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Excess-substrate inhibition in enzymology and high-dose inhibition in

pharmacology: a re-interpretation
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A Kkinetic model, called the Recovery Model, which incorporates
an obligatory recovery phase of fixed duration (¢,) in the operation
cycle of a macromolecule (enzyme, receptor) is proposed. Binding
of a ligand (substrate, agonist) during ¢, disturbs the recovery
process and causes inhibition (substrate inhibition, agonist
autoinhibition). A quantitative stochastic analysis of a minimal
version of the Recovery Model reveals that (1) plotting the
response versus the logarithm of the ligand concentration never
yields a strictly symmetrical bell-shaped dose—response curve, (2)
the position and shape of the descent of the dose-response curve
can vary greatly in dependence of the kinetic parameters of the
system, and (3) a minimal steepness of the descent with a Hill

coefficient of 1 exists provided that the response can be totally
inhibited by high ligand concentrations. The Recovery Model is
equally applicable to macromolecules that can bind single or
multiple ligands, and suggests new ways to explain such diverse
phenomena as partial agonism, pulse generation, desensitization,
memory effects and ultrasensitivity. In addition, substrate in-
hibition and agonist autoinhibition are regarded as phenomena
closely related to other kinds of non-Michaelian behaviour
because of a common temporal mechanism, namely the temporal
interference of arriving ligand molecules with timing-sensitive
phases of the operation cycle.

INTRODUCTION

Inhibition of enzymes by excess substrate concentrations, briefly
called substrate inhibition, is one of the most common deviations
from Michaelis—-Menten kinetics and one of the best documented
facts in enzymology. Since the first reports in the 19th century,
substrate inhibition has been reported in thousands of publica-
tions and in all enzyme classes (EC 1 to EC 6), but, although
recognized early on as an ‘almost universal phenomenon’ [1], it
has nevertheless met an almost universal disinterest. Accordingly,
there exist only few articles and reviews exclusively devoted to
the theoretical treatment of substrate inhibition, and, in some
monographs on enzyme kinetics, substrate inhibition is not even
mentioned. Probably the main reason for this neglect is that the
majority of enzymologists and many authorities in the field
regard substrate inhibition as being almost always a non-
physiological phenomenon. We doubt that substrate inhibition is
of physiological significance in rare cases only, but even if it were
so, we claim that a theoretical analysis of substrate inhibition,
irrespective of whether it occurs under physiological or non-
physiological conditions, can provide important clues for under-
standing the functioning of enzymes.

In the present paper we do not intend to give a comprehensive
description of the complex phenomenology of substrate in-
hibition nor do we present a full account of the various
mechanisms proposed previously for its explanation. We also do
not treat the question of the physiological significance of substrate
inhibition; rather we confine ourselves to proposing and dis-
cussing a new model for explaining substrate inhibition, termed
by us the Recovery Model. This model postulates that, after the
catalytic act, there occurs an obligatory recovery phase before a
new operation cycle can start and that, as an approximation, the
recovery phase is of fixed duration. Binding of a substrate
molecule during the recovery phase gives rise to substrate
inhibition. The Recovery Model is applicable not only to
enzyme/substrate but also to receptor/agonist systems. In the
latter systems it is well known that, analogously to substrate

inhibition, high (‘supramaximal’) concentrations of an agonist
(hormone, neurotransmitter, drug) often inhibit the response
that low concentrations of the same agonist elicit or augment.
This phenomenon has been given various names in the phar-
macological literature, e.g. high-dose inhibition, autoinhibition,
autoantagonism, autodesensitization, self-blockade, Arndt-
Schulz law or Arndt-Schulz rule. Common to both phenomena,
i.c. substrate inhibition in enzymology and high-dose inhibition
in pharmacology [in the following collectively called high-ligand
inhibition (HLI)], is a bell-shaped dose-response curve. [We here
apply the term ‘dose-response curve’, commonly used only in
pharmacology and physiology, to enzymes, and understand it
to be a plot of the response versus the logarithm of the ligand
concentration. The attribute ‘bell-shaped’ does not necessarily
imply that the dose-response curve is symmetrical like a real bell.
In extreme cases the descending limb may be almost vertical or
almost horizontal; the decisive element to designate a dose-
response curve bell-shaped is (besides the presence of an ascent)
the presence of a descent regardless of its steepness.] The Recovery
Model is intended to explain the occurrence and shapes of the
inhibitory limbs, i.e. the descents, of bell-shaped dose-response
curves by a novel and simple kinetic analysis of the operation
cycle of a macromolecule.

The paper is organized as follows. First we describe the basic
features of the Recovery Model and perform a mathematical
analysis on the basis of a minimal version of the model.
Subsequently we point out a number of implications of the
Recovery Model; after that we discuss at length essential
characteristics, limitations and some possible refinements and
extensions of the Recovery Model as well as its relationship to
previous models of HLI. Finally we briefly comment on the

~ conceptual linkage of HLI to other non-Michaelian phenomena

and the paradigmatic role the Recovery Model may play in
situations in which reactions with intrinsically different time
structures compete with each other.

Part of this work has been published in preliminary form [2-5].

Abbreviations used: HLI, inhibition by high ligand concentrations; L, ligand; M, M*, M**, M’, (macro)molecule in the resting, active, superactive and

refractory state respectively.
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Figure 1 The basic cycle

L, ligand; M, M* and M’, resting, active and refractory state of the macromolecule; A, cycle
A which is the basic operating cycle of the macromolecule. The arrows indicate the various
reactions (association, dissociation, isomerization). A line without an arrowhead indicates in this
and all subsequent Figures a state of the liganded macromolecule to which special attention
is paid. The state of active occupancy is considered to be continuous, possible intervals of
inactivity due to ‘flickering” being ignored here.

