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Abstract 

Genome search and / or classification typically in v olv es finding the best-match database (reference) genomes and has become increasingly chal- 
lenging due to the growing number of available database genomes and the fact that traditional methods do not scale well with large databases. 
By combining k-mer hashing-based probabilistic data str uct ures (i.e. ProbMinHash, SuperMinHash, Densified MinHash and SetSketch) to es- 
timate genomic distance, with a graph based nearest neighbor search algorithm (Hierarchical Navigable Small World Graphs, or HNSW), we 
created a new data str uct ure and developed an associated computer program, GSearch, that is orders of magnitude faster than alternative tools 
while maintaining high accuracy and low memory usage. For example, GSearch can search 80 0 0 query genomes against all a v ailable microbial 
or viral genomes for their best matches ( n = ∼318 0 0 0 or ∼3 0 0 0 0 0 0, respectively) within a few minutes on a personal laptop, using ∼6 GB 

of memory (2.5 GB via SetSketc h). Notably, GSearc h has an O(log( N )) time complexity and will scale well with billions of genomes based on a 
database splitting strategy . Further , GSearch implements a three-step search strategy depending on the degree of no v elty of the query genomes 
to maximize specificity and sensitivity. T heref ore, GSearch solv es a major bot tlenec k of microbiome studies that require genome searc h and / or 
classification. 
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lassifying microbial species based on either universal marker
enes (e.g. 16S or 18S rRNA genes) or entire genomes repre-
ents a re-occurring task in environmental and clinical micro-
iome studies. However, this task is challenging because the
icrobial genomes in nature are still severely under-sampled
y the available genomes. For instance, the number of new
enomes reported is still increasing. There are > 10 

12 prokary-
tic and fungal species in nature according to a recent estima-
ion based on 16S rRNA gene or ITS (Internal Transcribed
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Spacer) analysis ( 1 ), and even more viral species, as the num-
ber of viral cells outnumbers that of prokaryotic cells by a
about a factor of ten in most natural habitats ( 2 ). The num-
ber of total prokaryotic genomes has reached ∼318 000 in the
newest release of the NCBI / RefSeq prokaryotic database (un-
til February 2023), and > 12 million in the latest IMG / VR4
database for viruses, representing 65 703 prokaryotic and
8.7 million viral distinct species if clustered at the 95% ANI
(genome-average nucleotide identity) level ( 3 ,4 ). This has cre-
ated a new challenge: an all-versus-all comparison strategy to
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search newly sequenced genomes against these large databases
to find their best matches and / or classify them according to
the matches has become impractical. Further, due to the re-
cent improvements in metagenomic and single-cell sequenc-
ing technologies, it is now possible to recover hundreds, if not
thousands, of genomes from environmental or clinical samples
in a single study ( 5 ,6 ). Such studies have started to fill in the
gap in the described diversity mentioned above but they have
also exacerbated the database size problem. In addition to
the searching strategy, the actual algorithm used to determine
overall genetic relatedness (e.g. ANI or its approximations)
between the query and the database genomes is critical. There
are several ANI implementations available based on either
BLAST ( 7 ), USEARCH ( 8 ) or MUMMER ( 9–12 ). While the
traditional BLAST-based ANI, and the genome-aggregate av-
erage amino acid identity (AAI), have been proven to be highly
precise and robust for genetic relatedness estimation across
microbial and viral genomes ( 10 , 11 , 13 , 14 ), they take hours
or even days of computational time when dealing with thou-
sands of genomes. Recently, phylogenetic placement methods
using a handful of universal genes ( n ≈ 100) have become
popular, but these methods can be memory demanding and
slow ( 15 ,16 ), especially for a large number of or a few deep-
branching (novel) query genomes. Further, the phylogenetic
approach cannot be broadly applied to viral genomes, which
lack universal genes. Moreover, universal genes, due to their
essentiality are typically under stronger purifying selection
and thus evolve slower than the genome average ( 17 ). This
property makes universal genes appropriate for comparisons
among distantly related genomes, e.g. to classify genomes be-
longing to a new class or a new phylum, but not the species
and genus levels ( 15 ,18 ). 

