In brief, U2 OS
cells were plated on a salinized 40mm#1.5 coverslip (Fisher Scientific).
Plated cells were transferred to a 37 °Cand 5%CO2 incubator overnight
to grow. Cells were then fixed with 4% paraformaldehyde (Electron
Microscopy Sciences) and permeabilized with 0.5% (vol/vol) Triton
X-100 (Sigma Aldrich). Samples were stained with encoding probes
(10nM/probe) and anchor probes (1µM) for 36 hours in a humidified
incubator at 37 °C. To stabilize the cells during clearing, the stained
cells were embedded in a thin, 4% polyacrylamide (PA) gel. Fiducial
beads (Spherotech, FP-0245-2) were also included in the gel to align
rounds of MERFISH images.

Commonly used imaging solutions. The following solutions were
used during imaging experiments described in this work. Readout
wash buffer was adapted from Moffit et al.89 and contained 10% (v/v)
ethylene carbonate (Sigma Aldrich), 0.1% Triton X-100 in 2x SSC.
Imaging buffer adapted from Moffit et al.89 and contained 5mM 3,4-
dihydroxybenzoic acid (PCA; Sigma Aldrich), 2 mM trolox (Sigma
Aldrich), 50 µMtrolox quinone, 1:500of recombinant protocatechuate
3,4-dioxygenase (rPCO; OYC Americas), adjusted to a pH of 7-7.2 using
1 N NaOH (VWR International) in 2x SSC. Cleavage buffer was adapted
from89 and contained 0.05M TCEP HCl, adjusted to a pH of 7-7.2 using

1NNaOH, in 2x SSC. Stripping buffer was adapted fromEng. et al.14 and
contained 55% formamide, and 0.1% Triton X-100 in 2x SSC.

MERFISH imaging. All images were acquired using a Zeiss Axiovert-
200m widefield microscope (Carl Zeiss AG) located in the IGB core
imaging facility. The sample was placed into a flow cell (Bioptechs,
FCS2), filled with RNAse free 2x SSC, and connected to a lab built
automated flow system. Briefly, computer-controlled valves (Hamil-
ton, MVP/4, 8-5 valve) are used to select which solution was pulled
across the sampleby a computer controlled pump (Gilson,Minipuls 3).
All systems are controlled by a customdesigned Python script that can
communicate with the microscope to start imaging or start flowing
after an imaging round is done. In brief, a single round of
imaging involves staining with fluorescently labeled readout probes
(0.4 mL/min for 6 minutes, and 0.34 mL/min for 6 minutes), washing
with readout wash buffer (0.23 mL/minute for 9 minutes) to remove
unboundprobes, and imagingbufferwasflowed into theflowcell prior
to imaging (0.34mL/minutes for 6minutes) to reducephotobleaching.
MERFISH readout probe sequences were originally from the Zhuang
lab (ref. 89), and can be found in the “16 bit U2OS RO probes” Source
Data file. A single quad band excitation filter (Chroma, ZET402/468/
555/638x) and dichroic (Chroma, ZT405/470/555/640rpc-UF1) were
used to image all samples. Excitation was provided by a 7 laser system
(LDI WF, 89 North). Alexa Fluor 647 (Fisher scientific) labeled probes
were excited using a 647 nm laser (0.5W) with a ET700/75m (Chroma)
emission filter, and 1.5 second exposure time. Atto 565 (Atto tec)
labeled probes were excited using a 555 nm laser (1 W) with a ET610/
75 m (Chroma) emission filter, and a 0.75 second exposure time.
Fiducial beads were imaged with a 405 nm laser (0.3W) with a ET440/
40 m emission filter, and a 1-second exposure time. Samples were
imaged with a 63x oil immersion objective (Carl Zeiss AG, 420782-
9900-000), and focus was maintained between imaging rounds using
Definite Focus (Carl Zeiss AG). 9 z planes with 0.7 µm steps were taken
for each FOV, and a total of 100 FOVs were acquired. After imaging is
complete, a cleavage buffer (0.2 mL/minute for 15 minutes) was
flowed across the sample to remove the fluorophores from the
probes. The cleavage buffer was washed away using RNAse free 2x SSC
(0.5 mL/minute for 10 minutes). This process was repeated for a total
of 8 rounds of imaging. PolyA probes were stained after the final
imaging round using the same method as described above.

