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GRAPHICAL ABSTRACT

ABSTRACT

Background: Aging, a complex and profound journey, leads us through a labyrinth of physiological and
pathological transformations, rendering us increasingly susceptible to aging-related diseases. Emerging
investigations have unveiled the function of bromodomain containing protein 4 (BRD4) in manipulating
the aging process and driving the emergence and progression of aging-related diseases.
Aim of review: This review aims to offer a comprehensive outline of BRD4’s functions involved in the
aging process, and potential mechanisms through which BRD4 governs the initiation and progression
of various aging-related diseases.
Key scientific concepts of review: BRD4 has a fundamental role in regulating the cell cycle, apoptosis, cel-
lular senescence, the senescence-associated secretory phenotype (SASP), senolysis, autophagy, and mito-
chondrial function, which are involved in the aging process. Several studies have indicated that BRD4
governs the initiation and progression of various aging-related diseases, including Alzheimer's disease,
ischemic cerebrovascular diseases, hypertension, atherosclerosis, heart failure, aging-related pulmonary
fibrosis, and intervertebral disc degeneration (IVDD). Thus, the evidence from this review supports that
BRD4 could be a promising target for managing various aging-related diseases, while further investiga-
tion is warranted to gain a thorough understanding of BRD4's role in these diseases.
© 2024 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article
under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction diseases in the past two decades [12]. However, the involvement

Aging is a multifaceted process marked by a gradual deterio-
ration of an organism’s physiological functions over time. This
leads to an escalating vulnerability to aging-related diseases,
including neurodegenerative disorders, cardiovascular diseases,
ischemic cerebrovascular diseases, and more [1]. The incidence
of such aging-related diseases has seen a steady rise, largely
attributed to demographic shifts resulting in aging populations.
While the biological mechanisms that underpin aging remain
incompletely understood, a growing perspective suggests that
alterations of epigenetic information regulate the aging process
[2]. Several studies have shed light on this phenomenon.
Through targeting epigenetic changes, such as the overexpres-
sion of sirtuin2, or the deletion of the histone methyltransferase
gene Set2, lifespan extension has been shown in yeast [3-7]. Fur-
thermore, recent breakthroughs by Dr. Sinclair and his team have
established that epigenetic information deficiency causes aging
in mammals and highlighted the potential of epigenetic repro-
gramming in reversing the aging process [8]. Among the various
epigenetic changes observed during aging, acetylation modifica-
tion has received substantial attention. Adding (histone acetyl-
transferases, HATs) and removing (histone deacetylases,
HDACs) acetyl groups have emerged as therapeutic strategies
for a range of aging-related diseases [9-11]. As epigenetic read-
ers for acetyl groups, bromodomain (BD)-containing proteins
(BRDs) have been shown to be closely associated with various

of BRD4 in the aging process requires further investigation.

BRD2, BRD3, BRD4, and BRDT are the four bromodomain and
extra-terminal (BET) domain proteins, which are broadly
expressed in various species [13]. Structurally, a bromodomain is
formed by four alpha-helices (alpha Z, alpha A, alpha B, and alpha
C) and two loops (ZA loop and BC loop), and is responsible for rec-
ognizing acetylated lysine residues [14]. Each BET protein has two
N-terminal bromodomains (BD1 and BD2) and an extra-terminal
(ET) domain, and exhibit a highly similar structure [15]. BRD4
and BRDT also include a C-terminal domain (CTD), which helps
facilitate histones to interact with other proteins [16], which is cru-
cial for the regulation of gene expression and the control of chro-
matin structure. Fig. 1 depicts the detailed structure of the four
BET family proteins.

BRD4, the most thoroughly studied member of the BET family,
has two known mammalian splice variants including the BRD4
long variant (BRD4-L) and BRD4 short variant (BRD4-S) [17].
BRD4-L has been the focus of most studies, distinguished by a
unique CTD that enables interactions with the positive transcrip-
tion elongation factor b (P-TEFDb), which facilitates the transcrip-
tional machinery [18,19]. Despite the lack of a CTD, BRD-S was
also found to have its own unique biological functions [20]. Besides
transcriptional regulation, studies have also proposed that BRD4
may function as a HAT [21-23].

This review aims to deliver a current synopsis of the potential
mechanisms and roles of BRD4 in the aging process. Specifically,

BRD4-S | [ BD1 | [ BD2 | L ET | GPA
58-164 353-454 609-673
BRDA4-L | [ BD1 | [ BD2 | | ET | ~cm
58-164 353-454 609-673 1325-1362
BRD2 | | 8ot | | eo2 | | ET |
74-180 349-450 641-703
BRD3[ [ BD1 | [ BD2 | [ ET ] |
34-140 311-412 571-635
BRDT [ [ BD1 | [ BD2 | [Er |
27-133 272-373 509-571 905-947

Fig. 1. Structure of four BET proteins. Two isoforms of BRD4 are presented. BD: bromodomain. ET: extra-terminal domain. CTD: C-terminal domain. GPA: glycine-proline-

alanine.
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the study will delve into the regulatory function of BRD4 in cellular
processes such as the cell cycle, apoptosis, senescence, autophagy,
and mitochondrial dysfunction within the context of aging. Addi-
tionally, we will scrutinize the implications of BRD4 in the devel-
opment of aging-related diseases, such as neurodegenerative
disorders, ischemic cerebrovascular diseases, cardiovascular dis-
eases, and other aging-related ailments. By consolidating the pre-
sent understanding of BRD4's functions and mechanisms, this
review intends to offer novel insights into potential therapeutic
targets for delaying the aging process and alleviating aging-
related diseases.