Faster and more memory efficient ANI estimation based on
k-mer hashing and evolutionary models have been recently
described in tools such as FastANI, Mash, Sourmash, Dash-
ing and BinDash ( 19–23 ). These tools typically rely on prob-
abilistic data structures (or sketching algorithms) to estimate
genomic distance such as MinHash (a class of locality sensi-
tive hashing) ( 24 ), FracMinHash ( 25 ), HyperLogLog (HLL)
( 26 ) or a combination of HLL and MinHash, called SetSketch
( 27 ). Importantly, MinHash and MinHash-like algorithms
have been shown to provide an unbiased estimation of the Jac-
card similarity Jaccard( A, B ) = 

| A ∩ B | 
| A ∪ B | between two genomes,

an accurate proxy for ANI or mutation rate after appropriate
transformations: ANI or ( 1 − Mash ) = 1 + 

1 
k log 2 ∗J 

1+ J , where J
is the Jaccard similarity and k is k-mer size, also known as
the Mash equation. Note that the Jaccard similarity considers
only unweighted k-mer presence / absence in a set ( 19 ). Min-
Hash is more accurate than HyerLogLog, HyerLogLog++ or
SetSketch( 27 ) in estimating Jaccard similarity but less space
efficient ( 21 ). However, Jaccard similarity (unweighted) esti-
mated by MinHash-like sketching algorithms can be prob-
lematic for incomplete genomes ( 19 ,28 ) and genomes with
extensive repeats (e.g. microbial eukaryotes) because this es-
timation does not consider the abundance of k-mers (k-mer
multiplicity) and genome size. Weighted Jaccard-like indices
such as those provided by ICWS and ProbMinHash have
been recently developed to address this limitation ( 29 ,30 ) (see
also Supplementary Note S1 ). The application of weighted (or
unweighted) MinHash-like algorithms to the genome search
problem (that is, to search a query genome against a genome
database to find its closest relatives) can still be slow despite
the algorithms themselves being fast because these algorithms
are typically applied in a ‘brute force’ manner. That is, all 
query genomes are searched against all database genomes (i.e.
‘all versus all’), and thus computational time grows quadrati- 
cally as the number of query and database genomes increase.
More importantly, in the case of searching a database, the lo- 
cality sensitive hashing property of those probabilistic data 
structures should be satisfied to ensure high recall or accuracy 
( 31 ). 

One of the most broadly used approaches for finding closely 
related information in a database while circumventing an all 
vs. all comparisons is the K-Nearest Neighbor Search (K- 
NNS). The K-NNS approach has been used, for instance, for 
16S rRNA gene-based classification followed by a vote strat- 
egy ( 32 ). Approximate nearest neighbor search (ANNS) al- 
gorithms, such as locality-sensitive hashing (LSH) ( 33 ), k- 
dimension tree ( 34 ), random projection tree ( 35 ), k-graph 

( 36 ) and proximity graph ( 37–39 ) have been recently used 

to greatly accelerate search processes with small loss in ac- 
curacy. Proximity graph, as implemented for example in the 
hierarchical navigable small world graph (HNSW), has been 

shown to be one of the fastest ANN search algorithms ( 40 ,41 ) 
with search time complexity O( log (N) ) . HNSW incrementally 
builds a multi-layer structure consisting of a hierarchical set 
of proximity graphs (layers) for nested subsets of the stored 

elements. Then, through smart neighbor selection heuristics,
inserting and searching the query elements in the proximity 
graphs can be very fast while preserving high accuracy, even 

for highly clustered data ( 38 ). Therefore, finding the clos- 
est genomes in a database can be substantially accelerated 

by combining two sub-linear algorithms while maintaining 
ANI / AAI accuracy: MinHash-like or HyperLogLog sketching 
algorithms for genomic distance estimation and HNSW for 
finding nearest neighbors. This is an idea that, to the best of 
our knowledge, has not been applied to genome search previ- 
ously, despite its potential to greatly accelerate genome search.

Here, we describe GSearch (for Genome Search), a com- 
puter program that combines one of the most efficient nearest 
neighbor search approaches (HNSW) with MinHash-based or 
SetSketch-based estimates of genomic distances, and applied it 
to large collections of fungal, prokaryotic and viral genomes.
Six MinHash-like algorithms are provided as part of GSearch 

to ensure the critical property of locality sensitivity: Densified 

MinHash (2 variants) ( 31 ,42 ), ProbMinHash ( 30 ), SuperMin- 
Hash ( 43 ) and SetSketch (2 variants) ( 27 ). Each of them pro- 
vides distinct advantages in accuracy, speed and / or space re- 
quirement. Densified MinHash is by far the fastest algorithm 

due to the use of just one hash function. SuperMinHash is 
similar to classic MinHash but optimized in terms of accu- 
racy to calculate simple Jaccard similarity, sacrificing speed.
ProbMinHash (default) is based on shared k-mers, weighted 

by their abundance, and normalized by total k-mer count.
Essentially, ProbMinHash computes the normalized weighted 

Jaccard-like similarity J P ( Supplemenatary Note S1 ) between 

each pair of genomes. Accordingly, ProbMinHash can account 
for genome incompleteness and repeats (k-mer multiplicity) 
commonly found in eukaryotic and sometimes in prokary- 
otic genomes and is the default option (setting) in GSearch.
SetSketch is a new data structure aiming at both space effi- 
ciency and speed, which fills the gap between MinHash and 

