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Abstract 

Somatic str uct ural variations (S Vs) in cancer can shuffle DNA content in the genome, relocate regulatory elements, and alter genome organization. 
Enhancer hijacking occurs when SVs relocate distal enhancers to activ ate proto-oncogenes. Ho w e v er, most enhancer hijacking studies ha v e only 
focused on protein-coding genes. Here, we develop a computational algorithm ‘HYENA’ to identify candidate oncogenes (both protein-coding 
and non-coding) activated by enhancer hijacking based on tumor whole-genome and transcriptome sequencing data. HYENA detects genes 
whose ele v ated e xpression is associated with somatic SVs b y using a rank-based regression model. We sy stematically analyz e 1146 tumors 
across 25 types of adult tumors and identify a total of 108 candidate oncogenes including many non-coding genes. A long non-coding RNA 

TOB1-AS1 is activ ated b y v arious types of SVs in 10% of pancreatic cancers through altered 3-dimensional genome str uct ure. We find that high 
expression of TOB1-AS1 can promote cell in v asion and met ast asis. Our study highlights the contribution of genetic alterations in non-coding 
regions to tumorigenesis and tumor progression. 
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t the mega-base-pair scale, linear DNA is organized into
opologically associating domains (TADs) ( 1 ), and gene ex-
ression is regulated by DNA and protein interactions gov-
rned by 3D genome organization. Enhancer–promoter in-
eractions are mostly confined within TADs ( 2–4 ). Non-
oding somatic single nucleotide variants (SNVs) in pro-
oters and enhancers have been linked to transcriptional

hanges in nearby genes and tumorigenesis ( 5 ). Structural
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variations (SVs), including deletions, duplications, inversions,
and translocations, can dramatically change TAD organiza-
tion and gene regulation ( 6 ) and subsequently contribute to
tumorigenesis. Previously, we discovered that TERT is fre-
quently activated in chromophobe renal cell carcinoma by re-
location of distal enhancers ( 7 ), a mechanism referred to as en-
hancer hijacking (Figure 1 A). In fact, many oncogenes, such as
BCL2 ( 8 ), MYC ( 9 ), TAL1 ( 10 ), MECOM / EVI1 ( 11 ), GFI1
( 12 ), IGF2 ( 13 ), PRDM6 ( 14 ) and CHD4 ( 15 ), can be acti-
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Figure 1. Outline of enhancer hijacking and HYENA algorithm. ( A ) Mechanisms of gene activation by SVs. SVs can activate genes by recruiting distal 
active enhancers (top panel) and by removing TAD boundaries and forming de novo enhancer-promoter interactions (bottom panel). ( B ) HYENA workflow. 
Green and purple bo x es denote input and output files, respectively. Orange boxes denote intermediate steps. Numbers in parentheses represent the 
default parameters of HYENA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vated through this mechanism. These examples demonstrate
that genomic architecture plays an important role in cancer
pathogenesis. However, the vast majority of the known en-
hancer hijacking target oncogenes are protein-coding genes,
and few non-coding genes have been reported to promote
diseases through enhancer hijacking. Here, we refer to non-
coding genes as all genes that are not protein-coding. They
include long non-coding RNAs (lncRNAs), pseudogenes, and
other small RNAs such as microRNAs, small nuclear RNAs
(snRNAs), small nucleolar RNAs (snoRNAs), etc. They are
known to play important roles in many biological processes
( 16 ), and some are known to drive tumorigenesis ( 17 ,18 ). In
this study, we will focus on identifying oncogenes, including
oncogenic non-coding genes, activated by enhancer hijacking.

Several existing algorithms can detect enhancer hijacking
target genes based on patient cohorts, such as CESAM ( 13 )
and PANGEA ( 15 ). These two algorithms implemented lin-
ear regression and elastic net model (also based on linear re-
gression) to associate elevated gene expression with nearby
SVs, respectively. PANGEA also considers the effects of so-
matic SNVs on gene expression. However, a major drawback
of these algorithms is that linear regression is quite sensi-
tive to outliers. Outliers are very common in gene expression
data from cancer samples and can seriously impair the perfor-
mances of these algorithms. In addition, CESAM is optimized 

for microarray data, while PANGEA depends on the annota- 
tion of tissue-specific promoter–enhancer pairs, which are not 
readily available for many tumor types. Cis-X ( 19 ) and Ne- 
oLoopFinder ( 20 ) can detect enhancer hijacking target genes 
based on individual samples. However, these tools have limi- 
tations in detectable genes and input data. Cis-X detects cis - 
activated genes based on allele-specific expression, which re- 
quires the genes to carry heterozygous SNVs. NeoLoopFinder 
takes Hi-C, Chromatin Interaction Analysis with Paired-End 

Tag (ChIA-PET), or similar data measuring chromatin inter- 
actions as input, which remain very limited. Furthermore,
the identification of recurrent mutational events that result in 

oncogenic activation requires large patient cohorts. Therefore,
tools that use whole-genome and transcriptome sequencing 
data, which are available at much larger sample sizes, would 

be more useful in identifying SV-driven oncogene activation.
Finally, no non-coding oncogenes have been reported as en- 
hancer hijacking targets by the above algorithms. A recent 
study on SVs altering gene expression in Pan-Cancer Analysis 
of Whole Genomes (PCAWG) samples ( 21 ) only considered 

protein-coding genes but not non-coding genes. 
Here, we developed Hi jacking of En hancer A ctivity 

(HYENA) using normal-score regression and permutation test 
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a null distribution. Then the P values for SV status from 
o detect candidate enhancer hijacking genes (both protein-
oding and non-coding genes) based on tumor whole-genome
nd transcriptome sequencing data from patient cohorts.
mong the 108 putative oncogenes detected by HYENA, we

tudied the oncogenic functions of a lncRNA, TOB1-AS1 , and
emonstrated that it is a regulator of cancer cell invasion in
itro and tumor metastasis in vivo . 

aterials and methods 

atasets 

his study used data generated by the Pan-Cancer Analy-
is of Whole Genomes (PCAWG). We limited our study to a
otal of 1146 tumor samples for which both whole-genome
equencing (WGS) and RNA-Seq data were available. The
ata set was composed of cancers from 25 tumor types in-
luding 23 bladder urothelial cancers (BLCA), 88 breast can-
ers (BRCA), 20 cervical squamous cell carcinomas (CESC),
8 chronic lymphocytic leukemias (CLLE), 51 colorectal can-
ers (COAD / READ), 20 glioblastoma multiforme (GBM), 42
ead and neck squamous cell carcinomas (HNSC), 43 chro-
ophobe renal cell carcinomas (KICH), 37 renal clear cell car-

inomas from the United States (KIRC), 31 renal papillary cell
arcinomas (KIRP), 18 low-grade gliomas (LGG), 51 liver can-
ers from United States (LIHC), 67 liver cancers from Japan
LIRI), 37 lung adenocarcinomas (LUAD), 47 lung squamous
ell carcinomas (LUSC), 95 malignant lymphomas (MALY),
0 ovarian cancers (OV), 74 pancreatic cancers (PACA), 19
rostate adenocarcinomas (PRAD), 49 renal clear cell carci-
omas from European Union / France (RECA), 34 sarcomas
SARC), 34 skin cutaneous melanomas (SKCM), 29 stomach
denocarcinomas (STAD), 47 thyroid cancers (THCA) and
2 uterine corpus endometrial carcinomas (UCEC). More de-
ailed information on the sample distribution and annotation
an be found in Supplementary Table S1 . 

WGS and RNA-Seq data analysis of tumor and normal
amples were performed by the PCAWG consortium as pre-
iously described ( 21 ). Somatic and germline SNVs, somatic
opy number variations (CNVs), SVs and tumor purity were
etected by multiple algorithms and consensus calls were
ade. Genome coordinates were based on the hg19 reference

enome and GENCODE v19 was used for gene annotation.
ene expression was quantified by HT-Seq (version 0.6.1p1)
s fragments per kilobase of million mapped (FPKM). Clin-
cal data such as donor age and sex were downloaded from
he PCAWG data portal ( https:// dcc.icgc.org/ pcawg ). TOB1
nd TOB1-AS1 expression data in CCLE pancreatic cancer
ell lines were downloaded from DepMap Public 22Q2 ver-
ion ( https:// depmap.org/ portal/ download/ all/ ). Gene expres-
ion data of the Cancer Genome Atlas (TCGA) PAAD co-
ort (TCGA.P AAD .sampleMap / HiSeqV2_P ANCAN) and In-
ernational Cancer Genome Consortium (ICGC) PAC A-C A
ohort for 45 samples of which ‘analysis-id’ were labeled
s ‘RNA’ were downloaded from Xena Data Hubs ( https:
/ xenabrowser.net/ datapages/ ) and ICGC data portal ( https:
/ dcc.icgc.org/ projects/ PAC A-C A ) respectively. 