The cellular mechanisms of BRD4 in aging
Cell cycle regulation by BRD4

The cell cycle is an intricately coordinated process crucial for
cell growth and proliferation. During the G1 phase, cells ready
themselves for DNA synthesis. The S phase is marked by DNA repli-
cation, while the G2 phase prepares cells for division. Lastly, the M
phase encompasses the stage of cell division. Importantly, cell
cycle arrest is a primary characteristic of cellular senescence [24].

BRD4 was initially found to be correlated with cell growth
[25,26]. In 2002, Dr. Houzelstein and his colleagues first reported
that BRD4 nullizygous embryos cannot survive after implantation
[27]. Additionally, BRD4 heterozygotes exhibit prenatal and post-
natal growth defects associated with decreased proliferation rates,
and a similar phenomenon is observed in cultured primary
heterozygous cells [27]. These findings underscore the critical role
of BRD4 in mammalian growth. Specifically, BRD4 is essential in
cerebellar development [28]. Mechanistically, a study indicated
that BRD4 stimulates G1 phase gene transcription and promotes
cell cycle progression through recruiting P-TEFb and RNA poly-
merase II to promoters in HeLa cells [29]. Similarly, in NIH3T3 cells
and mouse embryonic fibroblasts, BRD4 knockout inhibits gene
expression related to G1 phase (Ccndl1, Ccnd2, Mcm2, Ranbpl,
Nid1, Orcl2, Pop1, etc.), consequently arresting cells in the GO/G1
phase [30]. Furthermore, promoters of late and early postmitotic
genes are first selectively marked by BRD4, and BRD4 directs tran-
scription of these genes in daughter cells [31].Besides directing G1
gene expression, BRD4 has also been suggested to promote cell
transit from the G2 to the M phase [26]. Intriguingly, akin to
BRD4 knockout, an earlier study found that ectopic expression of
BRD4 in NIH3T3 and HeLa cells impedes cell cycle progression
from the G1 to the S phase [32]. In this scenario, BRD4 interacts
with replication factor C (RFC) through BD2 instead of BD1, thus
interfering with RFC-dependent DNA replication [32]. Collectively,
these studies suggest a complex regulatory role for BRD4 in cell
growth. Both the knockdown and ectopic expression of BRD4 seem
to inhibit the progression of the cell cycle, albeit through distinct
mechanisms.

BRD4 in apoptosis

Apoptosis is crucial for maintaining tissue homeostasis and
eliminating damaged or abnormal cells. Numerous studies have
extensively explored the relationship between BRD4 and apopto-
sis. However, similar to BRD4's role in cell cycle regulation, its
effect on apoptosis also diverges into two directions. Studies
involving oncogenic cells, including colorectal cancer [33], renal
carcinoma [34], retinoblastoma [35], gallbladder cancer [36-38],
myeloma [39], non-small cell lung cancer [40], acute myeloid leu-
kemia [41], and cholangiocarcinoma [42], indicate that pharmaco-
logical inhibition or genetic knockout of BRD4 triggers cell
apoptosis, thus highlighting its potential as an anti-cancer or
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anti-tumor target. Several reviews have well summarized the
apoptosis-inducing effect of BRD4 inhibition in oncogenic cells
[43,44]. The commonly mentioned mechanism underlying the
anti-cancer effect is downregulation of the oncogene c-Myc [45].
Moreover, dislodging of BRD4-NUT (nuclear protein in testis) from
chromatin, which trigger terminal squamous cell differentiation
and apoptosis, was reported in midline carcinoma [46,47]. RNA:
DNA hybrids (R-loops) caused by BRD4 loss is another involved
mechanism, which finally leads to increased replication stress
and DNA damage [48]. Specifically, through triggering transcrip-
tional downregulation of TopBP1 (DNA topoisomerase 2 binding
protein 1), which is a DNA damage response protein, BRD4 inhibi-
tion fails to promote ATR-Chk1 pathway activation culminating in
apoptotic cell death despite increased replication stress [48]. These
findings underscore that BRD4 inhibition causes transcription-
replication conflicts, DNA damage, and apoptosis in oncogenic cells
[48].

However, with increasing research on BRD4 across various dis-
ease fields, several studies have suggested that BRD4 inhibition has
an anti-apoptotic effect, thus playing a protective role in certain
diseases. In the case of ischemia/reperfusion injury (I/R), decreased
expression of endoplasmic reticulum stress-associated and pro-
apoptotic proteins were observed after using the BET bromod-
omain inhibitor JQ1, or genetic knockdown of BRD4; a similar phe-
nomenon was observed under hypoxia/reoxygenation (H/R)
stimulation [49]. The researchers reported this protective effect
was likely due to blocking FOX0O4-dependent reactive oxygen spe-
cies (ROS) generation during I/R or H/R through regulating the
PI3K/AKT pathway [49]. Furthermore, BRD4 upregulation has been
noted in chronic obstructive pulmonary disease (COPD), and BRD4
knockdown alleviated BEAS-2B cell apoptosis induced by cigarette
smoke extract, a widely used COPD cell model [50]. In the interver-
tebral disc degeneration (IVDD) disease model, BRD4 inhibition
reduces apoptosis in nucleus pulposus (NP) cells by inducing
autophagy [51]. Although an anti-apoptotic effect was suggested
in the above studies, the detailed mechanism needs further explo-
ration and validation.