HyperLogLog. The Jaccard similarity calculated by any of 
the above methods is subsequently used as input to build 

the HNSW graph of the database genomes. Accordingly, the 
search of the query genome(s) against the graph database to 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
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nd the nearest neighbors for classification purposes becomes
n ultra-fast step and can be universally applied to all micro-
ial genomes. The novelty of GSearch also includes a hierar-
hical pipeline that involves both nucleotide-level (when query
enomes have close relatives at the species level) and amino-
cid-level searching (when query genomes represent novel
pecies), which provides high accuracy for query genomes re-
ardless of their degree of novelty relative to the database
enomes, as well as a database-splitting strategy that allows
Search to scale up well to billions of database genomes. 

aterials and methods 

Search is composed of the following steps. Initially, the ge-
etic relatedness among a collection of database genomes
s determined based on the sketching algorithms Densi-
ed MinHash, ProbMinHash, SuperMinHash or SetSketch
 30 , 31 , 42 , 43 ). These algorithms compute the normalized
eighted Jaccard-like similarity J p using the probminhash3a
lgorithm or the simple Jaccard similarity J using the
etSketch / SuperMinHash / Densified MinHash options, as im-
lemented in the probminhash package. The normalized
eighted Jaccard-like distance (1 – J p ) or Jaccard distance

1 – J ) is then used as input for building the HNSW graphs.
ote that a distance computation is required only when that

enome pair is required for graph building; thus, GSearch
voids all vs. all distance computations (Figure 1 A). Genomes
re subsequently recursively added as the nearest neighbors
f each node in the built graph with the same distance com-
utation procedure (Figure 1 B). The built graph database and
ketches from the MinHash-like algorithms are stored on the
isk, including a graph file from HNSW as the main com-
onent of this new data structure. Each node / genome in the
raph has a corresponding sketch in the sketching file (Fig-
re 1 B). Query genomes are then searched against the graph
atabase after loading the database files in memory and sub-
equently, best neighbors are returned for classification (Fig-
re 1 C). In this process, the best neighbor(s) is also identi-
ed based on the smallest ProbMinHash distance (1 – J p ) or
accard distance (1 – J ) obtained. The output can then be
ransformed into ANI / AAI values with a separate program.
he details of the whole Rust parallel implementation can be

ound in Supplementary Figure S8 . Parallelization efficiency
nd memory usage of database building and searching can be
ound in Supplementary Figures S9 and S10 . There are three
odules in total: tohnsw, add and request. The tohnsw mod-
le builds the graph by gradually inserting genomes into the
raph. The request module queries the graph database built
n the tohnsw step. The add module adds new genomes to an
xisting HNSW database. Each of the three modules operates
n parallel for high performance (see Supplementary Note S6 ).
Search was implemented in the Rust programming language

nd can be found here: https:// github.com/ jean-pierreBoth/
search . 

mplementation of sketching algorithms and 

enchmarking 

 detailed description of the differences between ProbMin-
ash and traditional MinHash can be found in the Supple-
entary Materials and Methods. We reimplemented the Prob-
inHash algorithm to estimate genomic relatedness between

ny two genomes based on normalized weighted Jaccard-like
distance 1 – J p according to the original ProbMinHash pa-
per ( 30 ) ( Supplementary Note S1 ). The MSE (Mean Stan-
dard Error) of ProbMinHash is J p (1 – J p ) / m , where m is the
sketch size or number of registers, similar to that of classic Jac-
card similarity J ( 1 – J ) / m . Essentially, when objects / k-mers
are hashed, they represent probability distributions (relative
frequency of k-mers after normalization), and J p is a natu-
ral extension of J with Pareto optimality for estimating dis-
tance among various genomes ( 44 ). The Rust reimplementa-
tion of ProbMinHash, and other related MinHash-like algo-
rithms, can be found at: https:// github.com/ jean-pierreBoth/
probminhash . We relied on version 0.1.10 of probminhash
package for this study. There are 11 different MinHash-like
algorithms in this package (all are metric since J and J p are
metric): One Permutation MinHash with Optimal Densifi-
cation, Faster Densification, SuperMinHash, ProbMinHash1,
ProbMinHash1a, ProbMinHash2, ProbMinHash3, ProbMin-
Hash3a, ProbMinHash4, Order MinHash and SetSketch (lo-
cality sensitive hashing estimator and Joint Maximum Likeli-
hood Estimator), with 6 of them used in GSearch (ProbMin-
Hash3a (default), optimal densification, faster densification,
SuperMinHash, SetSketch LSH and JMLE). Details of the lo-
cality sensitive hashing and JMLE implementation for SetS-
ketch can be found in the Supplementary Methods and Mate-
rials. Specifically, when Jaccard similarity is smaller than 0.01
for queries with the best neighbors, LSH estimator in SetS-
ketch is less accurate ( Supplementary Figure S7 ). We therefore
use JMLE estimator instead of LSH since it is more accurate
for small Jaccard similarity values. 

