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A B S T R A C T

Purpose: To establish a radiomics nomogram based on MRI radiomics features combined with clinical charac-
teristics for distinguishing pleomorphic adenoma (PA) from warthin tumor (WT).
Methods: 294 patients with PA (n = 159) and WT (n = 135) confirmed by histopathology were included in this
study between July 2017 and June 2023. Clinical factors including clinical data and MRI features were analyzed
to establish clinical model. 10 MRI radiomics features were extracted and selected from T1WI and FS-T2WI, used
to establish radiomics model and calculate radiomics scores (Rad-scores). Clinical factors and Rad-scores were
combined to serve as crucial parameters for combined model. Through Receiver operator characteristics (ROC)
curve and decision curve analysis (DCA), the discriminative values of the three models were qualified and
compared, the best-performing combined model was visualized in the form of a radiomics nomogram.
Results: The combined model demonstrated excellent discriminative performance for PA and WT in the training
set (AUC=0.998) and testing set (AUC=0.993) and performed better compared with the clinical model and
radiomics model in the training set (AUC=0.996, 0.952) and testing model (AUC=0.954, 0.849). The DCA
showed that the combined model provided more overall clinical usefulness in distinguishing parotid PA from WT
than another two models.
Conclusion: An analytical radiomics nomogram based on MRI radiomics features, incorporating clinical factors,
can effectively distinguish between PA and WT.

Introduction

Salivary gland tumors are a relatively rare type of head and neck
tumors, accounting for about 3–6 % of cases [1]. Approximately 80 % of
salivary gland tumors are parotid gland tumors, and roughly 80 % of
parotid gland tumors are benign, with pleomorphic adenoma (PA) and

warthin tumor (WT) being the two major benign pathological types [2,
3]. Although both benign tumors, PA has a higher rate of malignant
transformation and recurrence [4], while WT is not cancerous due to
slow progression, leading to different treatment methods [5,6]. There-
fore, it is particularly important to evaluate parotid tumors by collecting
clinical and image information before surgery to make the best
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treatment plan and surgical method [7,8].
Fine needle aspiration biopsy is a simple and rapid examination

method, and previous studies have found that it has a certain value in
the diagnosis of benign tumors [9]. However, it is often limited by the
scope of the tumor and the level of clinical experience of the operator,
which may have the risk of tumor spread and facial nerve injury [10,11].

The accuracy of CT [12] and MRI [13] is 84.7 % and 91.3 % in
distinguishing WT from PA, which are important means for preoperative
auxiliary diagnosis. But distinguishing between WT and PA based on
traditional CT and MR Imaging may be challenging, for the reason that

the imaging characteristics of the two tumors are usually very similar [7,
14,15]. Therefore, better methods are needed to improve the ability to
differentiate PA from WT.

In recent years, radiomics is a new technology that can further
improve the means of imaging differentiation and is widely used in
oncology. By extracting a large amount of feature information from
standard medical images, automatic sequence algorithm can be used to
make a more comprehensive description of tumors, showing a better
prospect in tumor identification, treatment effect evaluation and prog-
nosis prediction [16-18]. With the development of artificial intelligence
and the increase of algorithms, the accuracy of preoperative diagnosis
can be better improved through image evaluation [19]. Recent studies
have found that there is a lot of literature on the identification of parotid
tumors with the help of radiomics, whether benign or malignant or PA
and WT, but there is still a lack of standardized procedure analysis for
parotid tumors [5,20-23].

Therefore, this study based on the radiomics features of MRI com-
bined with clinical characteristics to establish a relevant prediction
model, so as to better distinguish PA and WT, and offer improved sup-
port for clinical precision diagnosis and treatment.

Methods and materials

This is a retrospective study which was approved by the Ethics
Committee of Shanghai Changzheng Hospital. The requirement for
informed patient consent was waived due to the retrospective nature of
the analysis and the anonymity of the data.

Table 1
Clinical factors and MRI features of the training and testing set.

Clinical factors Training set (n = 205) Testing set (n = 89)

PA(n =

113)
WT(n
= 92)

P-value PA(n=
46)

WT(n
= 43)

P-value

Sex (male/
female)

55/58 88/4 <0.001 26/20 40/3 <0.001

Age 44.6 ±

15.5
61.4 ±

7.5
<0.001 47.0 ±

14.0
62.7 ±

7.4
<0.001

Smoking: pack-
years

2.9 ±

7.6
29.8 ±

16.7
<0.001 5.3 ±

12.5
29.3 ±

17.2
<0.001

Shape (round/
not round)

79/34 67/25 0.761 30/16 31/12 0.639

Amount of tumor
(single/
multiple)

110/3 50/42 <0.001 46/0 22/21 <0.001

Margin (well
defined/ill
defined)

113/0 89/3 0.177 46/0 40/3 0.217

PA: pleomorphic adenoma, WT: warthin tumor.