THE RECOVERY MODEL

Figure 1 depicts the basic reaction cycle (subsequently called
cycle A) through which the macromolecule M passes after
interaction with a ligand L. In the absence of the ligand the
macromolecule stays in its resting state, M; however, in the
presence of the ligand, the macromolecule, as a consequence of
its association with the ligand, undergoes a transition (isomer-
ization) from state M to the active state M* and subsequent to
dissociation of the ligand returns to the resting state M via a
refractory state M’ (inactive and non-activatable). The circulation
of the macromolecule around the closed path la, 1b, 2a, 2b and
3 is assumed to be strictly sequential and unidirectional and
the anticlockwise reactions are ignored (for justification see the
Discussion section). The most important part of cycle A is the
period of active occupancy during which, in the case of an
enzyme, the ligand (substrate) is chemically transformed or, in
the case of a hormone or neurotransmitter receptor, a signal is
produced and transduced to another component or compartment
(for instance, by opening of an ion channel). A further essential
characteristic of the cycle is that deactivation (M* — M) does not
follow the same pathway as activation (M — M*), as deactivation
includes a ‘recovery’ step (reaction 3) from the non-activatable
state M’ to the activatable state M. In principle, all three
isomeric states (M, M*, M") are thought to be able to bind the
ligand. As, however, unliganded M* and M’ are assumed to
decay rapidly to M, the ligand at low concentration has no
significant change of associating with M* or M’; it binds only to
M and thus maintains the continual running of cycle A without
the occurrence of side reactions. However, when the ligand
concentration is raised to higher levels, the mean association
times for the reactions M+L - ML, M*+L - M*Land M'+L
— M’L become correspondingly shorter. As the ligand con-
centration reaches supramaximal levels, side reactions can no
longer be ignored and Figure 1 has to be extended accordingly
(see Figure 2). In Figure 2(a), two branch points, one at M*
leading to cycle C and one at M’ leading to cycle B, are included.
For the purposes of this paper we will assume that M* is much
shorter lived than the mean association time for the reaction
M*+L - M*L, so that cycle C can be neglected (see Figure 2b).
This situation gives rise to HLI. It should be noted, however,
that in situations where the reaction M*+L — M*L becomes
relevant, it could give rise to a phenomenon opposite to HLI,
namely high-dose (or excess-substrate) activation (see Figure 2c).
The same activation could also arise when M’ in Figure 2(b) is
replaced by M**, a superactive form of the macromolecule.
Activation by high ligand concentrations is less frequently
encountered in the literature than HLI and is not dealt with
further here.
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Figure 2 Extensions of the basic cycle
(a) The basic cycle A with two accessory cycles (B and C) arising at high ligand concentration.

(b) The basic cycle A with the accessory cycle B giving rise to HLI. (c) The basic cycle A with
the accessory cycle C giving rise to activation by high ligand concentration.
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Figure 3 A minimal model for HLI

For the association reactions 1 and 4 and the dissociation reactions 2 and 5, the rate constants
are indicated ; for the isomerization reaction 3 (recovery), the fixed recovery time ¢ is given. The
quantitative treatment of the scheme is given in the Appendix.

For the sake of clarity and in order to make the mathematical
analysis as tractable as possible, we analyse HLI on the basis of
a minimal model which ignores the short-lived intermediates ML
and M* (see Figure 3). Although the scheme of Figure 3 is clearly
an oversimplification, it is capable of explaining, at least semi-
quantitatively, a large body of experimental data concerning
HLI (see below). The essential features of the minimal model in
Figure 3 can be summarized as follows. (i) The ligand binds to M
and M’ with the rates k,,L and k’,, L respectively. Dissociation
takes place with the rate constants k_; and k’_,. (ii) The complex
M*L is active; all other forms of the macromolecule are inactive.
The average activity can be calculated from the proportion of
time spent in the active state (M*L). (iii) The macromolecule is
trapped in its inactive and non-activatable form M’ by binding to
L. (iv) The crucial point at which it is decided whether the
macromolecule follows cycle A or cycle B is the branch point at
M’ where reactions 3 and 4 compete with each other. (v) In
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Figure 4 Constituents and characteristics of a bell-shaped dose-response
curve

The abscissa represents the logarithm of the normalized ligand concentration A = L/Kj with
Ky = k_,/ k,, and spans eight orders of magnitude. The ordinate represents the normalized
response which ranges between 0 (no response) and 1 (theoretical maximum response). Curve
A is a Michaelis—Menten curve and represents the activation of the macromolecule M by
binding of the ligand. Curves B and C represent the inhibition of the response due to the
refractory time £ and cycle B of Figure 3 respectively. Curve D, the dose—response curve, is
the product of curves A, B and C. The dose—response curve depicted here is identical with curve
Ibin Figure 5. R, is the maximally achievable response. The optimal ligand concentration A,
is the normalized ligand concentration at which A, is obtained. The curve width, W, is the
distance between the points of half-maximal activation and half-maximal inhibition of the
dose—response Ccurve.

kinetic terms, reaction 3 (recovery) is characterized by a fixed
recovery time z,, whereas reaction 4 (association) is characterized
by the mean association rate k,,L which is proportional to the
ligand concentration. The probability P that reaction 3 takes
place instead of reaction 4 is therefore given by the probability

that the reaction M’+L — M’L does not occur before time ¢,.
This is a waiting time process which is described by a Poisson
distribution so that P = exp(—k’,,Lt,) (see the Appendix). The
presence of the exponential term introduces an asymmetry into
the dose-response curve.

A quantitative treatment of the Recovery Model according to
Figure 3 is given in the Appendix. The resulting dose-response
curve (see Figure 4 for an illustrative example) can be dissected,
at least conceptually, into three component curves (see curves A,
B and C in Figure 4) with the following meanings. (a) Curve A
is a classical Langmuir binding isotherm which is identical with
a Michaelis—-Menten curve and reflects cycle A of Figure 3
without consideration of the intermediate refractory state M’ as
if activation would follow the simple equation M + L =M*L. (b)
Curve B expresses the inhibition of the response due to the
refractory time ¢,. This inhibition is considerable when ¢, is of the
same order of magnitude as the mean life time 7,,, = 1/k_; of
M*L; it is negligible when the ratio T = ¢, /7., < 1. (c) Curve C
represents the inhibition of the response due to cycle B of Figure
3 and is responsible for the occurrence of HLI. As curve C
contains exponential constituents (see the Appendix), it can
never strictly adopt the shape of a Langmuir binding isotherm.
Curve D in Figure 4 is the dose-response curve which is the
product of curves A, B and C.