To benchmark ProbMinHash against Mash, Dashing v1,
Dashing v2, Sourmash and BinDash, all tools were run with
the same sketch size ( s = 12 000) and k-mer size ( k = 16)
for bacterial genomes at the nucleotide level, and k-mer size
( k = 7) at the amino acid level, for both database building and
searching. For fungal genomes, a larger sketch size ( s = 48
000) and k-mer size ( k = 21) were used due to the much
larger genome size. Further details on the rationale for choos-
ing these k-mer sizes can be found in Supplementary Note S2 .
For convenient comparison of GSearch results against those
of the Mash and ANI based methods, we performed the same
transformation of Mash distance from normalized weighted
Jaccard-like similarity J p to ProbMASH-ANI as a proxy of
ANI using the equation: Pro bMASH _ ANI = 1 + 

1 
k lo g 2 ∗J p 

1+ J p 
.

Details on how each software was run for the benchmarking
can be found in Supplementary File S3 . 

Hierarchical navigable small world graphs (HNSW) 

Generally, the framework of HNSW can be summarized in the
following two steps: (i) build a HNSW graph where each node
represents a database vector (or sketch vectors of genome pro-
files in our case, Figure 1 B). Each database vector will connect
with a few of its neighbors while maintaining small world
property in each layer of HNSW. (ii) Given a query vector,
perform a greedy search on the HNSW graph by comparing
the query vector with database vectors under the searching
measures (in our case, 1 – J p or 1 – J ). Then, the most simi-
lar candidates are returned as outputs. The key task for these
two-step methods is to construct a high-quality HNSW graph,
which provides a proper balance between the searching effi-
ciency and effectiveness. To guarantee the searching efficiency,
the degree (number of maximum allowed neighbors, denoted
as M ) of each node is usually restricted to a small number (nor-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://github.com/jean-pierreBoth/gsearch
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://github.com/jean-pierreBoth/probminhash
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data


PAGE 4 OF 17 Nucleic Acids Research , 2024, Vol. 52, No. 16, e74 

Figure 1 . Sc hematic o v ervie w of GSearc h building graph ( A ), graph searc hing ( C ) and (Super / P rob)MinHash / SetSk etch distance estimation ( B ). (A) 
Ov ervie w of the HNSW building process. GSearch (tohnsw module) starts from a randomly chosen genome to gradually build the graph at La y er 0 ( 1 ) 
and gradually collapse genomes (dash grey line indicate newly clustered / collapsed representatives compare to previous step) into La y er 1 ( 2 ) and la y er 2 
( 3 ) as more genomes are being incorporated in La y er 0 until all genomes in database are inserted into la y er 0 ( 4 ). When inserting new genomes in the 
graph (database), GSearch essentially searches in a partially built graph to find nearest genomes, based on MinHash-lik e / SetSk etch distance values 
among the genomes; see ( C ) for details. After the required number of nearest neighbors are found for each inserted genome, a reverse update step is 
performed to update neighbor list of all nodes in the graph. ( B ) Overview of (Super / Prob)MinHash / SetSketch algorithms to calculate J p and J , where h is 
the hash function to hash k-mers from two genomes (orange and blue) and store the hashed values as sketches (shapes in the two big circles). 
ProbMinHash calculates J p from shared sketches while SuperMinHash / Densified MinHash and SetSketch calculate J from shared sketches. ( C ) To 
search / identify a new genome P (orange) against the graph (request module), starting from an entry node (black, random or inherited from la y er abo v e 
it, depending on whether it is the top la y er or not), GSearch finds the closest connected neighbor of the entry node (black) to the new node P to be 
searched (orange) by calculating the (Super / Prob / Den)MinHash / SetSketch distance of the new node P (orange) with all neighbors (blue) of entry node 
(black) and assigns the closes one (X5 in this case) as the new entry point (that is X5 will be the new entry node) ( D ). GSearch is then traverses in a 
greedy manner (i.e. update the entry point using the newly found closest connected neighbor of X5) until the nearest neighbors in the layer are found 
(specifically, the path goes from entry node to X5, X8 and X13) ( E ), and then goes to next layer. This process is repeated until the required number of 
nearest neighbors (N) are all found for the given new querying data point P and subsequently, reported to the user. 
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ally 20–200) while the effectiveness is ensured by a large
idth of search for neighbors during insertion (denoted as