MERFISH data processing. Individual FOVs were exported from czi
format into 16 bit tiff format using Zen (Carl Zeiss AG) using the image
export method. Images then were reformatted into image stacks by
FOV and round. A modified copy of MERLIN90 was used to decode
MERFISH spots. In brief, for each FOV, images from different rounds
are aligned using fiducial beads that were imaged in each round.
Aligned images are then normalized, decoded, and identified spots
filtered using previously published methods31. Cell segmentation was
done separately from MERLIN using Cellpose91 on PolyA and DAPI
images for each FOV. To improve FOV alignment to neighboring FOVs,
the DAPI channel was used with the restitching function found in Zen
(Edge detection: on, minimal overlap: 5%, maximal shift: 15%, com-
parer: best, Global optimizer: best). Using the aligned images, seg-
mented cells that cross FOV boundaries were merged into single cells,
and global positions were generated for each spot. Spots are then
assigned to cells based on their spatial coordinates. Spots were then
filtered to remove any spot smaller than 3 pixels in size.

smFISH probe design. All smFISH probes were designed using the
Stellaris probe designer (Biosearch technologies). Probes were
designed using the following settings: Masking level: 5,max number of
probes: 48, oligo length: 20, minimum spacing length: 2. SRRM2 exon
probes were designed against SRRM2 isoform ENST00000301740
(GRCh38.p13). SRRM2 intron probes were randomly selected from
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probes designed for three different introns defined by ensemble
(SRRM2-230 intron 1, SRRM2-230 intron 2, and SRRM2-230 intron 10)
(GRCh38.p13).MALAT1 probeswere designed againstMALAT1 isoform
ENST00000534336 (GRCh38.p13). All probes were purchased from
Biosearch modified with mdC (TEG-Amino) at the 3’ terminus. All
probe sequences corresponding to MALAT1, SRRM2 exon and SRRM2
intron can be found in “smFISH probes” Source Data file. The probes
were dissolved in TE buffer and labeled using AF488/Cy3/Cy5 NHS
esters for MALAT1, SRRM2 intron, and SRRM2 exon, respectively. The
labeled probes were purified using the Bio-Rad Bio-Spin P-6 purifica-
tion columns (Cat # 732-6221).

smFISH sample preparation. Approximately 1.5-1.8million U2OS cells
were plated on a #1.5, 40mmcoverslip (Fisher Scientific) that has been
UV treated before plating. The cells were then transferred to an incu-
bator at 37 °C and 5% CO2, overnight for 12-16 hours.

Modified from Fei et al.92, the sample was rinsed with 1x PBS
(Corning), followed by fixation using 4% paraformaldehyde (PFA;
Electron Microscopy Sciences) in 1x PBS for 10 minutes at room tem-
perature (RT). The sample was then washed three times with 1x PBS
and permeabilized with 0.5% Triton X-100 (Sigma Aldrich), 2 mM
vanadyl ribonucleoside complexes (VRC; Sigma Aldrich) in 1x PBS for
10 minutes on ice, followed by three quick washes with 1x PBS. At this
point, the sample can be stored in 70% Ethanol at 4 °C if the experi-
ment needs to be paused temporarily.

To prepare for smFISH hybridization, sample was rinsed with 10%
formamide (Sigma Aldrich) in 2x saline sodium citrate (SSC; Fisher
Scientific). smFISH probe hybridization buffer was prepared with 0.2
mg/mL of bovine serum albumin (BSA; Fisher Scientific), 2 mM VRC,
10% dextran sulfate (Sigma Aldrich), 1 mg/mL yeast tRNA (Fisher Sci-
entific), 10% formamide, 1% murine RNase inhibitor (New England
BioLabs) in 2x SSC. Avoid light exposure from this point forward.
smFISH probes were then added to the FISH hybridization buffer at a
final concentration of 14 nM for each targeted RNA (MALAT1, SRRM2
intron, and SRRM2 exon).

A humidified chamberwasmade using an empty pipette box filled
halfway with nuclease-free water (Corning) at the base and a UV-
treated glass slide covered with a parafilm layer on top. A 100 μl drop
of the FISH probe hybridization buffer was then added on top of the
parafilm layer and the sample was casted over the drop with the cell
side facing down. The chamberwas then placed in an incubator in dark
and wrapped entirely with aluminum foil overnight at 37 °C for at least
16 hours. The samplewas quickly rinsed two timeswith 10% formamide
in 2x SSC then stained with 4’,6-diamidino-2-phenylindole (DAPI;
Invitrogen by Fisher Scientific) 1:1000 of 1 mg/mL stock solution and
1:5000 of Fluoro-Max Blue Aqueous Fluorescent Particles (fluorescent
beads; Fisher Scientific) in 2x SSC. The sample was incubated with the
DAPI and fluorescent beads solution for 5minutes while rocking at RT,
followed by a quick wash with 2x SSC, then stored in 2x SSC at 4 °C
until ready for imaging.

Protein staining. After smFISH imaging, the sample can be stored in 1x
PBS at 4 °C for up to aweekbeforeprotein staining. Sampleswerefixed
a second time with 4% PFA in 1x PBS for 5 minutes at RT, then rinsed
three times with 1x PBS. This was followed by incubation with a

blocking solution of 1% BSA in 1x PBS for three consecutive times with
10 minutes each time at RT.