In conclusion, published studies showcase the contrasting roles
of BRD4 in oncogenic and non-oncogenic cells, emphasizing its
multifaceted function. Therefore, comprehending the role of
BRD4 in apoptosis could have substantial implications for the
development of therapies across various diseases.

BRD4 and senescence

Cellular senescence. Cellular senescence is characterized by an
irreversible state of growth arrest, and alterations in gene expres-
sion and morphology [24]. Various stressors, including DNA dam-
age, oxidative stress, and telomere dysfunction, deficiency of
epigenetic information, can initiate senescence. Over time, senes-
cent cells accumulate in tissues and are believed to initiate various
aging-related diseases such as neurodegenerative disorders and
cardiovascular diseases [52-54].

Evidence confirms a crucial role of BRD4 in regulating cellular
senescence. BRD4 has been identified as a regulator of telomere
length [55]. Telomere length is crucial for sustaining long-term cell
division, and when telomeres become excessively short, cells can-
not divide successfully and may undergo senescence [56]. Studies
have found that four different BRD4 inhibitors, IBET151, JQ1,
MS436, and OTX015, block telomere elongation, rather than influ-
encing telomerase activity, in both mouse and human cells [55]. In
this way, BRD4 inhibition could potentially expedite cell senes-
cence. In esophageal cancer cells, both JQ1 and BRD4 knockdown
via shRNA trigger cell senescence [57]. Mechanistically, BRD4 inhi-
bition elevates p21 and decreases cyclin D1 protein expression,
causing G1 phase cell cycle arrest. Independent of apoptosis, this



J. Sun, Y. Gui, S. Zhou et al.

inhibitory effect is caused by aurora kinase suppression [57]. Sim-
ilarly, JQ1 inhibition and BRD4 depletion induce gastric cancer cel-
lular senescence by downregulating miR-106b-5p, thus promoting
p21 gene expression [58]. The same phenomenon was observed in
head and neck oncogene cells in that JQ1 caused accumulation of
DNA double-strand breaks and senescence-associated beta-
galactosidase (SA-B-gal), and a decrease in phosphorylated Sirt1-
ser4, thus elevating p21 and p16 expression [59]. It is worth point-
ing out that, in these circumstances, loss of BRD4 transcriptionally
activates p21 and increases cellular senescence independent of
p53. P21 is generally thought to be activated by p53 to induce per-
manent cell cycle arrest [60,61]. However, in p53 mutated and
inactive gastric cancer cells [58], JQ1 and BRD4 depletion substan-
tially increase p21 expression. Moreover, JQ1 enhances p21 protein
levels and senescence but reduces p53 and Ac-p53 protein levels
[59]. Collectively, these findings indicate that BRD4 inhibition
induces oncogenic cell senescence in a p53 independent way.

In contrast to the aforementioned studies, BRD4 inhibition
offers a protective role in IVDD through activating the AMPK/
mTOR/ULK1 pathway and alleviate NP cell senescence through
activating autophagy [51]. Altogether, the multifaceted functions
of BRD4 indicate its capability to both counteract and induce cellu-
lar senescence, albeit through distinct mechanisms.

BRD4 and senescence-associated secretory phenotype (SASP).
SASP is another distinct feature of cellular senescence, character-
ized by the release of many cytokines, chemokines, and growth
factors [62]. Depending on the context, SASP can have both bene-
ficial and detrimental impacts on neighboring cells. On the one
hand, SASP can bolster tissue repair and regeneration by recruiting
immune cells and facilitating tissue remodeling. And conversely,
SASP can also contribute to chronic inflammation and increased
cellular senescence, thereby leading to aging-related diseases [63].

In 2016, Tasdemir et al. reported that during senescence devel-
opment, extensive remodeling happens in super-enhancers (SEs),
which are enhancers enriched with H3K27Ac. SE remodeling
results in the emergence of new SEs adjacent to key SASP-related
genes, thus promoting SASP [64]. Furthermore, this study high-
lighted the necessity of BRD4 binding to SEs for SASP-related gene
expression and subsequent paracrine signaling in senescent
instead of quiescent cells; genetic deletion or pharmacological
inhibition of BRD4 collapses SASP-related gene expression [64].
Thus, the available evidence underscores the importance of BRD4
in facilitating the SASP and downstream paracrine signaling, which
are crucial for senescence immune surveillance and execution of
the tumor-suppressive program. Other studies also point out the
pivotal role of BRD4 in SASP. For instance, BRD4 inhibition prevents
lipopolysaccharide (LPS)-induced senescence in macrophages [65].
Specifically, LPS triggers the activation of NF-kB and leads to a
redistribution of BRD4 on chromosomes, enhancing the expression
of SASP-related genes, and reinforcing the macrophage senescent
phenotype through paracrine pathways, a process termed inflam-
maging [66]. Studies conducted on lung epithelial cells [67] and
islet cells [68] further substantiate the pivotal role of BET proteins
in initiating the SASP transcriptional program. Taken together,
these studies suggest that BRD4 is essential for SE formation to
promote SASP gene expression.