f_construct; higher than 1000). The large ef_construct num-
er increases the chance to find the best M neighbors by in-
reasing the diversity of neighbors that can be retained. The
raph is subsequently collapsed into hierarchical layers fol-
owing an exponential decay probability. Building the graph
i.e. inserting nodes into the graph) and searching a query
gainst the graph follow the same greedy search procedure ex-
ept that there is an extra step of reverse updating of neighbors
ist for each vector when inserting database vectors (genomes),
ne by one, into the existing graph until all genomes are in-
erted (Figure 1 A). For building, after searches are finished at
he bottom layer for each inserted element, a reverse update
tep will be performed to update the neighbor list of each node
n the existing graph, while for searching / querying against the
raph this step is not needed. The overall database building
ime complexity is O( N* log( N )), where N is the number of
odes in the graph. The first phase of the searching process
tarts from the top layer by greedily traversing the graph to
nd maximum M closest neighbors to the new node element P
n the layer by doing ef _construct times search (Figure 1 C). Af-
er that, the algorithm continues the search from the next layer
sing the closest neighbor found from the previous layer as en-
ry point, and the process repeats until it reaches the bottom
ayer. Closest neighbors at each layer are found by a greedy
nd heuristic search algorithm (Figure 1 D and E). For search-
ng, since there is no need to reverse update the best neighbor
ist for each node in the graph, time complexity is O(log( N ))
s explained above (see also detailed complexity analysis on
upplementary Note S3 ). Theoretical guarantee of graph-
ased algorithms can be found in Supplementary Note S5 .
e reimplemented the original hnswlib library written in C++

sing the Rust programming language for memory safety, ef-
cient parallelism and speed. We also implemented memory
ap in the newest version, a feature not in the original C++

ibrary that is useful for billions of data points or genomes.
he implementation can be found at https:// github.com/ jean- 
ierreBoth/hnswlib-rs . Version 0.1.19 was used in this study.
peed, accuracy and scalability benchmark of this package
gainst the original implementation using standard datasets
an be found in Supplementary Tables S7 –S10 . In general, our
mplementation is as competitive as the original implementa-
ion in all three aspects. 

rokaryotic genome search pipeline 

or building the whole-genome amino-acid graph, we used
 = 7 to have the best specificity without compromising sen-
itivity, which is also consistent with previous results on clas-
ification of amino acid sequences based on k-mers ( 45 ). For
uilding the graph based on universal gene set, we used k = 5
ecause of the much smaller total amino acid space of univer-
al genes. For further details on the range of k-mer to use for
acteria genome and proteome, and viral / fungal genome and
roteome, see Supplemental Note S2 . 
The proteome of each genome was predicted by FragGe-

eScanRs v0.0.1 for performance purposes as opposed
o Prodigal ( 46 ) software despite small loss in precision
 47 ) ( Supplementary Table S11 ). Hmmsearch in the hmmer
v3.3.2) ( 48 ) software was used to extract the universal gene
et for bacteria and archaea genomes. Note that for viral
enomes, this last step was not implemented because there are
o universal single copy genes for viral genomes. Evaluation
of the speed and memory requirements for all steps mentioned
above were performed on a RHEL (Red Hat Enterprise Linux)
v7.9 with 2.70 GHz Intel(R) Xeon(R) Gold 6226 CPU. Unless
noted otherwise, all 24 threads of the node were available by
default. 

In order to directly compare GSearch results with GTDB-
Tk v1.3.0, we used the top-10 matches provided by GSearch
for each query genome against GTDB r207, and perform
the evaluation as follows. If the best match (top 1) had
ANI ≥ 95% with a database genome, the query was (man-
ually) identified as the same species as the match and this re-
sult was compared to GTDB-Tk v1.3.0 

′ s classification for the
same query (i.e. whether or not it was assigned to the same
species). Similarly, for genomes with at least 5 matches out
of 10 with AAI ≥ 65% to the same genus, the query was
identified as the same genus (but new / novel species) as these
matches. Finally, for the remaining query genomes with top 5
best matches out of 10 with AAI ≥ 52%, the query was iden-
tified as the same family (but new / novel genus and species) as
these matches, otherwise the genome was considered unclas-
sified at the family level. 

Distributed implementation and database splitting 

To accommodate the increasing number of microbial genomes
that has become available at an exponential pace in recent
years, and will soon surpass 1 million, we provide an option to
randomly split the database into a given number of pieces and
build a graph database separately for each piece. In the end,
all best neighbors returned from each piece are pooled and
sorted by distance to have a new best K neighbor collection
returned to the user for each query genome. It has been proven
that in terms of requesting top K best neighbors, the database
split strategy is equivalent to non-split database strategy if the
requested best neighbors for each database piece is larger than
or equal to K ( 38 ,39 ). The database splitting and request can
be done sequentially, on a single node, when multi-node sup-
port is not available. In theory, a large database can be split
into any number of pieces. In practice, a reasonable way to de-
cide on the number of database pieces to use is so that memory
requirement for each piece is equal or smaller than the total
memory of host machine. 