The SONprimary antibody (Anti-SON, SigmaAldrich, HPA023535)
was kept at −20 °C until ready for use. The primary antibody stock
solution of 1:1000 was prepared with 1x PBS and kept on ice. A 1:5000
primary antibody dilution was prepared in blocking solution and the
sample was incubated with 200 µl of the primary antibody solution for
approximately 1 hour at RT in the dark.

The sample was washed with blocking solution three consecutive
times with a 10-minute incubation each time at RT, followed by three
washes with 1x PBS, for 10 minutes each time at RT.

The secondary antibody was conjugated to Alexa Fluor 647 (Goat
anti-rabbit, Invitrogen, A21245). The concentrated secondary antibody
was kept at 4 °C until ready for use. Sample staining was accomplished
by 1:1000 dilution of the secondary antibody in blocking solution and
casting of the sample on a 200 µl drop of the secondary antibody
solution, with the cell side facing down. The sample was then incu-
bated for 1 hour in the dark at RT. The sample was re-stainedwith DAPI
in 1x PBS with the same concentration and incubation time described
in smFISH staining section. This was followed by a quick rinse with 1x
PBS and the samplewas stored in 1x PBS at 4 °Cuntil ready for imaging.

smFISH imageacquisition. smFISH andprotein imagingwere doneon
the same MERFISH imaging and fluidic system described above
(MERFISH imaging). After placing the sample into the flow cell, ima-
ging buffer was flowed through the system (0.34 mL/minute for
5minutes). Excitation anddichroicfilterswere the same as used above.
Table 2 contains the dyes, lasers, and emission filters were used for
smFISH imaging.

Samples were imaged with the same 63x oil immersion objective
as above, and focus was maintained between imaging rounds using
Definite Focus. 9 z planes were imaged with a step size of 0.7 µm. After
imaging, smFISH probes were removed using a stripping buffer that
was flowed through the system (0.34 mL/minutes for 5 minutes)
without removing the sample from themicroscope. After stripping the
sample was washed with 2x SSC (0.5 mL/minutes for 5 minutes). The
sample was imaged a second time using the same settings as above.
After imaging the sample was removed from the flow cell and placed
into 1x PBS prior to protein staining (Protein staining).

After protein staining was complete, the sample was placed into
the flow cell and filled with imaging buffer. The same region imaged
during the smFISH experiment was found and reimaged using the
sameobjective and z-stack settings as above. Table 3 contains thedyes,
lasers, and emission filters were used for protein imaging.

SRRM2 image registration and alignment. Individual FOVs were
exported from czi format into 16 bit tiff format using Zen’s (Carl Zeiss
AG) image export method. To align images from the same FOV across
multiple rounds of imaging or experiment, blue fluorescent beads
imaged in the DAPI channel were used as fiducial markers. We found
that aligning images from the same experiment required a simple
translation. To align protein images with mRNA images, an iterative
rotation and translation process was developed. For each iterative
round of alignment, the protein DAPI channel was rotated, then
translated to best align with the mRNA image, this warped image was

Table 2 | Imaging parameters used for smFISH experiment

Channel Target Laser line (power) Exposure time Emission filter

DAPI Fiducial beads, nuclei 405 nm (0.3W) 0.075 seconds ET440/40m

Alexa Fluor 488 MALAT1 lncRNA 470 nm (1W) 2 seconds ET525/50m

Cy3 SRRM2 intron RNA 555 nm (1W) 2 seconds ET610/75m

Cy5 SRRM2 exon mRNA 640nm (0.5W) 3 seconds ET700/75m

Emission filters were purchased from Chroma.
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then used as the starting protein DAPI image for the next round of
alignment. We found that it took between 2 and 5 rounds of alignment
to align protein images to mRNA images. Chromatic aberration was
corrected by aligning all channels to the Cy5 channel. Multicolor beads
(Multi-speck bead slide, Carl Zeiss AG, 1783-455) that included dyes in
the Alexa Fluor 488, Cy3, and Cy5 channels were used to correct Alexa
Fluor 488 and Cy3 channels. The DAPI channel was corrected to the
Cy5 channel using the fiducial bead cross talk between the DAPI and
Alexa Fluor 488 channels. This was done by calculating the shift
between non-nuclear regions of the DAPI and Alexa Fluor 488 chan-
nels, then adding the Alexa Fluor 488 to Cy5 shift to the DAPI to Alexa
Fluor 488 shift.

SRRM2 image preprocessing. To remove cross talk in DAPI and Alexa
Fluor 488 channels caused by the fiducial beads, stripped Alexa Fluor
488 mRNA channel was subtracted from the stained Alexa Fluor 488
channel. As fiducial beads are not affected by the mRNA stripping
conditions, any spots that remain in the stripped Alexa Fluor 488
channelwould be from the beads, not fromMALAT1mRNA. In order to
reduce background in other images, round subtraction was also done
on the other channels of the mRNA FOV.