Fig. 1. The study flowchart used for case selection and the number of patients finally recruited per the inclusion and exclusion criteria.
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Patients

This study included patients with PA (n = 159) and WT (n = 135)
confirmed by histopathology after parotid tumor surgery in our hospital
from July 2017 to June 2023. The inclusion criteria were: 1) patients
with postoperative histopathological evidence of PA andWT; 2) patients
with an MRI examination including T1WI and FS-T2WI performed
within 2 weeks before surgery; 3) patients without fine needle aspiration
biopsy or drug therapy before examination. The exclusion criteria were:
1) Poor image quality; 2) Tumor with a maximum diameter < 1 cm [2,
8]. All patients were randomly divided into a training set and a testing
set according to 7:3 [16,24]. Characteristics of patients and tumors are
shown in Table 1. The research process is shown in Fig. 1.

MRI protocol

All patients underwent a 3.0T MRI scan (Philips Achieva 3.0T). The
T1WI was acquired using the following parameters: echo time 8.5 ms;
repetition time 550 ms; number of excitations 4; slice thickness 4 mm;
slice spacing 1 mm; acquisition matrix 332 × 215; and field of view 259
× 199 cm. The parameters for the FS-T2WI sequence included: echo time
70 ms; repetition time 4226; number of excitations 2; slice thickness 4
mm; slice spacing 1 mm; acquisition matrix 260× 182; field of view 230
× 230 cm.

Collection and evaluation of characteristics

Clinical factors, including sex, age, and smoking pack-years, were

Fig. 2. Example of the manual segmentation of pleomorphic adenoma (2a&2b) and warthin tumor (2c&2d).
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collected. MRI radiological features were evaluated by two radiologists
(H. S. and Q. C.) with 6 and 10 years of experience in head and neck
radiology without knowing the histopathological results of tumors.
Consensus was reached through discussion and negotiation in case of
disagreement. The largest lesion was selected in patients with multiple
tumors. The main MRI features evaluated are as follows: (a) Tumor
shape (round/non-round); (b) Number of tumors (single/multiple); (c)
Tumor margin (well or poorly defined).

MRI image outlining and segmentation

Two radiologists (H. S. and Q. C.) with 6 and 10 years of experience
outlined the tumor on T1WI and FS-T2WI, slice by slice, using Radcloud
software (v.7.7, Huiying Medical Technology Co., Ltd., China), focusing
on the solid tumor components. Special care was taken to exclude cystic
or necrotic areas, ensuring the ROIs reflected the tumor’s solid pathol-
ogy in Fig. 2. This meticulous process aimed to capture the tumor extent
accurately while excluding non-tumor tissue. For cases with multiple
lesions, the largest, most representative lesion was segmented, applying
the same criteria to exclude cystic or necrotic changes.

3376 extracted features included four categories: (1) first-order
features (to describe relatively intuitive geometric characteristics, such
as the size, shape, surface roughness of lesions, etc.); (2) shape-based
features (to describe relatively intuitive geometric properties); (3)
texture features (to describe the spatial distribution information of ROI
pixels, reflecting the spatial heterogeneity characteristics such as gray-
scale changes, granularity, and roughness of the image); (4) wavelet
transform-based features (Obtaining multi-resolution image description
information by wavelet change of the original image).

MRI feature extraction and selection

30 randomly selected cases from the collected data were outlined
independently by two radiologists to assess interobserver consistency [2,
16]. Reader 1 outlined 30 cases again after a one-month interval. The
inter-observer reliability and intra-observer repeatability of feature
extraction were evaluated by using inter- and intra- class correlation
(ICC), as ICC> 0.75 was considered reliable [7,25]. The remaining cases
were outlined by Reader 1.

A large number of features extracted by Radcloud software may not
be useful for a particular task. Dimensionality reduction and selection of
task-specific features for best performance are necessary steps. To
reduce redundant features and avoid overfitting, z-score normalization
was applied as a preprocessing step. Pearson correlation coefficient was
performed on the features consistent with normal distribution, other-
wise, spearman’s correlation analysis was performed. Finally, we used
least absolute shrinkage and selection operator (LASSO) model, L1
regularization was used as the cost function, and the error value of cross
validation is 5, and the maximum number of iterations is 1000, to
identify and obtain the best radiomic features and develop radiomic
models.