Variation of the kinetic parameters gives rise to a wide variety
of dose-response curve shapes (see Figure 5). In each of the
graphs in Figure 5, the abscissa represents the logarithm of the
normalized ligand concentration A = L/K; with K, =k_,/k_,.
The ordinate represents the normalized response which ranges
from 0 (no response) to 1 (theoretical maximum response). The
nine cases depicted in Figure 5 correspond to different com-
binations of 4 = K,/K’,and B =k’_, /k_,. The individual curves,
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Figure 5 Representative examples of dose—response curves obtained on the basis of Figure 3

All curves were computer-drawn according to the mathematical formalism given in the Appendix. Abscissa and ordinate are identical with those in Figure 4. A equals Ky/K'y and Bequals k"_,/k_,.
Ky and K, are the equilibrium dissociation constants of ML and M’L respectively; for the meaning of the dissociation rate constants &_, and &”_, see Figure 3. Curves a, b, ¢, d, €, f and g
are those obtained for 7=1, 107", 1072 1073, 1074, 10~5 and 107° respectively, with 7= £k_, = #/7,... The nine sets of curves correspond to the following Cases ~IX: Case I,
K=Ky k'3 = Kk K’y = k_, (equal affinity of M” and M); at all values of T the descent is somewhat steeper than the ascent (slight asymmetry). Case Il, K'y = K, k', = 0.01 x k,,,
k’_y = 0.01 x k_, (equal affinity of M” and M); although the dose—response curves look quite symmetrical, numerical evaluation reveals that the descending limb is always somewhat steeper
than the ascending limb (quasisymmetry). Case Ill, K'y = K, k’,; = 100 x k,, k’_, = 100 x k_, (equal affinity of M" and M); at all values of T (except 7= 1) the descent is much steeper than
the ascent (strong assymetry). Case IV, K’y = 100 x K, k', = 0.01 x k,, k’_, = k_, (low affinity of M"). Case V, K’y = 100 x K, k’,; = 0.0001 x k,,, k"_, = 0.01 x k_, (low affinity of
M’). Case VI, Ky = 100 x Ky, k', = Kk, k'_, = 100 x k_, (low affinity of M"). Case VII, Ky = 0.01 x K, k', = 100 x k., k'_; = k_, (high affinity of M"). Case VIll, Ky = 0.01 x K,
K o = ko K'_; = 0.01 x £_, {high affinity of M"). Case IX, K’y = 0.01 x Ky, k", = 10000 x &,,, k’_, = 100 x k_, (high affinity offM"); Case IX represents an extreme situation. As far as a
significant response is obtained at all, the maximal response R, Stays reduced even at 7T values as low as 1078, i
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Table 1 Summary of characteristics of the dose-response curves in
Figure 5

For the meaning of Ay, W, Ry, T Ky Ky K'_y and k_, see Figures 3-5 or the text
1 means increase and | means decrease.

Ao Wand Ry, at variable T HE Y A
at variable K'y/K; S R 77 |
at constant 7 and constant K'/K, ;1 if asymmetry l
Asymmetry Ttk kT (regardless of whether Ky >, = or < K))
1 i Ry l (significant only at refatively low A,,)
Strong asymmetry* it K_y> k.,
Slight asymmetry itk _ = k4
Quasisymmetry itk _y <k

* Valid only if R, is not too low.

labelled a, b, ¢, d, ¢, f and g, result from varying T = ¢,/7,,, from
1 to 107%. On comparison of all curves in Figure 5, the essential
characteristics of the dose-response curves obtained on the basis
of Figure 3 can be summarized as follows (see also Table 1).
(1) The optimal ligand concentration, A, , the maximal response,
R,..,and the curve width, W, increase when T decreases and/or
K',/K, increases. When T and K',/K, are kept constant, A_, ,
R,... and W increase when the asymmetrical character of the
dose-response curve decreases (compare e.g. curve IIla with
curves Ia and Ila or curve VIa with curves IVa and Va). (2) The
intrinsic asymmetry of the dose-response curve is marked as the
ratio k’_, /k_, is increased or, in other words, the mean lifetime of
ML is decreased relative to that of M*L. Strong asymmetry can
be obtained when K'; = K, (Case III), X', > K, (Case VI) or
K’y < K, (Case IX). The same independence of the ratio K',/K,
also holds for slight asymmetry (compare Cases I, IV and VII)
and quasisymmetry (compare Cases II, V and VIII). Thus the
decisive determinant for strong, slight or virtually absent
asymmetry is k’_ /k_, and not XK'y /K, or k', /k,,.

In the model discussed above, the complex M’L is assumed to
be completely inactive. As a result, HLI reduces the response
asymptotically to zero if the ligand concentration is raised to a
sufficiently high level and, as will be shown below (see Table 2),
there exists a minimal steepness of the descending limb of the
dose-response curve with an apparent Hill coefficient of 1. On
the other hand, if M'L retains some partial activity, the steepness
of the descending limb is decreased and can adopt ‘subminimal’
values and HLI is partial, i.e. inhibition due to cycle B can never
depress the response down to zero level. Similarly, the shapes of
the curves can be modified by inclusion of additional side
reactions or internal loops. However, it is not our purpose here
to present an exhaustive collection of more complicated models
but, rather, to demonstrate that a simple model which incor-
porates an obligatory recovery step in its operation cycle can give
rise to bell-shaped dose-response curves that contain many of
the characteristics that are observed experimentally.

IMPLICATIONS OF THE RECOVERY MODEL
Partial agonism

In pharmacology it is well known that many (primarily synthetic)
ligands of receptors can never elicit a full response and they are
therefore classified as ‘ partial agonists’. An analogous situation
is encountered in enzymology: for a given enzyme there are
‘poor’ substrates which are never chemically transformed at the
same maximal velocity as ‘good’ substrates. In the following we

treat both phenomena under the pharmacological term ‘partial
agonism’.