SRRM2 co-localization analysis. Co-localization analysis was done on
a single z plane from each experiment stack. Images were then filtered
using a high pass filter (5 pixel sigma) and Lucy–Richardson decon-
volution (10 iterations, 9 pixel filter size, 1.4 pixel sigma). Filtered
images are then converted to binary masks with manually defined
thresholds. To remove false positives in the MALAT1 channel, the
MALAT1 mask was multiplied with the inverse of the strippedMALAT1
mask. Cell nuclei were identified using the DAPI channel and seg-
mented using a manually defined threshold.

The co-localization rate was calculated for each nucleus defined
from the DAPI channel. To calculate the co-localization rate between
two channels, each channel is multiplied against the nuclei mask. For
each spot in the first mask, the spot was dilated by 2 µm and then
compared against the second mask. If the dilated spot overlaps any
spot in the second mask, it is considered to be colocalized. The colo-
calization rate was then calculated to be the following:

colocalization percent =
Co� localized spots ct

Total spots ct
� 100% ð12Þ

The colocalization percent was averaged across 13 cells.

Software used. We used Merlin software for our U2OS data(v0.1.6,-
Zenodo, https://doi.org/10.5281/zenodo.3758540).

SRRM2 figure generation (Fig. 4). SRRM2 exon and intron images
were filtered using a high pass filter with 2 pixel sigma, while MALAT1
was filtered using high pass filter with 5 pixel sigma. Raw SON images
were used in panels Fig. 4a–d.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
U2OS Dataset: We obtained MERFISH data45 on a human osteosarcoma
cell line (U2-OS) from http://zhuang.harvard.edu/MERFISHData/data_
for_release.zip. We used the authors’Matlab code to extract and output
the data in table format. We filtered the data to retain transcripts having
minimum area of 3 and intensity of 100.75. The dataset had 7 replicates.
We were able to extract data for four replicates – rep2, rep3, rep4, rep5;
the other replicates presented severe memory management challenges
and were not analyzed. Most of the reported results are from analysis of
rep3, which profiles 130 genes in 3237 cells with an average of 1243
transcripts per cell. Global d-colocalization maps were constructed for
all four replicates and compared to assess reproducibility. Brain Dataset:
Data reported in Moffit et al.54 were obtained through personal com-
munication with Dr. Jeffrey Moffitt. The dataset contained 6325 cells
with 553 average number of transcripts across 7 z-planes. We obtained
cell type assignment from Supplememtary Data 1 fromMoffit et al.54. We
removed ambiguous cells leading to 5149 cells with 9 cell types. Prox-
imal pairs were detected in cells that have at least one z-plane with 20 or
more transcripts. Brain Dataset for behavior analysis: Data reported in
Moffit et al.54 were obtained through personal communication with Dr.
Jeffrey Moffitt. We used a naïve animal (animal ID=5) and an aggressive
animal (animal ID=31) for the analysis. Seqfish+ Data: We used data from
NIH/3T3 mouse embryonic fibroblast cells14 spatially profiled with seq-
FISH+. The data is available at - https://zenodo.org/record/2669683 and
can be accessed using Bento34 tool. We used Bento34 for filtering pre-
processing that resulted in 3726 genes and 179 cells. Xenium Data: We
downloaded whole mouse brain spatial transcriptomic data from
https://www.10xgenomics.com/resources/datasets/fresh-frozen-mouse-
brain-replicates-1-standard. We used data from replicate 1. Xenium data,
in addition to providing the subcellular spatial transcriptome of each
cell, provides a cluster identifier that refers to the cluster of cells
(obtained based on transcriptomic similarity) that this cell belongs to.
We used Allen brain atlas93 to identify clusters that approximate CA1
(cluster 27), CA3 (cluster 42) and Dentate gyrus (cluster 13) region of
Hippocampus. We found a total of 7915 cells across these three clusters.
The dataset consists of x,y and z (fine-grained) positions. To analyze
Xenium data, we used InSTAnT PP test using all of the x,y,z information
instead of PP-3D test since data consisted of fine-grained z positions (not
multiple z-planes). Inhouse U2OS Dataset: The MERFISH U2-OS dataset
is available at https://doi.org/10.13012/B2IDB-2930842_V1. Source data
are provided with this paper.

Code availability
The code is available at https://github.com/bhavaygg/InSTAnT94. The
package uses anndata object and can be installed as “pip install sc-
instant”. The runtime for InSTAnTon theU2-OSdata consisting of 3237
cells and 140 genes on a computing cluster consisting of 16 threads
was ~465 seconds for PP test and ~560 seconds for CPB test.
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