BRD4 and senolysis. As mentioned above, cell senescence has
been detected in most organs, and accumulation of senescent cells
has numerous detrimental effects [52-54]. Selective elimination of
senescent cells, called senolysis, can prolong health span and alle-
viate a wide range of aging-related diseases. In 2015, Dr. Kirkland
and his colleagues first discovered that a drug combination of dasa-
tinib and quercetin could selectively kill senescent cells [69]. Over
the past few years, senolytic pharmacotherapy has been recog-
nized as a new therapeutic modality. In 2020, BET family proteins
were identified as a novel senolytic target by Wakita et al. through
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high-throughput screening [70]. They discovered that both JQ1 and
ARV-825 could selectively induce death in senescent cells, rather
than proliferating and quiescent cells. Mechanistically, ARV-825
instigated senolysis through inhibiting non-homologous end join-
ing (NHEJ) and promoting autophagic gene transcription [70].
Intriguingly, a recent study revealed that senescent cells can also
promote normal healing by activating stem cell repair [71]. While
senolysis therapy may have anti-aging effects by removing senes-
cent cells, it may also negatively impact normal cell repair. Indis-
criminate destruction of senescent cells poses risks, hence there
is a significant journey ahead to confirm the senolytic effects of
these BET family protein inhibitors and evaluate their safety.

Based on the studies in cellular senescence, SASP, and senolysis,
the role of BRD4 in the regulation of senescence seems paradoxical.
First, the loss of BRD4 can induce a senescent phenotype, poten-
tially limiting tumor development while promoting aging-related
diseases. Second, BRD4 is critical for the expression of SASP-
related genes, which suggests it may facilitate aging-related dis-
eases. Third, SASP is crucial for immune surveillance and the clear-
ance of senescent cells; a deficiency in immune surveillance could
potentially lead to the manifestation of latent tumors or the accu-
mulation of senescent cells. Lastly, the potential senolytic effect of
BRD4 inhibition may help clear senescent cells and rejuvenate tis-
sues or organs. One of the reasons is that BRD4 usually functions as
a scaffold connecting transcription factors at promoters with SEs
[72,73], which determines cell fate by controlling gene expression
in a cell type-specific pattern [74,75]. This means that the function
of BRD4 appears to depend on the cellular context and the genetic
makeup of the target cells. The complex function of BRD4 makes it
even more difficult to demonstrate its role in senescence studies.
Additional studies are necessary to fully elucidate its role in regu-
lating senescence and the process of various aging-related
diseases.

BRD4 and autophagy

Autophagy is an effective catabolic process that directs excess
or damaged cytoplasmic components to lysosomes for degradation
[76]. The relationship between autophagy and aging has been
extensively studied, spanning from cellular senescence to lifespan
extension [77,78]. Autophagy can be regulated at both the tran-
scriptional and posttranscriptional level [79].

Abundant evidence supports an inhibitory effect of BRD4 on
autophagy. For instance, JQ1 promotes autophagosome formation
in acute myelogenous leukemia (AML) stem cells, implicating that
BET proteins may participate in autophagy regulation [80]. In 2017,
Sakamaki et al. reported that BRD4 inhibits transcription of autop-
hagy and lysosomal genes [81,82], representing the first direct evi-
dence of BRD4’s role in autophagy regulation. By abolishing
interaction between autophagy gene promoters and methyltrans-
ferase G9a, loss of BRD4 promotes autophagy and lysosomal
biosynthesis not only in nutrient deprivation-induced autophagy,
but also autophagy induced by rapamycin, glucose starvation,
hypoxia, trehalose, etc. In contrast, overexpressing BRD4 blocks
the formation of LC3-II induced by rapamycin [82,83]. Further-
more, BRD4 inhibition promotes autophagy in a TFEB (transcrip-
tion factor EB)-TFE3  (transcription factor  E3)-MITF
(microphthalmia transcription factor) independent way [82].
Follow-up studies demonstrated that BRD4 inhibition has a protec-
tive role in intervertebral disc NP cells [51,84-86], cadmium-
induced acute kidney injury [87], and pancreatitis [88] through
autophagy activation. Moreover, JQ1 activates PTEN-induced puta-
tive protein kinase 1 (PINK1) and the E3 ubiquitin ligase Parkin-
mediated mitophagy [89], which specifically degrades damaged
mitochondria [90].
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These studies underscore the significance of BRD4-regulated
autophagy in the pathophysiological processes across various cells
and tissues. A recent investigation by Li et al. revealed that cur-
cumin promotes autophagy, effectively diminishing ROS [91]. The
reduction in ROS subsequently inhibits activities of acetyltrans-
ferase P300, leading to a decrease in BRD4 recruitment to the pro-
moters of inflammation-related genes (IL-1p, IL-6, IL-8, TNF-o, and
MCP-1), thus mitigating inflammation [91]. This research demon-
strates a reciprocal regulation between autophagy and BRD4. Col-
lectively, BRD4 inhibition can directly activate autophagy and
lysosome-related gene transcription. Conversely, the activation of
autophagy can limit BRD4 recruitment to the promoters of corre-
sponding genes.

In contrast, certain studies propose that BRD4 plays a positive
role in activating autophagy. For instance, in AML cells, BRD4 inhi-
bitors such as JQ1 and I-BET-151 have been found to impede
autophagy [92]. While the activation of autophagy promotes the
degradation of nucleophosmin 1 (NPM1) and hexamethylene
bisacetamide-inducible protein 1 (HEXIM1), in turn, stimulating
the BET pathway [92]. It is unclear why they got these conflicting
results in different studies. Thus, more studies are still warranted
to investigate the role of BRD4 in autophagy, especially in different
cell contexts.

BRD4 and mitochondrial function

Mitochondrial dysfunction, characterized by diminished respi-
ratory capacity and mitochondrial membrane potential, can arise
from various factors, including DNA mutations, mitochondrial
mass homeostasis, mTOR signaling, low NAD*/NADH ratios, and
Ca%* overload [93]. Among these factors, mitochondrial mass
homeostasis is maintained by mitochondrial biogenesis, mito-
phagy to clear damaged mitochondria, and balance of mitochon-
drial fission and fusion. Mitochondria dysfunction is a defining
characteristic of aging [93]. Interestingly, studies suggested that
BRD4 is indispensable for mitochondrial function regulation.