Construction of Rad-score and visualization of model

Using the linear combination of selected features, the Rad-score
formula based on MRI image was generated, and the corresponding
Rad-score was calculated. A combined model was constructed using
logistic regression based on Rad-scores and clinical independent factors.
Based on the performance of the three models, the best-performing
model was selected to construct an intuitive radiomics nomogram,
providing individualized predictions for the differentiation of PA and
WT.

Statistical analysis

The statistical software used in this study was R software (version
4.3.1), and P < 0.05 was considered statistically significant. The Chi-
square test is used to compare differences between qualitative vari-
ables and the Mann-Whitney U test was used to compare differences
between quantitative variables.

Receiver operating characteristic (ROC) analysis was used to eval-
uate the clinical model, radiomics model and combined model in
differentiating PA from WT. The efficacy of three models in the training
set and testing set were evaluated t respectively by calculating the area
under the curve (AUC) values and using Delong test. Decision curve
analysis (DCA) was performed, based on quantitative calculation of the
net benefits at a series of threshold probabilities, to evaluate the clinical
utility of clinical model, radiomics model and combined model. Cali-
bration curves were generated to analyze the fit degree and evaluate the
consistency between the predicted results of radiomics nomogram and
the actual state.

Results

Establishment of clinical model

Our study included 294 patients, and the clinical characteristics of all
patients in the training and testing groups were summarized as shown in
Table 1. In the training set and the testing set, there were significant
differences in gender, age, smoking amount and tumor number. Uni-
variate logistic regression analysis showed that gender, age, smoking
amount, and number of tumors were significantly correlated with the
identification of parotid PA and WT patients (p < 0.001). Multivariate
logistic regression analysis showed that gender was significant on the
margin (p= 0.063), while age (p< 0.001), smoking amount (p< 0.001),
and number of tumors (p = 0.011) were still significant. Older age (OR,
0.884; 95 %CI, 0.849–0.914; p < 0.001), more smoking (OR, 0.856; 95
%CI, 0.819− 0.889; p < 0.001), multiple lesions (OR, 0.032; 95 %CI,
0.008− 0.095; p < 0.001) was more common in parotid WT patients.
Age, amount of smoking, and number of tumors were identified as in-
dependent clinical risk factors in the clinical factor model in Table 2. The
AUC of the clinical model was 0.966 in the training set and 0.954 in the
testing set.

Table 2
Univariate and multivariate logistic regression analysis of the predictive clinical factors in the training set.

Clinical Univariate logistic regression analysis Multivariate logistic regression analysis

p-value OR 95 % CI p-value OR 95 %CI

Sex <0.001 0.043 0.013–0.112 0.063 0.262 0.058–1.030
Age <0.001 0.884 0.849–0.914 <0.001 0.859 0.794–0.915
Smoking <0.001 0.856 0.819–0.889 <0.001 0.895 0.847–0.936
Shape 0.647 1.153 0.628–2.137
Amount <0.001 0.032 0.008–0.095 0.011 0.055 0.004–0.383
Margin 0.985 0.000 NA

OR: odds ratio; CI: confidence interval.
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Establishment of radiomics model

3168 stable radiomics features were selected from T1WI and FS-
T2WI for subsequent dimension reduction analysis by ICC≥0.75. After
applying Pearson’s and Spearman’s correlation analyses to eliminate
highly correlated characteristics (with a threshold coefficient of |r| =
0.8), 556 feature values remained [20,26], and after lasso regression
method, 42 feature values remained. Finally, 10 most prominent isa-
gogic features were selected, the selected feature values are shown in
Table 3. Fig. 3a shows the different hyperparameters (lambda values)
associated with the diagnostic bias of different models. Fig. 3b describes
the variation of LASSO coefficients of different texture parameters with
hyperparameters. Use the following formula to determine the Rad-score:
Rad-score = intercept + Σ (βi × Xi). Fig. 4 calculated Rad-score of PA
(training set 2.650±1.350, testing set 2.121±1.400) was higher than
that of WT (training set − 2.380 ± 1.291, testing set − 1.354±1.776),

Table 3
Radiomics feature selection results.