In principle, a change in any of the reaction steps constituting
an operation cycle may lead to partial agonism. Referring to the
operation cycle of Figure 1, one obvious reason for partial
agonism could be that reaction 1b is relatively too slow so that, if
L is not sticky, it dissociates from M to a significant extent before
the latter has isomerized to M* or, if L is sticky, the macro-
molecule spends too much time fruitlessly in state ML. Pre-
sumably the partial agonism of many, if not most, partial
agonists goes back to a situation where the overall reaction
M+L - M*L is significantly slower than in the case of a full
agonist, and we call it partial agonism type 1.

The Recovery Model suggests two further explanations of
partial agonism. The ratio T =t /7, may be so large that it
limits the maximal response, R, (see Figure 5 and curve B in
Figure4:at T=1, R, is limited to 50%, and at T = 0.1, it is
limited to 909, of the theoretical maximum) (partial agonism
type 2). An increase in T can be achieved by a shortened
occupancy time 7,,, and/or a prolonged recovery time f. A
certain agonist may decrease 7,,, but this decrease alone may not
suffice to give rise to partial agonism type 2: only when T is
raised to values of, say, 0.05 or more, will R, be significantly
reduced. Prolongation of the recovery time, ¢, by a partial
agonist is perhaps a more remote possibility, but it might be
envisaged that an imperfect ligand causes a greater ‘ deformation’
of the macromolecule or departs more slowly from the active site
than a perfect ligand; consequently the recovery of the macro-
molecule may take longer.

When partial agonism is observed at values of 7 < 1072,
partial agonism type 2 cannot be considered. Figure 5 shows
several examples: at 7 = 1072 (see curves Ic, Ilc, Illc, Viic, VIIIc
and IXc) and even at T = 10~* (see curves VlIle, VIIIe and IXe)
amarked partial agonism can occur. This type of partial agonism
(partial agonism type 3) is easily explained by and necessarily
linked with HLI, provided that the curve width, W, does not
become too large (in Figure 5, W should not exceed about two
to three orders of magnitude). Thus, whereas partial agonism
type 1 or 2 is not necessarily linked with HLI, type 3 is always
accompanied by HLI. In practice, however, it may not always be
possible to use this criterion of distinction because, for instance,
a limited solubility of the ligand may prevent detection of HLI.

Pulse generation and desensitization

The Recovery Model predicts that there is no HLI as long as the
ligand, albeit added at supramaximal concentration, occupies the
macromolecule for the first time; only after the first active
occupancy period can HLI appear as a result of the formation of
M'L. In other words, an initial pulse or spike of activity which
is elicited during the first occupancy period is followed by a
period of inactivity which lasts as long as the ligand concentration
is maintained at the supramaximal level. We call the former event
‘pulse generation’ and the latter ‘HLI desensitization’. We shall
first discuss HLI desensitization.

In contrast with the so-called acute (short-term, rapid) and
chronic (long-term, slow) types of desensitization (for a review
see, e.g., ref. [6]) which may occur at very low ligand concen-
trations (for pg-adrenergic systems see, e.g., refs. [7,8]), HLI
desensitization occurs only at supramaximal concentrations.
Furthermore, HLI desensitization can be ‘ultrarapid’, as it can
set in immediately after elapse of the mean lifetime of the active
macromolecule-ligand complex (M*L in Figure 3) which may be
as short as a few milliseconds. HLI desensitization may also be
ultrarapidly reversible, as the speed of reversal is only limited by
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the time needed to lower the ligand concentration from a
supramaximal level to the maximal level or by the mean length
of the last occupancy period of M” which may be as short as a
fraction of a millisecond. The other types of desensitization
mentioned do not possess the capability for such fast kinetics of
appearance and disappearance; for instance, in S-adrenergic
systems [6], acute (rapid) desensitization is not detectable before
the elapse of seconds or a few minutes and chronic (slow)
desensitization needs minutes, sometimes several hours, to
become established; similar times are usually required for the
reversal. The relationships and possible interdependencies be-
tween HLI, rapid and slow desensitization are poorly understood.
A system that is in a state of ultrarapid HLI desensitization
might be prevented from developing a state of rapid or slow
desensitization as long as the state of HLI desensitization is
maintained. Such an exclusion phenomenon might explain the
finding [9] that the (partial) f-adrenergic agonist ICI 89963 at
high concentration autoinhibits its ability to chronically de-
sensitize C6 rat glioma cells.

The obligatory sequence of events, first the elicitation of an
activity spike or pulse when the ligand concentration is suddenly
increased and then an immediate decrease in activity due to the
onset of HLI desensitization, endows the activity spike with a
strong signal character. Phenomenologically, the situation bears
some resemblance to a neurotransmitter-elicited postsynaptic
current or action potential which is followed by a period of
refractoriness, and we suggest that HLI desensitization might be
an essential factor for a full understanding of how the shapes of
postsynpatic potentials are determined. A detailed discussion of
autoinhibition phenomena in neurotransmitter receptor systems,
e.g. the neuromuscular junction, is, however, beyond the scope of
this paper.

Memory effects

The Recovery Model implies that the macromolecule
‘remembers’ its interaction with the ligand for a certain length of
time which is identical with ¢, (see Figure 3); so the subscript r
stands for recovery, refractoriness and recall. This memory is
short-lived and not carried over from one cycle A to another;
rather it has to be extinguished in order to complete cycle A and
to allow the restart of a new cycle A. If, however, the macro-
molecule encounters the ligand again before it has lost the
memory of its past interaction with the ligand, the memory is
kept alive and the macromolecule behaves differently: it will not
re-enter a new cycle A after reassociation with the ligand. The
memory of the macromolecule is nonetheless a short-term one, as
even after many successive reassociations, i.e. after many circu-
lations through cycle B of Figure 3, the macromolecule will not
remember the last ligand interaction longer than after only one
association.