Journal of Advanced Research 63 (2024) 207-218

First, it is well documented that BRD4 deficiency enhances the
levels of oxidative phosphorylation (OXPHOS) and its activities,
leading to a remodeling of the mitochondrial proteome [94]. Dys-
functions in OXPHOS have been observed in various models of cel-
lular senescence, suggesting a cause-effect relationship between
OXPHOS and senescence [95,96]. Additionally, an SE for peroxi-
some proliferator-activated receptor-gamma coactivator-1o
(PGC-1at), which is a transcriptional cofactor essential to control
mitochondrial biogenesis, is highly occupied by BRD4; BET inhibi-
tors significantly reduce PGC-1a expression [97]. In cardiomy-
ocytes, BRD4 controls nucleus-encoded mitochondrial
transcription, and acute depletion of BRD4 leads to the loss of
mitochondrial function in myocytes [98,99]. Moreover, either the
pharmacological inhibition (OTX015) or knockout of BRD4 sup-
presses the gene expression of mitochondrial fission factor (MFF),
blocking fission and leading to mitochondrial hyperfusion in pros-
tate cancer cells [100]. Mitochondrial hyperfusion, characterized
by mitochondrial elongation, has been found to be associated with
senescence-associated phenotypes [101,102]. However, another
study discovered that JQ1 increases fission-related gene expression
and decreases fusion-related gene expression, resulting in apopto-
sis in melanoma cells [39], which contrasts the former result in
prostate cancer [100]. It is uncertain that the contrasting results
were caused by the different BET inhibitors or the different cell
context. In conclusion, these findings suggest that BRD4 has a func-
tional role in the regulation of mitochondrial function and the
aging process.

The potential mechanisms of BRD4 in regulating the aging pro-
cess are summarized in Table 1.

BRD4's role in aging-related diseases

BRD4 has emerged as a key player in the development and pro-
gression of various aging-related diseases. Based on the previous
sections, dysregulation of BRD4 has been linked to impaired
cellular processes associated with the senescence and aging pro-
cess. Thus, BRD4 may be a promising target for treating aging-

Table 1
BRD4 implicated in aging.
Mechanisms Functions Molecular target Ref
Cell cycle BRD4 inhibition blocks GO/G1 phase Inhibits G1 gene expression (Ccnd1, Ccnd2, Mcm2, Ranbp1, Nid1, Orc2, [29-31]
Pop1, et al.)
G2/M phase Unknown [26]
BRD4 ectopic expression inhibits GO/G1 phase Inhibits RFC-dependent DNA elongation [32]
Apoptosis BRD4 inhibition triggers apoptosis Downregulates c-Myc [45]
Inhibits BRD4-NUT oncogene [46,47]
Accumulates RNA-DNA hybrids [48]
BRD4 inhibition alleviates apoptosis Inhibits FOX04-dependent ROS generation through PI3K/AKT pathway [49]
Induces autophagy through MAPK/mTOR/ULK1 pathway [51]
Cell senescence BRD4 inhibition induces cell senescence Blocks telomere elongation [55]
Upregulates p21 expression [57-59]
BRD4 inhibition alleviates cell senescence Downregulates SASP-related genes [64-
65,67,68]
Induces autophagy via AMPK/mTOR/ULK1 pathway [51]
SASP BRD4 inhibition alleviates SASP Inhibits SASP via SE remodeling [64]
Senolysis ARV-825 and JQ1 provoke senolysis Attenuates NHE] and upregulates autophagic gene expression [70]
Autophagy BRD4 inhibition inhibits autophagy Unknown [92]
BRD4 inhibition promotes autophagy Promotes autophagy and lysosomal biosynthesis through [82]
methyltransferase G9a
BRD4 inhibition promotes mitophagy Activates PINK1/Parkin pathway [89]
Mitochondria dysfunction BRD4 inhibition promotes mitochondria Increases the levels and activity of OXPHOS protein complexes [94]
dysfunction
BRD4 inhibits mitochondria biogenesis Downregulates PGC-1« gene expression [97]
BRD4 inhibition blocks mitochondria fission Inhibits MFF expression [100]
BRD4 inhibition increases mitochondria Inhibits c-Myc and alters mitochondrial dynamics [39]

fission

RFC: replication factor C; ROS: reactive oxygen species; SASP: senescence-associated secretory phenotype; NHEJ: non-homologous end joining; OXPHOS: oxidative phos-