Significant expression quantitative trait loci (eQTL)-gene
airs (v8) were downloaded from the Genotype-Tissue Ex-
ression (GTEx) data portal ( https:// gtexportal.org/ home/
atasets ). Only those eQTLs that had a hg19 liftover variant
D were included in the analysis and hg38 variants without
orresponding hg19 annotation were discarded. 
The raw sequencing data for Hi-C and A T AC-Seq were
available through NCBI Sequence Read Archive (SRA) with
accession number PRJNA1036282. The raw sequencing data
for mouse xenograft tumor RNA-Seq were available through
NCBI SRA with accession number PRJNA1011356. 

HYENA algorithm 

First, small tandem duplications ( < 10 kb) were discarded
since they are unlikely to produce new promoter–enhancer
interactions. The remaining SVs were mapped to the flank-
ing regions (500 kb upstream and downstream of transcrip-
tion start sites [TSSs]) of annotated genes. SVs that fall en-
tirely within a gene body were also discarded. The SV status
of each gene was defined by the presence or absence of SV
breakpoints within the gene or its flanking regions for each
tumor. The binary variable SV status was used in the normal-
score regression model below. Only genes carrying SVs in at
least 5% of samples were tested. For each gene, samples with
that gene highly amplified ( > 10 copies) were removed from
the regression model. 

Gene expression normal scores 

Gene expression quantifications (fragments per kilobase per
million [FPKM]) were quantile normalized (FPKM-QN) using
the quantile.normalize() function from the preprocessCore R
package to enhance cross-sample comparison. For each gene,
samples were ranked based on their expression values, the
ranks were mapped to a standard normal distribution, and the
corresponding z scores were gene expression normal scores.
Normal-score conversion forced the expression data into a
Gaussian distribution, allowing for parametric comparisons
between samples. 

Normal-score regression 

A generalized linear model was used to test associations be-
tween gene expression normal scores and SV status and con-
trol for confounding variables such as gene copy number, tu-
mor sample purity, donor age, and sex. To capture unobserved
variations in gene expression, the first n principal components
(PCs) of the expression data were also included in the regres-
sion model, where n was determined as 10% of the sample
size of the cohort and up to 20 if the sample size was > 200.
The regression model was as shown below: 

Expression _ normal _ score ∼ sv _ status + copy _ number 

+ purity + age + sex + P C 1 + P C 2 + ... + P C n 

For each gene, all PCs were tested for associations with the
SV status of that gene, and those PCs that significantly corre-
late (Mann–Whitney test, P < 0.05) with SV status were not
used in regression. A similar strategy was used to detect eQTLs
in normal tissues ( 22 ). 

Calculating empirical P values and model selection 

Gene expression data were permuted 1000 times by randomly
shuffling expression values within the cohort. For tumor types
with > 10 000 genes to test ( Supplementary Table S1 ), only
100 permutations were performed to reduce run time. The
normal-score regression was performed in the same way on
observed gene expression and permuted expression. P val-
ues for SV status from permuted expression were pooled as

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://dcc.icgc.org/pcawg
https://depmap.org/portal/download/all/
https://xenabrowser.net/datapages/
https://dcc.icgc.org/projects/PACA-CA
https://gtexportal.org/home/datasets
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
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observed expression and the P -value null distribution were
used to calculate empirical P values. One-sided P values were
used since we were only interested in elevated gene expres-
sion. False discovery rates (FDRs) were calculated using the
Benjamini–Hochberg procedure. Genes with FDR < 0.1 were
considered candidate genes. For example, in MALY, there
were 1863 genes reaching 5% SV frequency and 1863 P values
were obtained in each permutation. After 1000 permutations,
1 863 000 P values were generated and should represent the
null distribution very well. Empirical P values were calculated
using these 1 863 000 permuted P values. 

The above empirical P value calculation and candidate gene
detection were performed iteratively with no PCs and up to
n PCs in the regression model. When different numbers of
PCs were included in the model, the numbers of candidate
genes varied. The regression model with the lowest number
of PCs reaching 80% of the maximum number of candidate
genes in all regression models tested was selected as the fi-
nal model to avoid over fitting. For example, the sample size
for PCAWG UCEC was 42; therefore, we tested from 0 to 4
PCs. Among these, the model including 4 PCs gave the highest
number ( 3 ) of candidate genes. Therefore, the model including
4 PCs with 4 candidate genes was selected as the final model
( Supplementary Table S2 ). 

In our normal-score regression, we essentially attempt to
model variations in gene expression. Including confounding
factors will improve performance. Tumor purity, gene copy
number, patient age and sex are factors known to affect gene
expression. Therefore, they were included in the regression
model. Unobserved variations may include tumor subtype, tu-
mor stage, patient ethnicity, smoking status, alcohol consump-
tion, and other unknown factors that may alter gene expres-
sion. Since HYENA was designed for wide applications, we
did not require users to provide information on tumor sub-
type, tumor stage, patient ethnicity, smoking status, alcohol
consumption, etc. Principle component analysis is a linear de-
composition of gene expression variations. Therefore, includ-
ing PCs in a regression model was suitable for removing sys-
tematic variations and could better model the effects of SV sta-
tus. However, some enhancer hijacking target genes are master
transcription factors, such as MYC , and have a profound im-
pact on the gene expression of multiple pathways. Hence, it
is possible that some PCs capture the activities of transcrip-
tion factors. If these transcription factors were activated by
somatic SVs, the PCs would be correlated with SV status. In-
cluding these PCs would diminish our ability to detect the ef-
fects of SV status. Therefore, we excluded these PCs from the
regression model. 

Testing eQTL-SV associations 

Known germline eQTLs from the matching tissues were ob-
tained from GTEx ( Supplementary Table S3 ). The associa-
tions between germline genotypes of eQTLs and SV status
of the candidate genes in the PCAWG cohort were tested
using a Chi-squared test. Genes with significant correlations
( P < 0.05) between their SV status and at least one eQTL
were removed. The remaining genes were our final candidate
enhancer-hijacking target genes. 

Benchmarking 

Known enhancer hijacking target genes in PCAWG tumor
types were selected to test the sensitivity of HYENA, CE-
SAM and PANGEA. The genes included MYC in malig- 
nant lymphoma, BCL2 in malignant lymphoma, CCNE1 

in stomach / gastric adenocarcinoma, TERT in chromo- 
phobe renal carcinoma, IGF2 in colorectal cancer, IGF2 in 

stomach / gastric adenocarcinoma, IGF2BP3 in thyroid can- 
cer, and IRS4 in lung squamous cell carcinoma. The same 
SVs, CNVs, and SNVs were used as input for all three al- 
gorithms. For CESAM and P ANGEA, upper -quantile normal- 
ized fragments per kilobase per million (FPKM-UQ) were nor- 
malized by tumor purity and gene copy number, and then 

used as gene expression inputs. CESAM was run using de- 
fault parameters, and FDR of 0.1 was used to select significant 
genes. PANGEA requires predicted enhancer-promoter (EP) 
interactions based on ChIP-Seq and RNA-Seq data. The EP 

interactions were downloaded from EnhancerAtlas 2.0 ( http: 
// www.enhanceratlas.org/ ) ( Supplementary Table S4 ). EP in- 
teractions from multiple cell lines of the same type were 
merged. PANGEA was run with default parameters as well 
and significant genes were provided by PANGEA (multiple 
testing adjusted P value < 0.05). To test HYENA, CESAM,
and PANGEA for false positives, 20 random gene expression 

datasets for malignant lymphoma and breast cancer were gen- 
erated by randomly shuffling sample IDs in gene expression 

data. HYENA, CESAM and PANGEA were run with random 

expressions in the same way as above. 