These characteristics distinguish the Recovery Model from the
concept of a ‘hysteretic’ enzyme with a slow conformational
transition which seems to require multiple catalytic cycle turn-
overs before the enzyme reaches a new conformational state
[10-14]. Ricard et al. [12,15] called this transition a ‘mnemonical
transition’ which is, according to Neet and Ainslee [14], thought
to occur outside the normal catalytic reaction path and never
during the period of the first catalytic cycle. The original
formulation of the mnemonical enzyme concept by Ricard et al.
[15] did not contain the restrictive assumption that the mnemon-
ical transition has to be slow; moreover, the original mnemonical
model (see Figure 1 in [15]) has much in common with the
minimal Recovery Model of Figure 3. However, the treatment in
[151, contrary to a conceptually similar treatment by Witzel and

co-workers [16-18], negated the possibility of substrate inhibition
for a mnemonical enzyme.

Long-term memory effects as described for hysteretic enzymes
are not considered in the Recovery Model described in this
paper; it is, however, conceivable that a macromolecule can
memorize the interaction with the same ligand both in short-term
and long-term fashion. How a long-term memory can be es-
tablished by a cumulative effect of repeated on/off cycles of the
ligand or by a long-lasting after-effect of only one critical
encounter of ligand and macromolecule is an unsolved problem.

Ultrasensitivity

The mathematical analysis of the Recovery Model according to
Figure 3 reveals that the inhibitory limb of the dose-response
curve is very steep if k’_; > k_, and R,  is not too small (see
curves Illc-g, VIb—f and IXe—g of Figure 5 where this situation
is exemplified for k’_; = 100 x k_,). Thus in a certain range of
ligand concentration the system can respond extraordinarily
sensitively to a small increase or decrease of the ligand con-
centration. This type of ‘ultrasensitivity’ [19], termed by us ‘HLI
ultrasensitivity’, represents a new type of ‘branch-point ultra-
sensitivity’ [20,21], as HLI ultrasensitivity is a consequence of a
branch point where two reactions (reactions 3 and 4 in Figure 3)
compete with each other. It may be noted that HLI ultra-
sensitivity can be obtained even if, as assumed in the minimal
model of Figure 3, both macromolecular species, M and M’,
bind the ligand according to a simple Langmuir isotherm
and even if (see Case III in Figure 5) M and M’ have the same
affinity for the ligand. In the case of k’_;, =100xk_, and
R,... = 0.9 (see curves IIId—g, VIc-f and IXf,g in Figure 5) the
HLI ultrasensitivity of a Langmuir-type monoligandable macro-
molecule is equivalent to the ultrasensitivity of an allosteric
protein with a Hill coefficient (h) of about 5. The dependence of
the apparent Hill coefficient of the descent of the dose—response
curve on the ratio B = k’_ /k_, is shown in Table 2 for a wide
range of B values (from 107 to 10°). Whereas at low values of B
the apparent Hill coefficients approach 1, an increase in B to very
high values does not cause 4 to approach an upper finite value.
In other words, the minimal model according to Figure 3 yields
for the descent of the dose-response curve a minimal steepness of

Table 2 Apparent Hill coefficients of the descent of the dose—response
curves in dependence on B = k’_/k_,

The apparent Hill coefficients were calculated as shown in the Appendix. Inhibition curves with
T=10"%and A =1 were used for calculation. Very similar apparent Hill coefficients were
obtained for A= 0.01 and A= 100 (not shown).

Apparent

Hill
B coefficient
1078 1.00
1078 1.00
10~ 1.00
1078 1.00
1072 1.01
107" 1.05
1 1.47
10 2.86
102 4.85
10° 7.06
10* 9.32
10° 11.62
108 14.02




176 P. W. Kiihl

h =1 whereas the maximal steepness of the descent appears to
correspond to the vertical (h = o0). The latter phenomenon
represents an extremely sharp switch on/switch off mechanism at
a certain ligand concentration.

DISCUSSION
The importance of non-occupancy

In the interaction of a ligand and a macromolecule, periods of
occupancy alternate with periods of non-occupancy. Attention is
usually paid only to the state of occupancy because it is during
this phase that the response occurs or is at least initiated. The
period of non-occupancy has been widely regarded as unim-
portant but unavoidable as the time interval between dissociation
and reassociation is always of finite length even at the highest
ligand concentrations physically possible. When genuine HLI
(and not a pseudo form caused by e.g. impurities or inadequacies
of the analytical method) was observed under such conditions, it
was usually interpreted in the light of occupancy and attributed
to an increased multiplicity of occupancy (Haldane mechanism)
or to an otherwise abortive occupancy. (For a brief review of
previously proposed mechanisms for explanation of substrate
inhibition, see ref. [5].) To our knowledge, HLI has never before
been attributed explicitly to a period of non-occupancy that is
too short. We propose that non-occupancy of one or more
ligand-binding sites is usually an essential constituent of the
working cycle of a macromolecule (postulate of obligatory non-
occupancy) in the same way as, at a much higher level of
biological organization, sleep is an essential part of the daily
working cycle of man. The Recovery Model presented in this
paper rests on this simple idea. The occurrence of HLI in
the minimal Recovery Model of Figure 3 depends on whether
the non-occupancy period of M’ is shorter or longer than the
recovery time 7,. Experimental tests of the applicability of the
Recovery Model for explanation of HLI should be aimed at
detection of M’ by an appropriate intrinsic or extrinsic probe and
the kinetic characterization of M’ in dependence of the ligand
concentration.

The fixed recovery time, f,

In contrast with occupancy and non-occupancy times, which are
treated as statistical mean values because of the stochastic
character of dissociation and association reactions, the recovery
process M’ — M (reaction 3 in Figure 3) is assumed to be not
subject to the same statistical variation but rather to be fixed, i.e.
with a negligibly small variance. This has the consequence that
the resulting bell-shaped dose-response curves become more or
less asymmetrical and thus may more truly reflect experimental
curves which often deviate appreciably from symmetry. Were the
recovery time in the minimal model of Figure 3 not fixed but of
a Poissonian (exponential) character like a conventional relax-
ation time, the resulting dose-response curves could never adopt
an asymmetric shape (not shown) and the Recovery Model
would lose much of its versatility and explicatory power. The
fixed duration of the recovery process is a feature that disting-
uishes the Recovery Model from previous conceptually related
models.