Radiomics feature names Coefficient

(Intercept) 0.40763664
T1WI: wavelet.LLH_ngtdm_Contrast − 0.5210558
T1WI: wavelet.HLL_gldm_LowGrayLevelEmphasis − 0.5075607
T1WI: wavelet.LHH_glszmLow_GrayLevelZoneEmphasis − 0.436313
T1WI: wavelet.LLL_glszm_SmallAreaLowGrayLevelEmphasis − 0.3870469
T1WI: wavelet.HHL_glszm_ZoneEntropy − 0.3245974
T1WI: wavelet.HHH_gldm_DependenceVariance 0.39504333
FS-T2WI: wavelet.LHL_firstorder_Kurtosis − 0.6188431
FS-T2WI: wavelet.HHL_gldm_LowGrayLevelEmphasis − 0.3470299
FS-T2WI: wavelet.HLL_glszm_ZoneEntropy 0.59756467
FS-T2WI: wavelet.LLH_glrlm_ShortRunHighGrayLevelEmphasis 0.76537243

Fig. 3. Radiomics feature selection using the least absolute shrinkage and selection operator (LASSO) regression model. (3a) Different hyperparameters (lambda
values) correspond to the deviations of different models. (3b) Change in different coefficients of LASSO with the hyperparameters (lambda values).
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which was statistically significant (p < 0.001).

Establishment of combined model and comparison between models

The combined model of training set was constructed by using Rad-
scores and independent clinical factors, including age, smoking pack-
years, and tumor amount. Performance of clinical model, radiomics
model and combined model was shown in Table 4, including AUC
values, accuracy, precision, recall and F-measure. ROC curves of the
three models are shown in Fig. 5. Both clinical model and radiomics
model obtained satisfactory prediction results, with AUC of 0.966 and
0.952 in the training set and 0.954 and 0.849 in the testing set,
respectively. The combined model had the best prediction performance,
and the AUC value was 0.998 on the training set and 0.993 on the testing
set. Through DeLong test, each model is compared in pairs. Differences

Fig. 4. The Rad-scores for each patient in the training (4a) and testing (4b) sets. Blue points represent the scores for PA patients, while red points represent the scores
for WT patients.

Table 4
Performances of the three models in training and testing set.

Model AUC Accuracy Precision Recall F-measure

Training set (n = 205)
Clinical Model 0.966 0.932 0.923 0.956 0.939
Radiomics Model 0.952 0.863 0.883 0.867 0.875
Combined Model 0.998 0.971 0.973 0.973 0.973
Testing set (n = 89)
Clinical Model 0.954 0.876 0.889 0.870 0.879
Radiomics Model 0.849 0.730 0.729 0.761 0.745
Combined Model 0.993 0.966 0.957 0.978 0.968

AUC: area under the curve.

Fig. 5. The receiver operating characteristic (ROC) curves of the clinical model, the radiomics model, and the combined model in the training (5a) and testing (5b)
sets, respectively.

H. Sun et al.
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of training set clinical model vs. combined model, radiomics model vs.
combined model; testing set clinical model vs radiomics model, clinical
model vs combined model, radiomics model vs combined model were
statistically significant (p < 0.05). Only difference between the training
set clinical model and radiomics model was not statistically significant.

Establishment of radiomics nomogram

The DCA values of the three models are shown in Fig. 6, showing that
over most threshold probability ranges, the combined model provides
more overall net benefit in distinguishing parotid PA from WT than the
radiomics model and the clinical model. The best-performing combined
model was selected to construct an intuitive radiomics nomogram,
providing individualized predictions for the differentiation of PA and
WT, as presented in Fig. 7a. Calibration curves for the training set and
testing set are shown in Fig. 7b and Fig. 7c, showing that the radiomics
nomograms are well calibrated in both datasets.

Discussion

In this study, we developed and validated an intuitive radiomics
nomogram based on clinical factors and MRI Rad-scores to distinguish
PA from WT. The radiomics nomogram combined with independent
clinical factors and Rad-scores based on T1WI and FS-T2WI performed
best, with AUC of 0.998 and 0.993 for the training set and testing set,
respectively, indicating that radiomics nomogram can distinguish PA
fromWT. It may provide a feasible and reliable non-invasive method for
the evaluation of parotid tumors.

Between 2017–2021, five Head and Neck Surgery University De-
partments conducted multicenter prospective studies on 1929 patients
in Poland [27]. In regions I-IV, around 90 % of tumors were benign,
mainly PA and WT, while in region V, over 75 % were PA. Region V can
saw a 40 % incidence of malignancy, notably in tumors larger than 4 cm
or with facial nerve paresis. Despite benign appearances, imaging
showed malignancy in 19 % of cases, but 38 % were false negatives for
clinical and radiological signs of cancer.

Although both PA andWT are benign tumors, the biological behavior
and treatment of PA and WT are different [28], meanwhile PA has a
higher malignant tendency and a higher recurrence rate than WT [25].
This study underscores the need for heightened oncological vigilance
and better preoperative preparation, given the clear visibility of parotid

tumors [27].At present, Parotid fine needle aspiration is currently
considered the gold-standard for diagnosis prior to surgical management
[29], increasingly used for pathological analysis of parotid gland tumors
[30]. However, as an invasive test, it may cause facial paralysis and the
high incidence of inadequate diagnostic expectations is worrisome [31].
Therefore, it is very valuable to study the difference between PA andWT
based on clinical information and radiological characteristics before
biopsy.