Predicting 3D genome organization 

A 1 Mb sequence was extracted from the reference genome 
centered at each somatic SV breakpoint and was used as in- 
put for Akita ( 23 ) to predict the 3D genome organization. Two 

500 kb sequences were merged according to the SV orientation 

to construct the sequence of the rearranged genome fragments.
Akita was used to predict the genome organization for the 
rearranged sequence. High-resolution Micro-C data obtained 

from human H1-ESCs and HFF cells ( 24 ) were used to facili- 
tate TAD annotation together with predicted genome organi- 
zation. H3K27Ac and CCCTC-binding factor (CTCF) ChIP- 
Seq data from the PANC-1 cell line were downloaded from the 
ENCODE data portal ( https:// www.encodeproject.org/ ). SV 

breakpoints were provided to Orca ( 25 ) to predict 3D genome 
structures through its web interface ( https:// orca.zhoulab.io/ ).

In situ Hi-C and A T A C-S eq 

Ten million cells of Panc 10.05, PANC-1, PATU-8988S and 

PATU-8988T cell lines were collected to construct Hi-C li- 
braries ( 26 ). The Hi-C libraries were sequenced on Illumina 
NovaSeq X Plus platform with 1% phix. About 2 billion reads 
were obtained from Panc 10.05, PATU-8988S and PATU- 
8988T, and 1 billion reads were obtained from PANC-1. The 
paired-end reads were aligned to chromosomes 1–22, X, Y 

and M by bwa-mem. SVs were identified by EagleC ( 27 ) 
at 5, 10 and 50 kb resolutions. The non-redundant SVs in 

Supplementary Table S5 were combined for the three reso- 
lutions. Chromatin loops were identified by NeoLoopFinder 
( 20 ). A probability threshold of 0.95 was used, and default 
values were used for all other parameters. Fifty thousand cells 
of Panc 10.05, PATU-8988S and PATU-8988T cell lines were 
harvested to construct A T AC-Seq libraries ( 28 ). The libraries 
were sequenced using Illumina NovaSeq. About 60 million 

reads were generated from each library. The paired-end reads 
were aligned to the reference genome by hisat2. Hi-C and 

A T AC-Seq read coverages were generated by deepTools with 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
http://www.enhanceratlas.org/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://www.encodeproject.org/
https://orca.zhoulab.io/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
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0 bp bin-size, RPGC normalization and an effective genome
ize of 2 864 785 220. 

ell lines 

EK293T, PANC-1 and PATU-8988T cells were obtained
rom Dr. Alexander Muir (University of Chicago). Panc
0.05 was purchased from ATCC (American Type Culture
ollection, USA) ( https:// www.atcc.org/ products/ crl-2547 )
nd PATU-8988S was purchased from DSMZ ( https://www.
smz.de/ collection/ catalogue/ details/ culture/ ACC-204 ). All
ell lines were cultured at 37 

◦C / 5% CO 2 . HEK293T cells
nd PANC-1 cells were cultured in Dulbecco’s modified
agle’s medium (DMEM) (Gibco, 21041025) contain-

ng 10% fetal bovine serum (FBS) (Gibco, A4766), and
anc 10.05 cells were cultured in RPMI-1640 medium
Gibco, 11875093) containing 10% FBS, as per ATCC
nstructions ( https:// www.atcc.org/ products/ crl-3216 ,
ttps:// www.atcc.org/ products/ crl-1469 , https:// www.atcc.
rg/ products/ crl-2547 ). P ATU-8988T and P ATU-8988S
ells were cultured with DMEM containing 5% FBS, 5%
orse serum (Gibco, 26050088) and 2 mM l -glutamine as
ecommended by DSMZ (Deutsche Sammlung von Mikroor-
anismen and Zellkulturen, Germany) ( https://www.dsmz.
e/ collection/ catalogue/ details/ culture/ ACC-162 ). All cell
ines have been regularly monitored and tested negative
or mycoplasma using a mycoplasma detection kit (Lonza,
T07-218). 

 OB1 -AS1 and luciferase overexpression 

 1351 bp TOB1-AS1 complementary DNA (cDNA)
ENST00000416263.3) was synthesized by GenScript (New
ersey, USA) and subcloned into the lentiviral pCDH-CMV-

CS-EF1-Puro plasmid (SBI, CD510B-1). The cDNA se-
uence in the plasmid was verified by Sanger sequencing at
niversity of Chicago Medicine Comprehensive Cancer Cen-

er core facility. The TOB1-AS1 overexpression plasmid was
mplified by transforming Stellar™ Competent Cells (Takara,
36763) with the plasmid as per instructions and isolated
y QIAGEN HiSpeed Plasmid Midi Kit (QIAGEN, 12643).
ucOS-Blast vector was obtained from Dr Yuxuan Phoenix
iao (University of Chicago), cloned and amplified as de-

cribed above. 
HEK293T cells were plated in T-25 flasks and grown to

5% confluence prior to transfection. For each T-25 flask,
40 μl Opti-MEM (Gibco, 31985070), 1.6 μg pCMV -VSV -
, 2.56 μg pMDLg / pRRE, 2.56 μg pRSV -Rev , 3.4 μg TOB1-
S1 overexpression vector and 22.8 μl TransIT-LT1 Trans-

ection Reagent (Mirus, MIR 2306) were mixed and incu-
ated at room temperature for 30 min, then added to the
lated HEK293T cells with fresh medium. The luciferase vec-
or was packaged into lentivirus with the same method. Upon
8 hours of incubation, lentiviral supernatant was collected,
ltered through 0.45- μmpolyvinylidene difluoride filter (Mil-
ipore), and mixed with 8 μg / ml polybrene. PANC-1 or PATU-
988T cells at 60% confluence were transduced with the
entiviral supernatant for 48 h followed by three rounds of
ntibiotic selection with 4 μg / ml puromycin for TOB1-AS1
verexpression and 10 μg / ml blasticidin for the luciferase
xpression. TOB1-AS1 expression was validated by quanti-
ative reverse transcription polymerase chain reaction (qRT-
CR), and luciferase expression was validated by in vitro bi-
luminescence imaging in black wall 96-well plates (Corning,
3603). D-luciferin potassium salt (Goldbio, LUCK-100) solu-
tion with 0, 1.25, 2.5, 5 and 10 μl 15 mg / ml was added into
the wells as serial dilutions, and imaging was obtained after
5 min. Finally, TOB1-AS1 overexpression or empty pCDH
transduced cell lines with luciferase co-expression were built
for both PATU-8988T and PANC-1 cells. 

T OB1 -AS1 transient knock-down using antisense 

oligonucleotides (ASOs) 

Three Affinity Plus® ASOs were synthesized by Integrated
DNA Technologies (IDT), with two targeting TOB1-AS1 and
one non-targeting negative control. The ASO sequences were: 

• Non-targeting ASO (NC): 5 

′ -GGCT ACT ACGCCGTCA-
3 

′ 

• TOB1-AS1 ASO1: 5 

′ -GCCGA TTTGGT AGCT A-3 

′ 

• TOB1-AS1 ASO2: 5 

′ -CTGCGGTTTAACTTCC-3 

′ 

The ASOs were transfected into PATU-8988S and
Panc 10.05 cells with Lipofecatmine™ 2000 (Invitrogen,
11668019) using reverse-transfection method according
to IDT protocol ( https:// www.idtdna.com/ pages/ products/
functional- genomics/antisense- oligos ) with a final ASO con-
centration of 9 nM. Cells were transfected in 6-well plates
and incubated for 48 h to reach 60% confluence before RNA
extraction or Transwell assay. 