phorylation; MFF: mitochondrial fission factor.
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Table 2
Mechanisms of BRD4 implicated in aging-related diseases.
Diseases Functions (BRD4 inhibition) Study tools Potential mechanisms Ref
Alzheimer’s disease Alleviates Alzheimer’s disease JjQ1 Improves spatial memory via CREB signaling and upregulating synaptic [104]
proteins of PSD95 and synaptophysin
JQ1, Genetic (siRNA) Decreases the expression of a subset of phagocytosis-related genes and [105]
inhibition of BET proteins reduced the expression of Cd33, Trem2, and Zyx
JjQ1 Partly via downregulation of TNF-o and activation of CREB signaling [106]
JQ1 Elicits gene expression associated with ion channel activity, [107]
transcription and DNA repair
Exacerbates Alzheimer’s disease JQ1, ARV-825 Increases the levels of BACE1 [108]
Ischemic Alleviates ischemic dBETT1, ]JQ1 Inhibits inflammation [110,113]
cerebrovascular cerebrovascular diseases
diseases
Hypertension Decreases blood pressure JjQ1 Inhibits VSMC phenotype transition from contractile to synthetic state [118]
Reduces oxidative stress and inflammatory response, alleviates endothelial [120]
cell damage, ameliorates aortic injury
Neointima formation Inhibits neointima formation JjQ1 Inhibits VSMC proliferation [126-128]
Atherosclerosis Alleviates atherosclerosis JQ1 Inhibits VSMC proliferation, migration, and calcification [133,134]
JQ-1, I-BET762, Regulates macrophage function [65,73,91,134]
RVX-208
JQ1, RVX-208 Alleviates endothelial inflammation [73,135-137]
RVX-208 Inhibits synthesis of apolipoprotein A-I [138]
Heart failure Alleviates heart failure Jja1 Inhibits the hypertrophic response of cardiac myocytes triggered [139,140]
by extracellular growth cues
JQ1 Inhibits fibrosis and inflammation [141-144]
Exacerbates heart failure IBET 151, BRD4-specific Damages mitochondria function [98,99,145]
knockout in cardiomyocyte
Pulmonary fibrosis Alleviates pulmonary fibrosis BET inhibitors Decreases profibrotic gene Nox4 expression [157,159]
(IBET, JQ1, CG223, ZL0591,
710420 and ZL0454, OTX015)
IVDD Alleviates IVDD JjQ1 Suppresses MAPK and NF-kB signaling pathways [86]
JQ1 Induces autophagy [51,86]

Prevents NP cell senescence and apoptosis

CREB: cAMP response element binding protein; PSD95: postsynaptic density protein 95; VSMC: vascular smooth muscle cell; IVDD: intervertebral disc degeneration; NP: nucleus pulposus.
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related diseases. A summary of BRD4 in aging-related diseases is
shown in Table 2.

BRD4 and Alzheimer’s disease

Alzheimer’s disease (AD) is characterized by a progressive neu-
rodegenerative disorder that mostly affects the elderly population,
and there are no effective curable drugs available at present [103].
Accumulation of extracellular amyloid-beta (Ap) plaques and
intracellular neurofibrillary tangles in the brain is the primary fea-
ture of AD, which leads to synaptic dysfunction and neuronal loss
[103]. While the underlying mechanisms of AD are still not fully
understood, there is evidence linking BRD4 to AD pathogenesis.

A study utilizing rat models of AD revealed that chronic inhibi-
tion of BRD4 improved spatial memory through cAMP response
element binding protein (CREB) signaling, and by upregulating
expression of postsynaptic density protein 95 (PSD95) and synap-
tophysin [104]. The protective role of BRD4 inhibition is negated by
inhibiting astrocytes, thereby providing new insights into the roles
of astrocytes and BRD4 in AD [104]. Moreover, both pharmacolog-
ical and genetic loss of BRD4 in a murine microglial cell line, BV2,
curtailed its phagocytic activity, and reduced the transcription of
genes implicated in the pathological mechanism of AD, such as
Cd33, Trem2, and Zyx [105]. Furthermore, simultaneous treatment
with MS-275, an HDAC inhibitor, and JQ1, enhanced cognitive
functions in AD-afflicted rats [106]. Additionally, JQ1 treatment
incited a hippocampal gene expression program associated with
ion channel activity, transcription, and DNA repair, thereby
improving cognitive performance and long-term potentiation in
brain function [107]. In conclusion, these findings suggest that
BRD4 could serve as a potential therapeutic target for treating neu-
ropathology and cognitive deficits in AD through inhibiting tran-
scriptional expression of AD-related genes.

Conversely, a recent study examined the impacts of BRD4
degradation or inhibition on an AD cell model [108]. The investiga-
tion revealed that both BRD4 degradation and inhibition elevated
AB levels through the amplification of beta-site APP-cleaving
enzyme 1 (BACE1) levels, which is responsible for cleaving the
amyloid-beta protein precursor (APP), and generating AB protein.
At the same time, the downregulation of BRD4 increased the levels
of AD-related phosphorylated Tau (pTau) protein. Speculatively,
BRD4 inhibition may worsen AD-related cognitive dysfunction.
Consequently, additional research is necessary to fully compre-
hend the role of BRD4 and the BET family proteins in AD
pathogenesis.