Can the assumption of a fixed recovery time be justified? It
seems that the justification has to arise from the nature of the
isomerization process underlying recovery. If recovery is a
multistep (conformational or other kind of) process involving a
large number of sequential individual steps, then the time needed
for the overall reaction M’ —>M does not have a Poisson
distribution but is restricted to a narrow range of time periods;

in other words, the recovery time ¢, is quasideterministically
fixed. The phenomenon that the transition time from one state to
another state can be virtually fixed if the transition occurs via a
sufficiently large number of intermediate states has been reported
previously in various contexts [22-24].

The non-identity of the activation pathway M — M* and the
deactivation pathway M* —> M

This feature of the model, which is caused by the obligatory
passage through the refractory state M’ during the deactivation
pathway M* - M, is in accordance with the frequently
encountered phenomenon in biology that different paths are
followed for the forward and reverse reactions (e.g. a non-
congruity of anabolic and catabolic pathways in intermediary
metabolism, divergent routes for biosynthesis and degradation
of macromolecules and for assembly and disassembly of supra-
molecular structures such as viruses, microtubuli etc.). More
specifically, the non-identity of the reactions M — M* and M* —
M might be, at least in some cases, comparable with unfolding
(denaturation) and refolding (renaturation) of macromolecules,
which often follow, at least partly, different pathways.

The unidirectionality of cycle A

All reactions constituting cycle A (see Figures 1-3) are shown in
one (clockwise) direction only, as if the corresponding reverse
(anticlockwise) reactions did not exist. Is this simplification
justifiable? To answer this question we must take into account
the following. (i) We are considering only a steady state and not
equilibrium, in agreement with the relatively rare occurrence of
true thermodynamic equilibrium in biological systems. A working
enzyme, for instance, is in a steady state or a transient state
rather than in equilibrium and can therefore be likened to a
‘turning wheel’ [25,26). (ii) A steady state implies that the system
is free of the constraint of detailed balance [25,27-30}, i.e. the
product of the forward rates is not equal to the product of the
backward rates. When the reactions are linked to a closed cycle
and the same macromolecule is involved in all reactions, a
unidirectional circulation of the macromolecule around the cycle
results, either clockwise or anticlockwise depending on whether
the product of the forward rates is larger or smaller than the
product of the backward rates. In the special case where one of
the two products is much smaller than the other, one can neglect
the reactions in that direction. Such a situation applies to cycle
A of the Recovery Model, as we assume that at least one of the
isomerization reactions M - M* M* — M’and M’ —» M is quasi-
irreversible so that the product of all backward rates of cycle A
becomes much smaller than the product of all forward rates.
Thus the mathematical analysis of cycle A can be performed
without consideration of the backward reactions.

Possible modifications and extensions of the minimal Recovery
Model

As stated previously, the Recovery Model in its simplest form
(see Figure 3) is regarded as a minimal model; as such it is
sufficient to demonstrate the key point of our explanation of
HLI, namely non-occupancy times of M’ that are too short at
supramaximal ligand concentrations. This simple assumption
yields a large variety of dose-response curves which display
differences in the shape and position of the descending limb (see
Figure 5). On the other hand, the Recovery Model according to
Figure 3 is certainly an oversimplification and cannot be expected
to explain all of the bell-shaped dose-response curves that have
been obtained in pharmacology and enzymology for a number of
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possible reasons. (i) For many binding/activation processes a
Hill coefficient (k) different from 1 is observed, whereas we
assumed for simplicity that both M and M’ bind the ligand in a
Michaelis—-Menten or Langmuir fashion, i.e. with 4 = 1. Clearly,
in the case where M is activated only after binding of two or
more ligand molecules to two or more interacting sites would the
ascents of the resulting dose-response curves adopt different
shapes. Similarly, it can be envisaged that the branching to an
inactive pathway in some cases requires double or multiple
occupancy of M’. It is obvious that binding processes with
h # 1 would cause the resulting dose-response curves to change
correspondingly. (ii) The recovery time, ¢,, may not be absolutely
fixed but subject to a significant statistical variation; this can
modify the degree of asymmetry of the dose-response curve. In
the extreme case in which the recovery reaction of step 3 (see
Figure 3) is a simple Poisson process, as is assumed for the
association reaction of step 4, the intrinsic asymmetry of the
dose-response curves vanishes (not shown). (iii) The recovery
process may not start exactly at the instant of dissociation of the
M*L complex, as assumed in the scheme of Figure 3. Rather, it
may start either somewhat later, as indicated in Figures 1 and 2,
or somewhat earlier, i.e. still during occupancy of the macro-
molecule by the ligand. In the latter case, the importance of non-
occupancy would be more or less attenuated and M’ would be
less vulnerable to untimely arrival of ligands. In the extreme case
in which the recovery process goes to completion during oc-
cupancy, the macromolecule would not be inhibited at all by
high ligand concentrations (HLI resistance due to elimination of
vulnerable periods of non-occupancy). (iv) Binding of L to M’
may disturb the recovery process in different ways and to
different degrees. In the most drastic case (as implicitly assumed
in the scheme of Figure 3), L fully reverses the recovery process
regardless of how far the latter has advanced at the instant of
association of L to M’, so that the recovery process has to restart
from the very beginning after each association with L. Milder
forms of disturbance are partial reversion, standstill or only a
decelerated advancement of the recovery process. In the last case,
only partial HLI can be obtained, i.e. the inhibition stays partial
even at an infinitely high concentration of L. It remains to be
analysed in detail how the various ways of disturbing the recovery
process may alter the shape and/or position of the descending
limbs of the dose-response curves. (v) The association reaction,
M’+L—>M’'L, may not be a simple Poisson process. For
instance, if the arriving ligand molecules first have to pass a
‘waiting room’ (an accessory binding site at the same or a
neighbouring macromolecule), at high ligand concentrations the
interarrival times at the active site may be quite different with
respect to size and statistical variation from the time intervals
with which the ligands arrive from the bulk at the accessory site.
Waiting rooms may convert the random pattern of arrival events
to a more regular one and create a ‘time buffer’ zone between
vacation and reoccupation of the active site. By such a waiting
room device, the macromolecule may be enabled to recover
undisturbed even at very high ligand concentrations (HLI
resistance due to time buffering by waiting rooms). (vi) The
backward (anticlockwise) reactions in cycle A of Figure 3 (or
more complex reaction schemes) are not negligible if the product
of all backward rates is larger than, say, 5% of the product of all
forward rates. In this case the rotation of the ‘turning wheel’
[25], i.e. the speed of cycle A in the clockwise direction, is slowed
down and, correspondingly, the maximal response is decreased.
(vii) An additional activation cycle C (see Figure 2a) which
counteracts cycle B may be present and might under certain
conditions give rise to rather complex (undulating or ‘bumpy’)
dose-response curves.