RNA isolation and qRT-PCR 

Cells were plated in 6-well plates and allowed to reach 80%
confluence, or transfected by ASOs as described above, prior
to RNA extraction. After cells lysis in 300 μl / well TRY-
zol™ (Invitrogen, 15596026), RNA samples were prepared
following the Direct-zol RNA Miniprep kit manual (RPI,
ZR2052). Reverse transcription was performed using Applied
Biosystems High-Capacity cDNA Reverse Transcription Kit
(43-688-14) following manufacturer’s instructions. Quantita-
tive PCR (qPCR) was conducted on StepOnePlus Real-Time
PCR System (Applied Biosystems, 4376600), using PowerUp
SYBR Green Master Mix (A25742) following the manufac-
turer’s instructions with a primer concentration of 300 nM in
10 μl reaction systems. Primers were ordered from Integrated
DNA Technologies. Primer sequences used in this study are as
follows: 

• TOB1 forward: 5 

′ -GGCACTGGT A TCCTG AAA
AGCC-3 

′ 

• TOB1 reverse: 5 

′ -GTGGC AGATTGCC ACGAAC ATC-
3 

′ 

• TOB1-AS1 forward: 5 

′ -GGA GTGGTCA GGTGA CTGAT
3 

′ 

• TOB1-AS1 reverse: 5 

′ -ATTCC ACTCCTGTTTGC AACT
3 

′ 

• GAPDH forward: 5 

′ -A CCA CA GTCCA TGCCA TCAC-
3 

′ 

• GAPDH reverse: 5 

′ -TCC ACC ACCCTGTTGCTGTA-3 

′ 

Relative expression levels for TOB1-AS1 and TOB1 were
calculated by the 2 

–��CT method based on GAPDH expres-
sion as an endogenous control. 

Transwell assay for cell invasion in vitro 

Transparent PET membrane culture inserts of 24-well plate
(Falcon, 353097) were coated with Cultrex Reduced Growth
Factor Basement Membrane Extract (BME) (R&D Systems,

https://www.atcc.org/products/crl-2547
https://www.dsmz.de/collection/catalogue/details/culture/ACC-204
https://www.atcc.org/products/crl-3216
https://www.atcc.org/products/crl-1469
https://www.atcc.org/products/crl-2547
https://www.dsmz.de/collection/catalogue/details/culture/ACC-162
https://www.idtdna.com/pages/products/functional-genomics/antisense-oligos
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3533-010-02) at 50 μg per membrane (200 μl of 0.25 mg / ml
BME stock per membrane) at 37 

◦C for an hour. A total of
100 000 PANC-1 cells / well, 50 000 PATU-8988T cells / well,
50 000 Panc 10.05 cells / well or 50 000 PATU-8988S cells
were resuspended in serum-free, phenol-red free DMEM
medium and seeded into the coated inserts. Phenol-red free
DMEM of 500 μl (Gibco, A1443001) with 10% FBS was
added to the bottom of the wells and the cells were allowed
to invade for 16 h. Additional wells with 500 μl serum-free,
phenol-red free DMEM medium without FBS in the bottom
chamber were seeded with the same number of cells as indi-
cated above as a negative control. At the end of the assay, the
membranes were stained with 500 μl 4 μg / ml Calcein AM
(CaAM) (Corning, 354216) for 1 h at 37 

◦C. The cells that
failed to invade were removed from the top chamber with
a cotton swab and all inserts were transferred into 1 × Cell
Dissociation Solution (Bio-Techne, 3455-05-03) and shaken
at 150 rpm for an hour at 37 

◦C. Finally, CaAM signal from
the invaded cells was measured by a plate reader (Perkin Elmer
Victor X3) at 465 / 535 nm. 

Tumor metastasis in vivo 

All animal experiments for this study were approved by the
University of Chicago Institutional Animal Care and Use
Committee (IACUC) prior to execution. Male NOD scid
gamma (NSG) mice were ordered from the Jackson Labo-
ratory (strain#005557). For tail vein inoculation, mice were
injected intravenously through the tail vein with luciferase-
expressing at 400 000 cells / mouse for PANC-1 cells in cold
phosphate buffered saline (PBS) (Gibco, 10010-023). For or-
thotopic inoculation, mice were injected with 200 000 PANC-
1 cells / mouse into the pancreas under general anesthesia.
Cells were resuspended in cold PBS containing 5.6 mg / ml
Cultrex Reduced Growth Factor BME (R&D Systems, 3533-
010-02). Primary tumor and metastatic tumor burdens were
measured weekly for 4 and 6 weeks for tail vein injec-
tion models and orthotopic models, respectively, via biolumi-
nescence imaging using Xenogen IVIS 200 Imaging System
(PerkinElmer) at the University of Chicago Integrated Small
Animal Imaging Research Resource (iSAIRR) Facility. Each
mouse was weighed and injected intra-peritoneally with d -
luciferin solution at a concentration of 150 μg / g of body
weight 14 min prior to image scanning ventral side up. 

Ex vivo IVIS imaging 

Ex vivo imaging was done for the PANC-1 orthotopic injec-
tion mice after 8 weeks of orthotopic inoculation. Mice were
injected intra-peritoneally with d -luciferin solution at a con-
centration of 150 μg / g of body weight immediately before
euthanasia. Immediately after necropsy, mice were dissected,
and tissues of interest (primary tumors, livers and spleens)
were placed into individual wells of 6-well plates covered with
300 μg / ml d -luciferin. Tissues were imaged using Xenogen
IVIS 200 Imaging System (PerkinElmer) and analysis was per-
formed (Living Image Software, PerkinElmer) maintaining the
regions of interest (ROIs) over the tissues as a constant size. 

Tumor RNA sequencing and gene expression 

analysis 

RNA was isolated from mouse subcutaneous tumors (six
TOB1-AS1 overexpression and six control mice) after 6 weeks
of PANC-1 cell subcutaneous injection using Direct-zol RNA
Miniprep kit (RPI, ZR2052). The quality and quantity of the 
RNA were assessed using Qubit. Sequencing was performed 

using the Illumina NovaSeq 6000. About 40 million reads 
were sequenced per sample. The pair-end reads were aligned 

to mouse genome (mm10) and human genome (hg19) with 

hisat2, and the reads mapped to mouse or human genomes 
were disambiguated using AstraZeneca-NGS disambiguate 
package. Gene counts were generated with htseq-count. Dif- 
ferential gene expression was analyzed using DESeq2. Differ- 
entially expressed genes were defined as genes with an FDR 

< 0.1 and a fold change > 1.5. 

Results 

HYENA workflow 

Conceptually, the SVs leading to elevated gene expression 

are eQTLs. The variants are SVs instead of commonly used 

germline single nucleotide polymorphisms (SNPs) in eQTL 

analysis. With somatic SVs and gene expression measured 

from the same tumors through WGS and RNA-Seq, we can 

identify enhancer hijacking target genes by eQTL analysis.
However, the complexities of cancer and SVs pose many 
challenges. For instance, there is tremendous inter-tumor 
heterogeneity—no two tumors are identical at the molecular 
level. In addition, there is substantial intra-tumor heterogene- 
ity as tumor tissues are always mixtures of tumor, stromal, and 

immune cells. Moreover, genome instability is a hallmark of 
cancer, and gene dosages are frequently altered ( 29 ). Further- 
more, gene expression networks in cancer are widely rewired 

( 30 ), and outliers of gene expression are common. 
Here, we developed an algorithm HYENA to overcome the 

challenges described above (see more details in the Methods 
Section). We used a gene-centric approach to search for el- 
evated expression of genes correlated with the presence of 
SVs within 500 kb of transcription start sites (Figure 1 B). Al- 
though promoter–enhancer interaction may occur as far as 
several mega-bases, mega-base-level long-range interactions 
are extremely rare. In addition, although duplicated enhancers 
can upregulate genes ( 31 ,32 ), we do not consider these as en- 
hancer hijacking events since no neo-promoter–enhancer in- 
teractions are established. However, small deletions can re- 
move TAD boundaries or repressive elements and lead to neo- 
promoter–enhancer interactions (Figure 1 A). Therefore, small 
tandem duplications were discarded, and small deletions were 
retained. For each gene, we annotated SV status (presence 
or absence of nearby SVs) for all samples. Samples in which 

the testing genes were highly amplified were discarded since 
many of these genes are amplified by circular extrachromoso- 
mal DNA (ecDNA) ( 33 ), and ecDNA can promote accessible 
chromatin ( 34 ) with enhancer rewiring ( 35 ). Only genes with 

nearby SVs in at least 5% of tumors were further considered.
In contrast to CESAM and PANGEA, we did not use linear 
regression to model the relationships between SV status and 

gene expression because linear regression is sensitive to out- 
liers and many false positive associations would be detected 