Species database and testing genomes for 
benchmarking and recall 

The GTDB version 207 and the entire NCBI / RefSeq prokary-
otic genomes (as of Feb. 2023) were used to build the database
for bacterial and archaeal genomes. The IMGVR database
version 4, with species representatives at a ≥95% ANI, was
used to build the database for viruses (a total of ∼3 million).
For fungal genomes, all genomes downloaded from the Myco-
Cosm project (as of Jan. 2022) were used ( 49 ). The amino acid
sequences of predicted genes on the genomes were obtained
using FragGeneScanRs for bacteria / archaea and GeneMark-
ES version 2 for fungi ( 50 ). 

To test the accuracy of GSearch, we specifically chose
genomes that are not included in the GTDB database (the
database that was used for graph building). In particular,
the bacterial / archaeal genomes, mostly MAGs from activated
sludge samples, reported by Ye et al. ( 51 ) were used. We ran-
domly selected 1000 MAGs from the Ye’s collection and use
them as query genomes to test the accuracy of GSearch. Tara
Ocean MAGs (total 8466 MAGs) ( 52 ) were also used for ac-
curacy test. 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://github.com/jean-pierreBoth/hnswlib-rs
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
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Recall of AAI-, ANI- and MinHash-based nearest 
neighbor searching for bacteria / archaea, fungi and 

viral genomes 

To benchmark GSearch performance compared to traditional
ANI / AAI- and / or MinHash-based tools, we ran brute-force
ANI / AAI searches of the same query genomes against the
(same) reference databases and assess if GSearch return the
same best match as these traditional methods. We used
BLAST-based ANI ( http:// enve-omics.ce.gatech.edu/ ani/ , ANI
calculator) for bacteria and archaea as well as for viral col-
lections, MUMMER-ANI for fungi, and BLAST-based AAI in
all databases. We also use OrthoANI as an additional ANI
gold standard and it showed the same ground truth (i.e. same
best match) as ANI calculator ( Supplementary Table S20 ).
We also performed additional benchmarks using FastANI as
the truth since FastANI correlates perfectly with BLAST-ANI
( Supplementary Figure S13 ). For the assessment, we used the
well-established average recall as the accuracy measurement
( 53 ). Given a query genome, GSearch is expected to return K
best genomes. We examined how many genomes in this re-
turned set were among the true K nearest neighbors (NN) of
the same query found by the reference brute-force ANI / AAI.
Suppose the returned set of K genomes given a query is R’ and
the true K nearest neighbors set of the query (from BLAST-
ANI / AAI) is R, the recall is defined as: recal l ( R 

′ ) = 

| R 

′ ∩ R | 
| R | .

Then, the average recall represents the mean recall for all
query genomes. We compare the accuracies of different algo-
rithms by requiring different numbers of nearest neighbors
(NN) of each query genome, including 10-NN and 5-NN.
Since biological species databases are generally sparse due to
undersampling of natural diversity and the existence of nat-
ural gaps in diversity among species, a larger top K NN (e.g.
100) used in standard ANN benchmark experiments will of-
fer little, if any biological advantage, especially when the query
genomes are relatively novel, e.g. a new family compared to
database genomes. Therefore, we use top 5-NN and 10-NN.
Further, if the genomic Jaccard distance (1 – J p or 1 – J ) of
query to some of the top 10 or top 5 neighbors found by
GSearch at the nucleotide level was larger than 0.9850 for
bacterial genomes, these matches were filtered out and not
used in estimation of recall because we have shown that above
this threshold, k-mer based MinHash methods at nucleotide
level will lose accuracy and this is not related to the HNSW
search itself (e.g. 8 out of 10 are kept, so top 8 in R’ is com-
pared with top 8 in R). At the proteome level, accuracy was
calculated following a similar procedure with the threshold
value being 0.9720 (switching to the universal gene graph
above this threshold). For viral genomes, the threshold was
0.9800. These thresholds were chosen based on correlation
analysis between the GSearch genomic distance and BLAST-
based ANI or AAI. Details about how each piece of software
was run can be found in Supplementary File S3 . 