BRD4 and ischemic cerebrovascular diseases

Ischemic cerebrovascular diseases, including stroke, rank among
the principal causes of morbidity and mortality globally, particu-
larly in elderly populations [109]. Recent research suggests that
BRD4 may have a part to play in the development and progression
of these diseases. In 2019, Dr. Candelario-Jalil’s team first reported
that dBET1 diminishes brain injury in ischemic stroke in aged mice
[110]. In this study, they revealed that dBET1 degrades BRD4 in the
brain without affecting BRD2 [110]. BRD3 was not detected due to
its extremely low abundance [111]. Despite the fact that protein
levels of BRD2 and BRD4 remained unchanged after the ischemic
injury induced by middle cerebral artery occlusion (MCAO), dBET1
significantly reduced stroke volume and pro-inflammatory media-
tors (Cxcl1, Cxcl10, Ccl2, Tnf-a, and Mmp9) [110], which are crucial
drivers of neurovascular injury [112]. Subsequently, another study
published in the same year reported that BRD4 expression signifi-
cantly increased at 12 h following reperfusion in a mouse MCAO
model, and continued to rise over time [113]. While JQ1 decreases
BRD4 expression in the MCAO model, it mitigates against the pyrin
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domain-containing protein 3 (NLRP3) inflammasome-mediated
inflammatory response and pyroptosis, inhibits glial activation,
and ultimately eased MCAO-induced brain injury. Although
siRNA-specific knockdown of BRD4 could mimic the effect of JQ1,
attributing all effects to BRD4 remains challenging, since the
researchers did not comment on any changes in BRD2 and BRD3
[113]. Another research paper suggested that remote ischemic pre-
conditioning protected against cerebral ischemic injury via the
miR-204-5p-mediated BRD4/Pink1/Parkin pathway [114]. Further-
more, Dr. Candelario-Jalil'’s team recently updated their research,
showing that dBET1 ameliorates neurological deficits and brain
injury in the occurrence of transient ischemic stroke [115]. In con-
clusion, evidence implies that loss of BRD4 might be beneficial in
treating ischemic cerebrovascular diseases. However, whether
BRD4 can serve as a biomarker for early detection of cerebral
ischemic injury, or if all the protective effects of BRD4 inhibition
can be ascribed solely to BRD4, is yet to be determined.

Roles of BRD4 in hypertension and atherosclerosis

Angiotensin II (Ang II) serves as a significant pro-inflammatory
and pro-atherogenic growth factor that activates vascular smooth
muscle cells (VSMCs) in the progression of hypertension and
atherosclerosis [116,117], which are two of the most prevalent
aging-related cardiovascular diseases (CVDs). In 2017, a report first
indicated that BRD4 facilitates Ang Il-mediated gene expression
(Esm1, Spyr2, etc.) through mediating SE formation. This promotes
a transition of the VSMC phenotype from a contractile to a syn-
thetic state. Furthermore, it was noted that JQ1 mitigates Ang II-
induced elevated blood pressure, vascular medial hypertrophy,
and inflammation response in mice [118]. These findings suggest
novel functional roles for BRD4 in Ang II responses and VSMC dys-
function, and are in agreement with previous discoveries that JQ1
is effective in animal models of aortic aneurysm [119]. Subse-
quently, Yang et al. reported that BRD4 has a higher expression
level in patients with essential hypertension, and that JQ1 can
reduce the oxidative, inflammatory response and endothelial cell
(EC) damage, aortic injury, and blood pressure in spontaneously
hypertensive rats [120]. Furthermore, Qiu et al. carried out a clin-
ical study and genotyped single nucleotide polymorphisms in
patients with hypertension and normotensive control patients
[121]. They discovered that patients with genetic mutations within
BRD4 (rs4808278) have increased susceptibility to high pulse pres-
sure. Collectively, these findings imply that BRD4 may regulate
blood pressure in a manner dependent on both VSMCs and ECs.
Hence, BRD4 inhibition might represent a novel target for lowering
blood pressure.

Atherosclerosis is a complex process [122]. Briefly, stimulation
factors including hypercholesterolaemia, diabetes mellitus, hyper-
tension, etc. promote circulating monocytes to transmigrate into
the subendothelial space and differentiate into macrophages, fol-
lowed by accumulation of oxidized LDL cholesterol and develop-
ment of foam cells [123]. At the same time, VSMCs can
transdifferentiate into the synthetic phenotype, migrate into the
subendothelial layer and proliferate[124], or transdifferentiate into
foam cells and accelerate plaque formation [125]. Numerous stud-
ies suggest that BRD4 promotes intimal hyperplasia, and that BRD4
deficiency impedes neointima lesion development [126-128],
which is characterized by VSMC proliferation[129-132]. Similarly,
BRD4 inhibition may mitigate diabetic atherosclerosis by curbing
the proliferation and migration of VSMCs [133]. Notably, apa-
betalone counteracts transdifferentiation and calcification of
VSMCs, thereby preventing vascular calcification [134]. Beyond
regulating VSMC function, BRD4 also has a role in the process of
atherosclerosis through its regulation of macrophage function
[65,73,91,134], endothelial inflammation [73,134-137], and the
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synthesis of apolipoprotein A-1 [138]. It is important to note, how-
ever, that BRD4 is widely expressed in all the vascular components.
This broad expression makes it challenging to attribute the phar-
macological effects of BET inhibitors observed in animal disease
models to specific cell types or solely to BRD4.

BRD4 and heart failure

To date, research into the role of BRD4 in regulating cardiac
function has yielded mixed results. Some early studies affirmed
the therapeutic potential of BRD4 inhibition in heart failure. For
instance, it was found that JQ1 could suppress pressure overload-
induced cardiac hypertrophy in mice, and that siRNA knockdown
of BRD4 in cultured neonatal cardiac myocytes could prevent the
hypertrophic response triggered by external growth cues
[139,140]. These findings suggest that BRD4 inhibition could
directly benefit hypertrophic cardiomyocytes therapeutically.
Moreover, it was reported that administering JQ1 does not result
in baseline cardiac dysfunction [139]. Other studies have indicated
that inhibiting BET proteins might influence non-myocyte path-
ways, such as alleviating fibrosis and inflammation, in preclinical
heart failure animal models [141-144].