( 36 ). Instead, we used a rank-based normal-score regression 

approach. After quantile normalization of gene expression 

for both protein-coding and non-coding genes, we ranked 

the genes based on quantile-normalized expression and trans- 
formed the ranks to the quantiles of the standard normal dis- 
tribution. We used the z scores (normal scores) of the quantiles 
as dependent variables in regression. In the normal-score re- 
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ression model, tumor purity, copy number of the tested gene,
atient age, and sex were included as covariates since these
actors confound gene expression. We also included gene ex-
ression principal components (PCs) that were not correlated
ith SV status to model unexplained variations in gene ex-
ression. To deduce a better null distribution, we permuted
he gene expression 100–1000 times ( Supplementary Table S1 ,
olumn E) and ran the same regression models. All P values
rom the permutations were pooled together and used as the
ull distribution to calculate empirical P values. Then, multi-
le testing corrections were performed on one-sided P values
ince we are only interested in elevated gene expression un-
er the influence of nearby SVs. Finally, genes were discarded
f their elevated expression could be explained by germline
QTLs. The remaining genes were candidate enhancer hijack-
ng target genes. 

enchmarking performances 

here is no gold standard available to comprehensively evalu-
te the performance of HYENA. We compared HYENA’s per-
ormance to two other algorithms—CESAM and PANGEA.
ll three algorithms were run on the same somatic SVs and
ene expression data from six types of adult tumors profiled
y the PCAWG ( Supplementary Table S1 ): malignant lym-
homa (MALY), stomach / gastric adenocarcinoma (STAD),
hromophobe renal cell carcinoma (KICH), colorectal cancer
COAD / READ), thyroid cancer (THCA), and lung squamous
ell carcinoma (LUSC) (21), because known enhancer hijack-
ng genes have been reported in these tumor types (see details
elow). Note that PANGEA depends on promoter–enhancer
nteractions predicted from cell lines, and such data were not
vailable for thyroid tissue. Therefore, thyroid cancer data
ere not analyzed by PANGEA. To compare the performance
f HYENA to the other algorithms, we used the following
hree strategies. 

First, we used eight known enhancer hijacking target genes
ncluding MYC ( 9 ), BCL2 ( 8 ), CCNE1 ( 37 ), TERT ( 7 ), IGF2
 13 ,37 ) (in two tumor types), IGF2BP3 ( 38 ) and IRS4 ( 13 )
o test the sensitivities. The eight positive control genes were
elected based on our literature review for genes that are
oth well-known as oncogenes and that are activated by dis-
al enhancers due to restructured 3D genome organization.
ut of the eight genes, HYENA detected four ( MYC , BCL2 ,
ERT and IGF2BP3 ) (Figure 2 A and Supplementary Figure 
1 A), CESAM detected three ( MYC , BCL2 and TERT ), and
ANGEA did not detect any (Figure 2 A). In the five tumor
ypes analyzed by all three algorithms, HYENA identified a
otal of 25 candidate genes, CESAM identified 19, whereas
ANGEA identified 255 genes (Figure 2 B, Supplementary 
ables S6 –S8 ). Six genes were detected by both HYENA and
ESAM, while PANGEA had little overlap with the other
lgorithms (Figure 2 B). The ability of the algorithms to de-
ect known target genes seems to be sensitive to sample size.
oth IGF2 and IRS4 were initially discovered by CESAM
s enhancer hijacking target genes using CNV breakpoints
rofiled by microarray with much larger sample sizes (378
olorectal cancers and 497 lung squamous cell carcinomas)
 13 ). In the PCAWG, there were far fewer samples with both

GS and RNA-Seq data available (51 colorectal cancers and
7 lung squamous cell carcinomas). Neither IGF2 nor IRS4
as detected by any algorithms. IGF2 reached the 5% SV

requency cutoff required by HYENA, however its FDR did
not reach the significance cutoff ( Supplementary Figure S1 B).
In stomach / gastric adenocarcinoma, IGF2 and CCNE1 were
identified as enhancer hijacking target genes in a cohort of 208
samples ( 37 ). Neither of these genes was detected by any al-
gorithms because there were only 29 stomach tumors in the
PCAWG. Therefore, known target genes missed by HYENA
were likely due to the small sample size. In summary, HYENA
had the best sensitivity of the three algorithms. 

Second, we also expect immunoglobulin genes to be de-
tected as enhancer hijacking candidates in B-cell lymphoma
due to V(D)J recombination. In B cells, V(D)J recombina-
tion occurs to join different variable (V), joining (J) and
constant (C) segments to produce antibodies with a wide
range of antigen recognition ability. Therefore, certain seg-
ments have elevated expression and the recombination events
can be detected as somatic SVs. Of the 16 genes detected by
HYENA in malignant lymphoma (B-cell derived Burkitt lym-
phomas ( 39 )), there were two immunoglobulin light chain
genes from the lambda cluster ( IGLC7 and IGLJ7 ) and an
immunoglobulin-like gene IGSF3 ( Supplementary Table S6 ).
CESAM detected 11 genes, one of which was an immunoglob-
ulin gene ( IGLC7 ) ( Supplementary Table S7 ). In contrast,
PANGEA detected 30 candidate genes, but none were im-
munoglobulin genes ( Supplementary Table S8 ). These data
further support HYENA as the algorithm with the best sensi-
tivity among the three algorithms. 

Third, to evaluate the specificity of the algorithms, we ran
each algorithm on 20 datasets generated by randomly shuf-
fling gene expression data in both MALY and breast can-
cer (BRCA). Since these gene expression data were random,
there should be no associations between SVs and gene expres-
sion, and all genes detected should be false positives. In ma-
lignant lymphoma with observed gene expression, HYENA,
CESAM, and PANGEA detected 16, 11 and 30 candidate
genes respectively ( Supplementary Tables S6 , S7 , and S8 ). In
the 20 random gene expression datasets for malignant lym-
phoma, HYENA detected an average of 0.55 genes per dataset
(Figure 2 C), and CESAM detected an average of 0.5 genes
per dataset, whereas PANGEA detected an average of 40
genes per dataset ( Supplementary Figure S2 ). In breast can-
cer with observed gene expression, HYENA, CESAM and
PANGEA detected 7, 9 and 2309 candidate genes, respec-
tively ( Supplementary Tables S6 , S7 , and Supplementary 
Figure S8 ). In 20 random gene expression datasets for breast
cancer, HYENA, CESAM, and PANGEA detected 0.45, 0.9,
and 2296 genes on average (Figure 2 C and Supplementary 
Figure S2 ). In both tumor types, the numbers of false pos-
itives called by PANGEA in random datasets were compa-
rable to the numbers of genes detected with observed gene
expression ( Supplementary Figure S2 ). In summary, HYENA
predicted the least number of false positives among the three
algorithms. 

Overall, HYENA has superior sensitivity and specificity in
the detection of enhancer hijacking genes. Although the per-
formances of CESAM were similar to HYENA, the genes de-
tected by HYENA and CESAM in the six benchmarking tu-
mor types had little overlap (Figure 2 B). We performed exten-
sive validation on one gene detected only by HYENA. 