In summary, the Recovery Model according to Figure 3 is
clearly a minimal model which needs refinements and extensions
(some of which are listed above) to conform with the complexities
of a real system and to reproduce quantitatively the whole
spectrum of actually observed dose-response curves. Never-
theless, the concept that HLI can be explained by trapping of a
refractory state M’ as a result of a too short non-occupancy time
of M’ is applicable to any Recovery Model regardless of whether
it is formulated as a minimal model or as a highly sophisticated
model.

What distinguishes the Recovery Model from previously proposed
models for explaining HLI?

Models that do not require an increased number of simul-
taneously bound ligand molecules or a changed order of ligand
addition or a ligand-dependent change of the aggregation state
of the macromolecule have been previously proposed, although
not very often; like the Recovery Model, they only require that
a high ligand concentration favours an inactive or less active
isomer of the macromolecule. Such pure isomerization or, briefly
[31,32], ‘Iso’ mechanisms (especially conformational mechan-
isms) of HLI have been considered in particular for monomeric
one-substrate enzymes [16-18,33-37], thus avoiding the pos-
tulation of one or more additional (‘regulatory’) substrate-
binding sites or binding of a new substrate molecule before all
products have been released.

Although the Recovery Model presented in this paper shares
with previous Iso models the basic assumption that a high ligand
concentration favours a ‘wrong’ (i.e. inactive or less active)
isomeric form of the macromolecule, it differs fundamentally in
the following points from the previous (Iso and other) models of
HLI. (i) The Recovery Model contains in its various reaction
schemes (see Figures 1-3) a step, the recovery reaction M’ - M,
that cannot be described by a conventional rate constant & or its
reciprocal, a relaxation time 7, as the time evolution of this
reaction does not obey an exponential function like that of a con-
ventional relaxation process but follows, as an approximation,
a step function with a fixed first passage time ¢, (for justification
see above). We therefore used the Latin symbol ¢ instead of the
recommended [38] and widely used Greek symbol 7 to designate
the time required for the recovery reaction to occur. (ii) The
Recovery Model contains a branch point (see Figures 2a, 2b and
3) where two reactions (reactions 3 and 4 in Figure 3) with
intrinsically different time structures compete with each other:
an association reaction (M'+L —» M’L) of simple Poissonian
character and an isomerization reaction (M’ — M) of fixed
duration. To treat such a situation quantitatively, we introduced
a queue-theoretical element in our model: we regarded the
binding of the ligand L to the macromolecule as a waiting time
process where L has to wait till the fixed recovery time ¢, has
elapsed in order to enter a new active cycle A ; otherwise L enters
the inactive cycle B. Our stochastic queue-theoretical treatment
of the reaction scheme of Figure 3 yielded results that are not
obtainable by applying conventional steady-state kinetics with
conventional rate constants to a reaction scheme as simple as
that of Figure 3. The latter approach, which would describe the
recovery step in Figure 3 by a conventional rate constant k,
would yield only strictly symmetrical dose-response curves and
could not generate descents with a Hill coefficient larger than 1
(not shown).

Outlook and final comments
Situations in which, analogously to reactions 3 and 4 in Figure
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3, association and isomerization reactions compete and interact
with each other may not be uncommon; they may occur at any
phase of the operation cycle of a macromolecule and give rise to
inhibitory or activating ‘epicycles’ analogous to cycles B and C
in Figure 2. The macroscopic consequence of such competition
situations is usually a deviation of the dose-response curve from
a Michaelis—-Menten shape. This deviation is upwards in the case
of activating epicycles, downwards in the case of inhibitory
epicycles and may occur not only at a high range but at any range
of the ligand concentration. Furthermore, when one considers
the great influence a different time structure of two competing
reactions may exert on the extent of the deviation mentioned,
exemplified by the interplay of reactions 3 and 4 in Figure 3, a
great shape variability of the ascending limbs of dose-response
curves is also to be expected. Thus any kind of non-Michaelian
behaviour may be caused by a purely temporal mechanism,
namely positive or negative timing effects of (usually randomly)
arriving ligand molecules during timing-sensitive phases of the
operation cycle of the macromolecule. Contrary to the con-
ventional allosteric models [39,40], no multiple ligand-binding
sites are required: allochronic [41] binding (i.e. binding at
different times during the operation cycle) at a single site can be
sufficient to elicit a non-Michaelian response; but even if spatial
summation of ligand binding to multiple sites occurs, the proper
temporal relationships between the binding events at locally
distant but interacting sites may still be crucial [4], analogous to
well-known phenomena in neurophysiology [42]. Allochrony
provides a new conceptual basis for understanding non-
Michaelian behaviour and a conceptual linkage between
phenomena that have usually been regarded as unrelated (e.g.
HLI and sigmoidicity or other kinds of ‘non-hyperbolicity’ in
non-logarithmic plots of response versus ligand concentration).