Our study found that clinical information and radiomics features can
be important factors in distinguishing PA from WT. In this study, we
found that patients with WT were older and smoked more cigarettes
than those with PA. Sex and amount of tumors showed significant dif-
ferences between PA and WT. PA was mostly single tumor, and WT was
not common in women. Our results are also consistent with previous
findings. Feng et al. [25] found clear differences between PA and WT
patients in age, sex, smoking history, and number of tumors. In our
study, multivariate logistic regression analysis showed that age, smok-
ing pack-years, and amount of tumor were independent predictors of PA
and WT, which is consistent with previous studies. Zheng et al. [3] also
considered shape of tumor as an independent clinical predictor in the PA
vs. WT clinical model, which is inconsistent with our study.

Radiomics is a noninvasive method that performs quantitative
analysis of features based on original images, builds models to obtain
more information, and a priori identifies important diagnoses most
likely to be contained within complex tumors in order to assess prog-
nosis and guide individualized treatment [24,32,33]. Radiomics pa-
rameters such as contrast, zone entropy, low gray level emphasis,
kurtosis, and dependence variance, extracted from T1WI and FS-T2WI
sequences in this study, provide profound insights into the behavior of
parotid gland PA and WT. These parameters reveal significant aspects of
tumor heterogeneity, the presence of low-density areas, variations in
tissue density and structure, and image complexity. They not only un-
cover the internal structural diversity and significant differences in tis-
sue characteristics within tumors but also offer a new dimension by
quantifying micro-variations, surpassing traditional qualitative imaging
assessments. High values of zone entropy and contrast emphasize the
complexity and potential malignant transformation of tumors, while
parameters like low gray level emphasis and kurtosis help differentiate
features between PA andWT, providing valuable information for clinical
decision-making, optimizing patient treatment plans, and predicting
tumor behavior. In summary, the integrated analysis of these radiomics
parameters not only deepens our understanding of PA andWT behaviors
but also paves new pathways for personalized patient management
based on precision imaging.

Some previous studies combined radiomics features or Rad-scores
[34-37] reported good predictive value in the differential diagnosis of
parotid tumors. Gabelloni et al. [15] found that radiomic analysis of
parotid tumors using T2-weighted MR Images was able to distinguish PA
fromWT with sensitivity, specificity, and diagnostic accuracy of 0.8695,
0.9062, and 0.8909, respectively. But they did not analyze clinical fea-
tures that might be predictive. Hu et al. [22]. found that a
radiomic-clinical model built by combining radiological features
extracted from T2-weighted images with clinical factors helped distin-
guish PA from WT (training set 0.962, testing set 0.934). However, they
did not include two important independent clinical risk predictors:
smoking and the number of tumors. Based on this, our study selected 10
most important radiomics features from MRI T1WI and T2WI, included
clinical predictors in the model, and quantified smoking in pack-years
terms [38]. Our combined model obtained better AUC results (training
set 0.998, testing set 0.993), which may also explain that the clinical
model also obtained very good AUC results in distinguishing PA and WT
(training set 0.966, testing set 0.954), which was better than radiomics
model. Our results show that clinical predictors combined with radio-
mics extracted from MRI images can further improve the predictive
performance of the model.

The study has some limitations. First, we lack DWI and dynamic

Fig. 6. Decision curve analysis for the three models. The y-axis indicatesthe net
benefit, x-axis indicates threshold probability.

H. Sun et al.



Translational Oncology 49 (2024) 102087

8

images, and these advanced sequences may continue to improve the
performance of the model. Second, the data was collected in a single
center, and no external validation data was used, limiting the robustness
of our model to some extent. Again, our relatively small sample of pa-
tients overall and the different numbers of the two tumors could have
prevented us from finding additional information or introduced bias due
to the high number of one species. We look forward to multi-center and
larger cohort studies and external validation to further confirm our
conclusions in future. We will also add DWI and dynamic sequences in
future work to explore whether these more advanced sequences can help
improve model performance.

In conclusion, the establishment of an analytical model based onMRI
radiomics can effectively classify benign parotid tumors, so this model
can be used as an auxiliary diagnostic tool in clinical practice, especially
for pre-surgical evaluation and decision-making. However, it should be
noted that the radiomics nomogram can play an important comple-
mentary role at this stage, and still cannot replace the pathological
diagnosis.
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