Enhancer hijacking candidate genes in the PCAWG 

We used HYENA to analyze a total of 1146 tumors
across 25 tumor types in the PCAWG with both WGS and

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
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Figure 2. Benchmarking HYENA. ( A ) Comparison of HYENA, CESAM, and PANGEA in detecting oncogenes known to be activated by enhancer hijacking 
in six tumor types from the PCAWG cohort. ( B ) UPSET plot demonstrating candidate genes identified and shared among the three tools in five tumor 
types of PCAWG. The numbers of candidate genes predicted by three algorithms are shown on the bottom left (19, 25 and 255). On the bottom right, 
individual dots denote genes detected by one tool, and dots connected by lines denote genes detected by multiple tools. The numbers of genes 
detected are shown above the dots and lines. For example, the dot immediately on the right of ‘PANGEA’ shows there are 254 candidate genes 
detected only by PANGEA but not CESAM and HYENA. The left most line connecting two dots indicates that there are six genes detected by both 
CESAM and HYENA but not by PANGEA. ( C ) Number of genes detected by HYENA in two PCAWG tumor types using observed gene expression and 
randomiz ed e xpression. Genes detected in random e xpression datasets are f alse positiv es. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RNA-Seq data. When each tumor type was analyzed indi-
vidually, we identified 108 candidate enhancer hijacking tar-
get genes in total ( Supplementary Tables S1 and S6 ), four of
which were known enhancer hijacking targets (Figure 3 A).
TERT was detected in kidney cancers both from the US co-
hort (KICH) and the European cohort (RECA) which fur-
ther demonstrated the reproducibility of HYENA. All other
candidate genes were only detected in one tumor type, high-
lighting the high tumor type specificity of the findings. The
number of genes detected in each tumor type differed dra-
matically (Figure 3 B) and was not associated with the level of
genome instability ( Supplementary Figure S3 ). No genes were
detected in bladder cancer (BLCA), cervical cancer (CESC),
glioblastoma multiforme (GBM) or low-grade glioma (LGG),
probably due to their small sample sizes. Pancreatic cancer
(PACA) had the greatest number of candidate genes. There
were two liver cancer cohorts with comparable sample sizes—
LIHC from the US and LIRI from Japan. Interestingly, a to-
tal of 14 genes were identified in the US cohort whereas no
genes were found in the Japanese cohort. One possible rea-
son for such a drastic difference could be that hepatitis B
virus (HBV) infection is more common in liver cancer in Japan
( 40 ), and virus integration into the tumor genome can result in
oncogene activation ( 41 ). In Chronic Lymphocytic Leukemia
(CLLE), a total of six genes were detected, and three were im-
munoglobulin genes from both the lambda and kappa clusters
( Supplementary Table S6 ). Given that sample size and genome
instability can only explain a small fraction of the variations
of enhancer hijacking target genes detected in different tumor
types, the landscape of enhancer hijacking in cancer seems
to be mainly driven by the underlying disease biology. The 
candidate protein-coding genes were enriched for oncogenes 
annotated by Cancer Gene Census ( 42 ) and OncoVar ( 43 ) 
( Supplementary Table S6 , P = 0.001 and 0.039 respectively 
by one-sided Fisher’s exact test). Intriguingly, out of the 108 

candidate genes, 54 (50%) were non-coding genes including 
lncRNAs and microRNAs (Figure 3 B). 

Neo-TADs formed through somatic SVs 

Next, we focused on the most frequently altered candi- 
date non-coding enhancer-hijacking target gene in pancre- 
atic cancer: TOB1-AS1 (Figure 4 A), a lncRNA. TOB1-AS1 

was not detected as a candidate gene by either CESAM 

( Supplementary Table S7 ) or PANGEA ( Supplementary Table 
S8 ) using the same input data. Seven (9.6%) out of 74 tu- 
mors had some form of somatic SVs near TOB1-AS1 includ- 
ing translocations, deletions, inversions, and tandem dupli- 
cations (Figure 4 B and Supplementary Table S9 ). For exam- 
ple, tumor 9ebac79d-8b38-4469-837e-b834725fe6d5 had a 
translocation between chromosomes 17 and 19 (Figure 4 C).
The breakpoints were upstream of TOB1-AS1 and upstream 

of UQCRFS1 (Figure 4 D). In tumor 748d3ff3-8699-4519- 
8e0f-26b6a0581bff, there was a 19.3 Mb deletion which 

brought TOB1-AS1 next to a region downstream of KCNJ2 

(Figure 4 C and E). 
We used Akita ( 23 ), a convolutional neural network that 

predicts 3D genome organization, to assess the 3D architec- 
ture of the loci impacted by SVs. While 3D structures are 
dynamic and may change with cell-type and gene activity,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
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Figure 3. Enhancer hijacking candidate genes in PCAWG. ( A ) Candidate genes detected by HYENA in individual tumor types of PCAWG. TERT is plotted 
twice since it is detected in two cancer types. Genes labeled as red are known enhancer hijacking targets. ( B ) Diverse types of candidate genes 
identified by HYENA in PCAWG. Numbers after tumor type names denote sample size in the corresponding tumor types. 
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AD boundaries are often more stable and remain similar
cross different cell-types ( 1 ). TAD boundaries are defined
ocally by the presence of binding sites for CTCF, a ubiqui-
ously expressed DNA-binding protein ( 1 ,26 ), and TAD for-
ation arises from the stalling of the cohesin-extruded chro-
atin loop by DNA-bound CTCF at these positions ( 44 ).
or this reason, it is expected that upon chromosomal rear-
angements, normal TADs can be disrupted, and new TADs
an form by relocation of TAD boundaries. This assump-
ion has been validated with direct experimental evidence
rom examining the ‘neo-TADs’ associated with SVs at differ-
nt loci ( 45–47 ). The wildtype TOB1-AS1 locus had a TAD
etween a CTCF binding site in RSAD1 and another one
pstream of SPAG9 (Figure 4 D and Supplementary Figure 
4 ). There were TADs spanning UQCRFS1 and downstream
f KCNJ2 in the two partner regions (Figure 4 D, E, and
upplementary Figure S4 ). In tumor 9ebac79d-8b38-4469-
37e-b834725fe6d5, the translocation was predicted to lead
o a neo-TAD resulting from merging the TADs of TOB1-AS1
nd UQCRFS1 (Figure 4 D). In tumor 748d3ff3-8699-4519-
e0f-26b6a0581bff, another neo-TAD was predicted to form
s a result of the deletion that merged the TADs of TOB1-
S1 and the downstream portion of KCNJ2 (Figure 4 E). In
oth cases, within these predicted neo-TADs, Akita predicted
strong chromatin interactions involving several CTCF bind-
ing sites and H3K27Ac peaks between TOB1-AS1 and its
two SV partners (Figure 4 D and E black arrows in the right
panels), indicating newly formed promoter–enhancer inter-
actions. In the vicinity of the TOB1-AS1 locus, TOB1-AS1
was the only gene with significant changes in gene expres-
sion. Similar neo-TADs could be observed in two additional
tumors ( Supplementary Figure S5 ). In two tumors harboring
tandem duplications of TOB1-AS1 of 317 kb and 226 kb,
the TOB1-AS1 TADs were expanded ( Supplementary Figure 
S6 A). However, not all SVs near TOB1-AS1 led to alterations
in TAD architecture; for example, in tumor a3edc9cc-f54a-
4459-a5d0-097879c811e5, TOB1-AS1 was predicted to re-
main in its original TAD after a 4 Mb tandem duplication
( Supplementary Figure S6 B). In summary, at least four out
of the seven tumors harboring somatic SVs near TOB1-AS1
were predicted to result in neo-TADs including TOB1-AS1 .
We then used another deep-learning algorithm called Orca
( 25 ) to predict 3D genome structure based on DNA sequences.
Orca-predicted 3D genome architectures were very similar to
Akita predictions ( Supplementary Figure S7 ) in neo-TAD for-
mation due to SVs in the TOB1-AS1 locus. 