The Recovery Model presented in this paper should not be
qualified merely as another variation in the collection of existing
models for explanation of HLI. Rather, our model possesses
features that distinguish it fundamentally from previous models
of HLI (see above) and, in addition, appear relevant in a much
wider context; we would like to mention the following points.
(i) The mathematical analysis of the minimal Recovery Model
(Figure 3) is the first quantitative application of the concept of
allochrony; the latter is based on the assumption that (a) a
working macromolecule traverses during its operation cycle
several temporal phases and various states of excitability and
refractoriness [4] and (b) ligand molecules arriving at different
times (i.e. allochronically) during the operation cycle either
activate or inhibit the macromolecule, depending on the phase
during which the macromolecule is hit and occupied by the
ligand molecules. (i) We have shown that even an extremely
simplified kinetic scheme (see Figure 3) can yield a remarkable
shape diversity of the dose-response curves (see Figure 5). We
achieved this by breaking with the kineticists’ habit of routinely
applying a conventional rate constant k£ to every reaction step,
and we consider it as a major merit of the Recovery Model that
it draws attention to the generally relevant fact that the uncritical
application of conventional rate constants may lead to false
results. For situations in which two reactions with intrinsically
different time structures (like reactions 3 and 4 in Figure 3)
compete with each other, the Recovery Model may serve as a
paradigm. (iii) Finally, the Recovery Model is a clear-cut example
of the usefulness of a stochastic approach in enzyme and receptor

APPENDIX

We assume, as discussed in the main paper, that the macro-
molecule follows a unidirectional path around cycle A in Figure

kinetics. Stochastic treatments are not popular among kineticists,
but we think there exist several situations for which only a
stochastic approach yields the correct result; the same opinion
has been expressed in a different context by other authors [43].

The mathematical assistance of Dr. W. B. Adams is gratefully acknowledged.
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3 of the main paper. We assume further that the macromolecule
remains refractory for a fixed period of time, denoted as ¢,.
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For any reaction step that proceeds with a rate constant k, the
average time required for that reaction to occur is 1/k. This
follows from an integration of ¢ multiplied by k exp(—k?) the
probability density function for a Poisson process:

J tkexp(—kt)dt = —(t+l) exp(—kt) = l (Al)
° k k
Thus, the average time spent for association of a ligand molecule
at concentration L is 1/k, L and the average time for its
dissociation is 1/k_,.
The average length of time of the active cycle (cycle A) is
1

t (active cycle) = tr+’$+k_-1 (A2)

and the average time spent in the active state (M*L) is

1
t (active state) = O (A3)
-1
The probability that the active cycle will be entered from the
branch point is simply the probability that the ligand molecule
does not bind to the macromolecule in the refractory state M’
before time ¢,. As the association rate is k', , L, this probability is

P =exp(—k',,Lt) (A4)

It follows, of course, that the probability of entering the inactive
cycle (cycle B in Figure 3) is 1 — P. The average time spent in the
inactive cycle must be calculated somewhat differently. As above
for the active cycle, the time spent in state M'L is 1/k’_,.
However, the maximal time that can be spent for association of
a ligand molecule is ¢,, otherwise cycle A is entered. Thus the
average time spent for association with the macromolecule M’ is
found by integrating only up to time ¢,.

tr
J tk’,Lexp(—k’,,Lt)dt =

0

- (4K o Liexp(—K L1 (A9)
k'L
Therefore, the average time spent in the inactive cycle is
t (inactive cycle) =
1
k., K.,L
The average time spent in the active state, subsequently called
the response R, is obtained by combining eqns. (A2), (A3) and

(A6) and weighting these times by the probabilities of passing
through the active and inactive cycles:

(&)

Ll -4k Lyexp(=K ,Le)] (A6).

Several useful normalizations can be applied to reduce the
number of free parameters from five (¢, k,,, k_,, k', k')
to three (T, 4, B):

k
K. =t
¢ k+1
k/
K —_-1
‘ k,+l
L
A==
K,
T=k,t =—
a=%
K,
k/

The response can then be expressed as

R= PA (A9)

1-P
P(1+A+AT)+——[1+ A4 —(1 + ABAT)P]

In Figure 4 of the main paper, the dose-response curve
D = R(A) is dissected into component activation and inhibition
curves. The activation curve A is the Langmuir binding isotherm
or Michaelis—Menten curve, i.e.

Act(d) = IL

ol (A10)

An expression for the total inhibition I can be obtained by
dividing R(A) by Act (A):

1) = R(A)

" Act(}) (AlD

In Figure 4 of the main paper, the inhibition is subdivided into
two components, curves B and C. Curve B represents the
inhibition I; due to the refractory time ¢, and is calculated as the
amount of inhibition in the absence of a competing pathway (no
cycle B in Figure 3). This can be obtained by letting the affinity
of M’ for the ligand go to zero, i.e. K’y — o0 and 4 (= K,/K',)

—0:

1

1 1 1
Plt+—+— 1—-P —_ 11— 7 ’
(, k+1L+k_1)+( ){k’ l+k,+1L[l (l+kﬂLt,)exp(l+k+1Lt,)]}

or, as according to eqn. (A4) P = exp(—k’,,Lt,), we obtain for
the response

")

_I{,4=0)

LN =32 (A12)
A7)
(A8)

1

1 1 1
— P~ - g
P(t,+kﬂL+kl)+(l P){k, +——1 (l+k+1Lt,)P]}

a KalL
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The remaining inhibition I, due to the competing pathway (cycle
B in Figure 3) is represented by curve C and obtained from

R(X)

L = e L

(A13)

The curves in Figures 4 and 5 of the main paper were plotted
by computer (program available on request).

As shown in Figure 5 of the main paper, the descending limb
of the dose-response curve can be quite steep. Table 2 lists the
Hill coefficients (4) that would be necessary to give a Hill-type
inhibition of equal steepness. These apparent Hill coefficients
were calculated by comparing the maximal steepness of a Hill-
type process with the maximal steepness of the inhibition curve
I(A) corresponding to eqn. (A11). The maximal steepness of I(A)

Received 19 May 1993/27 August 1993 ; accepted 6 September 1993

was calculated numerically. The maximal steepness of a Hill-type
inhibition curve was evaluated from

/\h
](A)Hill = m (Al4)
and
—_hak
din(d) (1+A%)?
Eqn. (A15) reaches a maximum when A = 1; so
dI(A)y, h
(Agzin - _" (A16)

din(A) |,ax 4