Results 

ProbMinHash is a robust metric of genome 

relatedness for prokaryotic genomes 

Correlations between ProbMASH-ANI (we called it Prob-
MASH, after transformation from ProbMinHash similarity
( J p ), see Materials and Methods for details) and ANI deter-
mined by FastANI or Mash-ANI showed that ProbMASH-
ANI is robust and slightly better than Mash for determin-
ing distances among bacterial genomes related at ∼78% ANI,
or above (Spearman rho = 0.9643 and 0.9640, respectively,
P < 0.001, Supplementary Figure S1 a and b). For moderately 
related genomes, for which ANI based on nucleotide k-mer 
is known to lose accuracy, ProbMASH-AAI based on amino 

acid k-mer was robust compared to BLAST-based average 
amino acid identity (AAI), especially between genomes show- 
ing 95% > AAI > 52% (Spearman rho = 0.90, P < 0.01,
Supplementary Figure S2 a and b). Below ∼52% AAI, both 

ProbMASH-ANI and Mash-ANI lose accuracy compared to 

AAI. However, AAI of just universal genes provides a ro- 
bust measurement of genetic relatedness at this level of dis- 
tantly related genomes, and we show here that ProbMASH- 
AAI for this set of universal genes is also robust (Spearman 

rho = 0.9390, P < 0.001, Supplementary Figure S3 ). Thus, for 
query genomes with distant relatives in the database (i.e. deep- 
branching, novel genomes), for which their closest match- 
ing genome in the database is related at the order level or 
higher, restricting the search to the universal genes can pro- 
vide robust classifications ( 15 ). Accordingly, GSearch imple- 
ments a three-step classification process, depending on the 
degree of novelty of the query genome against the database 
genomes, using the ANI and AAI thresholds mentioned above 
(see also Figure 3 F). This strategy and its accuracy are dis- 
cussed further below . Similarly , One Permutation MinHash 

with Optimal or Faster Densification (Densifed MinHash) 
was also shown to be highly accurate in predicting ANI / AAI 
( Supplementary Figure S11 ). 

Comparisons with other sequence search 

algorithms 

We compared GSearch with other general-purpose sequence 
(e.g. Sequence Bloom Tree, COBS) or MinHash-based genome 
search algorithms, focusing on time complexity (big O no- 
tation) of each algorithm. GSearch was clearly the fastest 
genome search algorithm, with a O(log(N )) complexity (Ta- 
ble 1 ). Other general-purpose sequence search algorithms 
were either sublinear under certain assumptions or not prac- 
tical for large genome collections. Also, none of the general- 
purpose sequence or genome search algorithms had been pre- 
viously benchmarked for their estimation or prediction of 
whole-genome ANI relatedness; hence, their accuracy remains 
untested. 

We then compared available MinHash-like sketching al- 
gorithms in terms of their time complexity (big O nota- 
tion), space (memory), and accuracy in estimating the Jac- 
card similarity ( Supplementary Tables S1 and S2 ), as well as 
other important properties for large scale applications such as 
mergeability (whether sketching parts of the dataset individ- 
ually and subsequently merge them is equivalent to sketch- 
ing the entire dataset). SuperMinHash and ProbMinHash 

were fast and mergeable MinHash-like algorithms, slower 
than Densifed MinHash ( Supplementary Table S1 ). The lat- 
ter algorithm, however, is not mergeable, thus difficult to use 
in distributed computational environments. HyperLogLog- 
like algorithms are significantly more space-efficient albeit 
slightly slower and less accurate. For variance, we analyzed 

the rooted mean squared error (RMSE) with respect to true 
Jaccard similarity. MinHash-like algorithms such as Prob- 
MinHash, SuperMinHash and Densified MinHash had the 
smallest theoretical variance for the same m (the number of 
registers used for sketching; we use m = 12 000), followed 

http://enve-omics.ce.gatech.edu/ani/
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
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Table 1. Bioinformatics algorithms for sequence / genome searching and their comparisons. S represents a document / genome. N is the total number 
of documents / genomes. Us ∈ S | s | represents the total number of terms in N documents / genomes and 

∑ 

s ∈ S | s | is total unique terms / k-mer. MPH is 
minimal Perf ect Hashing. F or the In v erted Inde x siz e, the e xtra log ( N ) comes from the bit precision document IDs. For SBTs, log( N ) is the height of the 
tree, and for Bloom Filters at each le v el is O 

(∑ 

s ∈ S| s| ) in total. MinHash time and space complexity was based on k hash functions for N sets, each set 
has d’ non-zero element. Note that the most recent B-bit MinHash with optimal densification can further improve to O( N *( d ’+ k )). O( v dlog( N )) for GSearch 
is O(log( N )) in practice since v and d are small and single pair genome comparison is a constant ( Supplementary Note 3 ). τdepends on the user-specified 
parameter and is generally < 0.01 in practice 

Query time Space 
Recall benchmark 
(Biologically) Comments 

Inverted Index 1 O (1) Best : log(N) ∩ 

s ∈ S 
| s | Only for document 

search / retrieval, could 
be applied to 
genomic / sequence 
search 

Long construction 
time; impractical for 
bigger datasets; best 
case needs MPH and 
a known k-mer 
(term) distribution 

BIGSCI / COBS 2,3 O (N) 
∑ 

s ∈ S 
| s | A hybrid between an 

inverted index and 
Bloom filters (COBS), 
high false positive 
rate, no benchmark 
with mutation rate by 
ANI / Mash 