To further study the 3D genome structure of the TOB1-
AS1 locus, we performed high-resolution in situ Hi-C se-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
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Figure 4. TOB1-AS1 activated by various types of SVs in pancreatic cancer. ( A ) Normalized expression of TOB1-AS1 in samples with ( n = 7) and without 
( n = 66) nearby SVs in pancreatic cancers. The boxplot shows median values (thick black lines), upper and lo w er quartiles (bo x es), and 1.5 × interquartile 
range (whiskers). Individual tumors are shown as black dots. ( B ) Circos plot summarizing intrachromosomal SVs (blue, n = 5) and translocations (red, n = 

3) near TOB1-AS1 . ( C ) Diagrams depicting putative enhancer hijacking mechanisms that activate TOB1-AS1 in one tumor with a 17:19 translocation (left 
panel) and another tumor with a large deletion (right panel). ( D ) Predicted 3D chromatin interaction maps of TOB1-AS1 (left panel), UQCRFS1 (middle 
panel), and the translocated region in tumor 9ebac79d-8b38-4469-837e-b834725fe6d5 (right panel). The downstream fragment of the chromosome 19 
SV breakpoint was flipped in orientation and linked to chromosome 17. H3K27Ac and CTCF ChIP-Seq data of PANC-1 cell line are shown at the bottom. 
T he e xpected le v el of 3D cont acts depends on the linear dist ance bet ween t w o genomic locations. L onger distances correlate with fe w er contacts. 
Akita predicts 3D contacts based on DNA sequences. The heatmaps are showing the ratio between predicted and expected contacts. The darkest red 
represents regions having 100 times more contacts than expected given the distance between the regions. ( E ) Predicted 3D chromatin interaction maps 
of TOB1-AS1 (left panel) and KCNJ2 (middle panel) loci without deletion as well as the same region following deletion in tumor 
748d3f f3-8699-4519-8e0f-26b6a0581bf f (right panel). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

quencing for four pancreatic cancer cell lines. Among these,
two cell lines (Panc 10.05 and PATU-8988S) had high ex-
pression of TOB1-AS1 , whereas the other two (PANC-1
and PATU-8988T) had low expression (Figure 5 A). At the
mega-base-pair scale, three cell lines (Panc 10.05, PATU-
8988S, and PATU-8988T) carried several SVs (black ar-
rows in Figure 5 B). In Panc 10.05, a tandem duplica-
tion (chr17:43145000–45950000) was observed upstream of
TOB1-AS1 (Figure 5 B black arrow in the left most panel
and Supplementary Table S10 ). However, the breakpoint was
too far away (2 Mb) from TOB1-AS1 (chr17:48944040–
48945732) and unlikely to regulate its expression. A neo
chromatin loop was detected by NeoLoopFinder ( 20 ) near
TOB1-AS1 (chr17:34010000–48980000) driven by a dele-
tion (chr17:34460000–47450000) detected by EagleC ( 27 )
( Supplementary Figure S8 A, Supplementary Table S5 and
S10 ). The deletion breakpoint was also too far away (1.5 Mb)
from TOB1-AS1 and unlikely to regulate its expression. No 

other SVs or neo chromatin loops were detected near TOB1- 
AS1 ( Supplementary Tables S5 and S10 ). Interestingly, there 
was a CNV breakpoint (chr17:48980000) 36 kb downstream 

of TOB1-AS1 in Panc 10.05 (Figure 5 C left most panel) which 

was also the boundary of the neo chromatin loop. In the high 

copy region (upstream of the CNV breakpoint), heterozy- 
gous SNPs were present with allele ratios of approximately 
4:1 ( Supplementary Figure S9 A), whereas in the low copy re- 
gion (downstream of the CNV breakpoint), all SNPs were ho- 
mozygous ( Supplementary Figure S9 B). These data suggested 

that the DNA copy number changed from five copies to one 
copy at the CNV breakpoint. The gained copies must connect 
to some DNA sequences since there should not be any free 
DNA ends other than telomeres. Given that no off-diagonal 
3D genome interactions were observed at chr17:48980000,
we considered the possibility that the high copy region was 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
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Figure 5. 3D genome str uct ures in the TOB1-AS1 locus in pancreatic cancer cell lines. ( A ) TOB1-AS1 expression in pancreatic cancer cell lines in CCLE. 
The cell lines in red are selected for further studies. ( B , C ) 3D genomic interactions in four pancreatic cancer cell lines. Black arrows represent SVs with 
off-diagonal interactions. The locations of TOB1-AS1 are marked by blue lines. In Panc 10.05, the blue arrow points to the CNV breakpoint and the 
dashed blue triangle represents the neo-subdomain formed due to the foldback inversion. ( D ) The reference chromosome 17 and derived chromosomes 
in Panc 10.05. The chromosomes are not to scale. TOB1-AS1 is shown as small blue boxes in the chromosomes. ( E ) Open chromatin measured by 
A T AC-Seq in P A TU-8988S and P A TU-8988T at the TOB1-AS1 locus. 
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onnected to repetitive sequences or to sequences that were
ot present in the reference genome. If so, reads mapped
o the high copy region should have an excessive amount
f non-uniquely mapped mates or unmapped mates. How-
ver, this was not the case ( Supplementary Figure S10 ). The
nly possible configuration was a foldback inversion in which
wo identical DNA fragments from the copy gain region
ere connected head to tail (Figure 5 D bottom left panel).
s a result, in Panc 10.05, there was a wildtype chromo-

ome 17, two foldback-inversion-derived chromosomes, and
 translocation-derived chromosome (Figure 5 D, bottom left
anel and Supplementary Figure S8 B). Foldback inversions
re very common in cancer. If DNA double strand breaks
re not immediately repaired, following replication, the two
roken ends of sister chromatids can self-ligate head to tail
nd sometimes result in dicentric chromosomes ( 48 ,49 ). Al-
orithms, such as hic-breakfinder ( 50 ) and EagleC ( 27 ), rely
on off-diagonal 3D genomic interactions in the Hi-C con-
tact matrix to detect SVs. However, foldback inversions do
not form any off-diagonal interactions since the two con-
nected DNA fragments have the same coordinates, so they are
not detectable by existing algorithms. The 3D genome struc-
ture of the TOB1-AS1 locus in Panc 10.05 was quite dis-
tinct from the other three cell lines (Figure 5 C). The region
immediately involved in the foldback inversion had homoge-
neous 3D interactions (Figure 5 C dashed blue triangle in the
left most panel) suggesting that a neo-subdomain was formed
(Figure 5 D right panel). The high expression of TOB1-AS1
in Panc 10.05 was likely a combined effect of the copy gain
and the neo-subdomain. In PATU-8988S and PATU-8988T,
a shared SV (chr17:48880000–52520000) near TOB1-AS1
was detected (Figure 5 B two right panels) since the two cell
lines were derived from the same pancreatic cancer patient
( 51 ). This shared SV could not regulate TOB1-AS1 because it

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
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pointed away from TOB1-AS1 ( Supplementary Figure S11 ).
No other SVs were found near TOB1-AS1 in these two cell
lines. The high expression of TOB1-AS1 in PATU-8988S was
likely due to transcriptional regulation since the promoter of
TOB1-AS1 in PATU-8988S was more accessible than that in
PATU-8988T (Figure 5 E). This result was consistent with a
handful of patient tumors that had high expression of TOB1-
AS1 without any SVs (Figure 4 A). 

Taken together, our results demonstrated that TOB1-AS1 ,
a candidate enhancer hijacking gene detected by HYENA, is
activated by reorganization of 3D genome architecture. 

Oncogenic functions of T OB1 -AS1 

TOB1-AS1 has been reported as a tumor suppressor in sev-
eral tumor types ( 52 ,53 ). However, HYENA predicted it to be
an oncogene in pancreatic cancers. To test the potential onco-
genic functions of TOB1-AS1 in pancreatic cancer, we per-
formed both in vitro and in vivo experiments. We surveyed
pancreatic cancer cell line RNA-Seq data from Cancer Cell
Line Encyclopedia (CCLE) and identified that the commonly
transcribed isoform of TOB1-AS1 in pancreatic cancers was
ENST00000416263.3 ( Supplementary Figure S12 ). The syn-
thesized TOB1-AS1 cDNA was cloned and overexpressed in
two pancreatic cancer cell lines, PANC-1 and PATU-8988T,
both of which had low expression of TOB1-AS1 (Figure 5 A
and Supplementary Figure S13 A). In both cell lines, overex-
pression of TOB1-AS1 (Figure 6 A) promoted in vitro cell in-
vasion (Figure 6 B). In addition, three weeks after tail vein in-
jection, PANC-1 cells with TOB1-AS1 overexpression caused
higher metastatic burden in immunodeficient mice than the
control cells (Figure 6 C). Six weeks after orthotopic injec-
tion, mice carrying TOB1-AS1 overexpressing PANC-1 cells
showed exacerbated overall tumor burden (Figure 6 D), ele-
vated primary tumor burden, and elevated metastatic burden
in the spleen (Figure 6 E and Supplementary Figure S13 B).
Liver metastasis was not affected ( Supplementary Figure 
S13 C). In addition, we knocked down TOB1-AS1 in two
other pancreatic cancer cell lines Panc 10.05 and PATU-
8988S, both of which had high expression of TOB1-AS1 (Fig-
ure 5 A and Supplementary Figure S13 A), using two antisense
oligonucleotides (ASOs) (Figure 6 F). TOB1-AS1 expression
was reduced by approximately 50% by both ASOs (Figure
6 G). Knockdown of TOB1-AS1 substantially suppressed cell
invasion in vitro (Figure 6 H). Note that PATU-8988T and
PATU-8988S were derived from the same liver metastasis of a
pancreatic cancer patient, and they had drastic differences in
TOB1-AS1 expression (Figure 5 A and Supplementary Figure 
S13 A). It was reported that PATU-8988S can form lung metas-
tases in vivo with tail vein injection of nude mice, whereas
PATU-8988T cannot form any metastases in any organ ( 51 ).
By altering the expression of TOB1-AS1 , we were able to re-
verse the cell invasion phenotypes in these two cell lines (Fig-
ure 6 B and H). These results suggested that TOB1-AS1 has an
important function in regulating cell invasion. 