In contrast, exposure to the IBET-151 was found to cause car-
diomyopathy in healthy male mice and rats, likely due to damag-
ing cardiac mitochondria [145]. Subsequently, two studies
simultaneously published in Circulation that structured a
cardiomyocyte-specific BRD4 knockout mouse model, reported
that acute deletion of BRD4 in developing and adult hearts rapidly
led to contractile dysfunction and heart failure [98,99]. RNA
sequencing identified that loss of BRD4 transcriptionally represses
gene expression related to the mitochondria electron transport
chain and collapses mitochondria function [98,99]. Furthermore,
mice with a heterozygous deletion of BRD4 developed delayed
heart failure, suggesting that even a reduced level of BRD4 protein
is extremely harmful to heart function [98]. Collectively, these
studies suggest that BRD4 is crucial for maintaining cardiac mito-
chondrial function and normal cardiac function.

As highlighted by the last study [98], there are several potential
explanations for the stark contrast in results between JQ1 inhibi-
tion and genetic knockout of BRD4 in heart failure. First, pharma-
cological intervention may be not sufficient to induce cardiac
functional changes. Changes in mitochondria-related gene tran-
scription, akin to those seen in BRD4-specific knockout mice, was
observed in JQ1 treated hearts [98]. Second, JQ1 does not exclu-
sively target BRD4 [47]. Therefore, it is necessary to consider the
potential involvement of BRD2 and BRD3 in the observed pharma-
cological effects in heart. Third, the absence of BRD4 might impact
cells differently under varying conditions. For instance, in heart
failure models, BRD4 knockout specifically in cardiomyocytes
may yield therapeutic effects similar to those of JQ1 pharmacolog-
ical inhibition. Finally, there could be off-target effects of JQ1, as
previously reported [146].

BRD4 and aging-related pulmonary fibrosis

In 2013, Tang et al. first illustrated that BRD2 and BRD4 partic-
ipate in initiating lung fibrosis induced by bleomycin exposure
[147,148]. IBET and ]JQ1 were found to impede bleomycin-
induced lung fibrosis. This finding was substantiated by the speci-
fic knockout of BRD2, BRD3, and BRD4 using respective siRNAs,
revealing that inhibition of BRD2 and BRD4 plays a role, whereas
BRD3 does not. Subsequent research has demonstrated that BRD4
inhibition can mitigate bleomycin-induced lung fibrosis (JQ1,
CG223, ZL0591) [149-151], radiation-induced lung fibrosis (JQ1)
[152], innate inflammation-driven airway remodeling (ZL0420
and ZL0454, highly specific BRD4 inhibitors) [153], and allergen-
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induced inflammation and remodeling (ZL0454) [154], highlight-
ing the therapeutic effect of BRD4 inhibition in lung fibrosis.

The main target of BRD4 in lung fibrosis is NADPH oxidase 4
(Nox4), an enzyme that generates ROS and is a pro-fibrotic gene
involved in lung fibrosis [155,156]. Research indicates that JQ1
reduces Nox4 gene expression by disrupting its promoter’s associ-
ation with BRD3 and BRD4, but not with BRD2. Reduced Nox4
enhances the activity of NFE2-related factor 2 (Nrf2) [157]. Fur-
thermore, it has been shown that silencing Nox4 itself can trigger
Nrf2 activation in lung fibroblasts [158]. Another study demon-
strated that BRD4 inhibition (utilizing I-BET-762, JQ1, and
OTX015 in vivo, and siRNA-BRD4 in vitro) counters aging-related
lung fibrosis by disrupting the connection of BRD4, p300, and
acetylated histone H4K16 with the Nox4 promoter, thereby down-
regulating Nox4 gene expression and its activities [159]. Collec-
tively, these consistent findings suggest that BRD4 inhibition
may potentially serve as an effective strategy for treating various
types of lung fibrosis, including those related to aging.

BRD4 and intervertebral disc degeneration (IVDD)

IVDD is a prevalent chronic degenerative disease affecting the
skeletal muscles, typically associated with increased age. In
instances of diabetic IVDD, both BRD4 and matrix metallopro-
teinase 13 (MMP-13) levels are increased in NP cells [84]. Signifi-
cantly, BRD4 inhibition has been demonstrated to suppress the
MAPK and NF-kB signaling pathways and enhance autophagy,
cause a reduction in MMPs and the prevention of diabetic [VDD.
A further study confirmed that BRD4 inhibition can provide protec-
tion against IVDD by enhancing autophagy and repressing NLRP3
inflammasome activity via inhibiting NF-xB signaling in NP cells
[86], or by inhibiting senescence and apoptosis of NP cells through
the induction of autophagy [51]. Nevertheless, the limited evidence
suggests that BRD4 inhibition might serve as a promising thera-
peutic method for IVDD but need further validation and
exploration.

Conclusions

BRD4, an important epigenetic reader, plays a fundamental role
in initiating gene expression and has a functional role in a variety
of aging-related diseases. However, the detailed mechanisms
through which BRD4 operates are far from being understood. The
regulatory role of BRD4 in aging-related diseases is complex and
multifaceted. In some instances, BRD4 inhibition has been demon-
strated to have protective effects, while in others, it appears to pro-
duce detrimental effects. Several factors could explain these
inconsistent findings. First, the function of BRD4 may be cell
type- and disease-specific, which could account for the conflicting
results observed in different cell types and disease models. Second,
BRD4 knockout is lethal in embryos, so most in vitro studies rely on
pharmacological inhibition, which may not specifically target
BRD4. Third, some BET inhibitors, such as JQ1, may have off-
target effects. Given the current complicated research results con-
cerning BRD4, further investigation is necessary to completely
comprehend the function of BRD4 in the aging process and to
ascertain the most effective strategies for targeting it in the treat-
ment of aging-related diseases.
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