It is possible that TOB1-AS1 , as an anti-sense lncRNA,
transcriptionally regulates the expression of the sense protein-
coding gene TOB1 . However, we did not find consistent
correlations between TOB1-AS1 and TOB1 expression in
different pancreatic cancer cohorts and pancreatic cancer
cell lines ( Supplementary Figure S13 D). Hence, it is unlikely
that TOB1-AS1 functions through transcriptional regulation
of TOB1 . Although knocking down TOB1-AS1 resulted in
down regulation of TOB1 expression, this is an expected re- 
sult given that the ASOs also targeted the introns of TOB1 

(Figure 6 F). The decrease in TOB1 expression was relatively 
mild at 10–20% (Figure 6 G). Overexpression of TOB1-AS1 

did not have a major impact on TOB1 expression (Figure 6 A).
Therefore, the oncogenic functions of TOB1-AS1 that we ob- 
served in vitro and in vivo are likely independent of TOB1 . To 

gain further insights into the pathway that TOB1-AS1 is in- 
volved in and its downstream targets, we performed RNA-Seq 

on PANC-1-generated mouse tumors with TOB1-AS1 over- 
expression and found that the most significantly differentially 
expressed gene was CNNM1 ( Supplementary Figure S13 E).
No significantly enriched pathway was detected. CNNM1 is 
a cyclin and CBS domain divalent metal cation transport me- 
diator and is predicted to be involved in ion transport ( 54 ).
How TOB1-AS1 promotes cell invasion and tumor metasta- 
sis and whether CNNM1 plays a role require further study. 

Our results showed that the lncRNA TOB1-AS1 is onco- 
genic and has a pro-metastatic function in pancreatic cancer,
and that HYENA is able to detect novel proto-oncogenes ac- 
tivated by distal enhancers. 

Discussion 

Here, we report a computational algorithm HYENA to detect 
candidate oncogenes activated by distal enhancers via somatic 
S Vs. These S V breakpoints fell in the regulatory regions of the 
genome and caused a shuffling of regulatory elements, alter- 
ing gene expression. The candidate genes we detected were 
not limited to protein-coding genes but also included non- 
coding genes. Our in vitro and in vivo experiments showed 

that a lncRNA identified by HYENA, TOB1-AS1 , was a po- 
tent oncogene in pancreatic cancers. 

HYENA detects candidate genes based on patient cohorts 
rather than individual samples. Genes need to be recurrently 
rearranged in the cohort to be detectable, and HYENA aims to 

identify oncogenes recurrently activated by somatic SVs since 
these events are under positive selection. Therefore, sample 
size is a major limiting factor. Of the eight ground truth cases,
HYENA only detected four (Figure 2 A); undetected genes 
were likely due to the small sample size. However, genes de- 
tected in individual tumors by tools such as cis- X and Ne- 
oLoopFinder may not be oncogenes, and recurrent events 
would be required to identify candidate oncogenes. 

The candidate genes identified by HYENA have statisti- 
cally significant associations between nearby somatic SVs and 

elevated expression. However, the relationship may not be 
causal. It is possible that the presence of SVs and gene expres- 
sion are unrelated, but both are associated with another factor.
We modeled other factors to the best of our ability including 
gene dosage, tumor purity, patient sex, age, and principal com- 
ponents of gene expression. In addition, it is also possible that 
the high gene expression caused somatic SVs. Open chromatin 

and double helix regions unwound during transcription are 
prone to double-strand DNA breaks which may produce so- 
matic SVs. Therefore, it is possible that some of the candidate 
genes are not oncogenes. Functional studies are required to de- 
termine the disease relevance of the candidate genes. Although 

TOB1-AS1 has been reported as a tumor suppressor in sev- 
eral tumor types ( 52 ,53 ), it promotes cell invasion and metas- 
tasis in pancreatic cancer, which suggests that the functions 
of lncRNA TOB1-AS1 depend on cell lineage. Furthermore,
most enhancer hijacking candidate genes detected by HYENA 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae646#supplementary-data
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Figure 6. TOB1-AS1 promotes cell in v asion and tumor met ast asis. ( A ) TOB1-AS1 and TOB1 relative expression levels in P A TU-8988T and PANC-1 cells 
transduced with TOB1-AS1 o v ere xpression v ector (n = 3) or control v ector ( n = 3). ( B ) TOB1-AS1 o v ere xpression in P A TU-8988T (4 biological replicates) 
and PANC-1 (3 biological replicates) promoted in vitro cell in v asion using Transwell assay. Each biological replicate was an independent experiment with 
7 technical replicates per experimental group. The average fold change of cell invasion was calculated after the background invasion measured in the 
absence of any chemotactic agent was subtracted from each technical replicate. P values were calculated by two-sided Student t test. ( C ) TOB1-AS1 
o v ere xpression in PANC-1 cells promoted in vivo tumor met ast asis in the tail vein injection model. ( D ) TOB1-AS1 overexpression in PANC-1 cells 
exacerbated in vivo tumor growth and spontaneous metastasis in the orthotopic tumor model. Images of radiance in immunodeficient mice are shown 
on the left while the quantifications of radiance are shown on the right. Eight mice were used in both the overexpression group and the empty vector 
control. The images were analyzed by setting the regions of interest (ROIs) to mouse torsos and measuring the average radiance level (in p / s / cm 

2 / sr). 
( E ) Primary tumor burden and spleen met ast atic burden were higher in the mice that were orthotopically injected with TOB1-AS1 overexpression 
PANC-1 cells. The bar plots show quantified total radiance with a set area (in p / sec). ( F ) Targeting TOB1-AS1 by two ASOs. ( G ) TOB1-AS1 knockdown in 
Panc 10.05 and PATU-8988S cells transduced with ASO1 ( n = 3), ASO2 ( n = 3) or non-targeting control ASO (NC) ( n = 3). ( H ) TOB1-AS1 knockdown 
suppressed Panc 10.05 (3 biological replicates) and PATU-8988S (three biological replicates) cell in v asion in vitro . Cell in v asion f old change calculation is 
the same as in (B). Two-sided Student t test was used. Error bars in all panels indicate standard error of the mean. 
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are only found in one tumor type. This further supports the
tumor-type-specific roles of these potential oncogenes. 

Note that the predicted 3D genome organization is not
cell-type-specific. Akita was trained on five high quality Hi-
C and Micro-C datasets (HFF, H1hESC, GM12878, IMR90
and HCT116) ( 23 ) and predicts limited cell-type-specific dif-
ferences. Therefore, the predicted TADs reflect conserved
3D genome structure in the five cell types (foreskin fibrob-
last, embryonic stem cell, B-lymphocyte, lung fibroblast and
colon cancer). There were minor differences between HFF
and H1hESC ( Supplementary Figure S4 ) in genome organi-
zation. For example, the left boundary of the TAD at the
UQCRFS1 locus was different between HFF and H1hESC
( Supplementary Figure S4 A). Nonetheless, the translocation
between chromosomes 17 and 19 removed the left boundary
and merged the right side of the UQCRFS1 TAD with the
TOB1-AS1 TAD (Figure 4 D). Therefore, the cell-type differ-
ence likely does not have a major impact on our results. 

Data availability 

The HYENA package is available at https://github.com/
yanglab-computationalgenomics/HYENA (permanent DOI
10.5281 / zenodo.12683789). 
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