Query time is linear 
in N, small index size 

Sequence Bloom 

Tree 4 
Best : O ( log (N) ) , Worse : 
O (N) 

log(N) 
∑ 

s ∈ S 
| s | Given the k-mers from 

a query sequence, the 
task is to determine 
which of the N 

documents contain all 
the k-mers present in 
the query; no 
benchmark with 
mutation rate by 
ANI / Mash 

Sequential query 
process is bottleneck; 
designed for 
sequential 
implementation 

RAMBO 

5 O ( 
√ 

N ∗ log(N) ) �log(N) 
∑ 

s ∈ S 
| s | Similar to SBT, finding 

which of the N 

documents / genomes 
contain all the k-mers 
present in the query, 
no benchmark with 
ANI / Mash 

Only for � < 1, 
query time is 
sub-linear 

MinHash 6 O ( N ∗ d ′ ∗ k ) O ( N ∗ k ) Average Nucleotide 
Identity (ANI) or 
mutation rate via 
Mash distance 

Query time is linear 
in N 

GSearch 
(MinHash- 
like + HNSW) 

O ( vdlog( N) ) O ( ( 1 + τ ) ∗ N ∗ d + k ∗ N ) Average Nucleotide 
Identity (ANI) via 
Mash-like mutation 
rate / index 

Long database 
construction time 
O ( N ∗ log( N) ) , but 
users are free from 

construction. 
FLINNG 

7 O ( l o g 2 ( 1 
δ
) l o g 3 (N) N 

1 
2 + γ ) N 

3 
2 lo g 2 (N) No Benchmark with 

Average Nucleotide 
Identity (ANI) via 
Mash-like mutation 
rate / index, only 15% 

of RefSeq genome 
meet the γ -stable 
criteria 

The γ -stable query 
condition is a 
relatively strong 
requirement for the 
query. Limitation: 
works for queries for 
which the neighbors 
are all above a 
(relatively high) 
similarity threshold 
to the query 

1 Croft et al. ( 84 ), 2 Bradley et al. ( 85 ), 3 Bingmann et al. ( 86 ), 4 Solomon and Kingsford ( 87 ), 5 Gupta et al. ( 88 ), 6 Broder ( 24 ), 7 Engels et al. ( 89 ). 
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y SetSketch (as b → 1) ( Supplementary Table S2 ). Our ac-
ual implementation of Densified MinHash has similar RMSE
o classic MinHash ( Supplementary Figure S12 ), with esti-
ated ANI correlating well with that of Mash (classic Min-
ash) ( Supplementary Figure S11 ). SetSketch was also space-

fficient and similar to HyperLogLog in terms of space, speed
nd accuracy. HyperLogLog sketch estimators such as those
implemented in Dashing had the largest RMSE for estimating
the cardinality of sets (followed by inclusion-exclusion rule to
estimated Jaccard similarity, Supplementary Note S1 ), consis-
tent with experimental results when searching query genomes
against database ( Supplementary Tables S14 and S15 ). RMSE
of Dashing was especially large for small Jaccard similarity
(e.g. 75% to 78% ANI, corresponding to 0.009 and 0.015

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
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Figure 2. Performance and scalability of database building (tohnsw) and searching (request) steps as the number of threads or nodes increases. Upper 
panel shows total wall time (y axis) for building the GTDB v207 (65703 genomes) at the nucleotide level ( A ), whole-genome proteome (amino acid level) 
( B ) and universal gene set proteome ( C ) reference graphs (or databases). Middle panel shows searching performance and scalability against number of 
threads used for different sets of query genomes at nucleotide ( D ), amino acid level ( E ) and universal protein level ( F ). Specifically, 100, 300 and 1000 
query genomes (figure k e y) w ere used. All tests w ere run on a 24-thread Intel (R) Xeon (R) Gold 6226 processor, with 40GB memory a v ailable ( G ). 
Database build time vs number of nodes or number of database pieces (maximum 5) for the split strategy, and request / search time of 100 bacterial 
genomes (nt) against the split databases ( H ). Each node was responsible for running a piece of the full database. Average time was calculated by 
a v eraging total time across all nodes for (G) and (H). The entire NCBI / RefSeq database (318K genomes) were used for testing the split strategy. For each 
node, 24 threads were used for building and searching steps. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jaccard similarity, respectively; Supplementary Tables S14 

and S15 ). 

Graph building and speed of search against the 

reference prokaryotic genomes 

To build the database graph for the entire GTDB v207
prokaryotic species database at the nucleotide level (65703
unique, non-redundant prokaryotic genomes at the 95% ANI
level), the tohnsw module (database build subcommand of
GSearch) took 1.3 h on a 24-thread computing node and
scaled moderately well with increasing number of threads
(0.27 h using 128 threads) (Figure 2 A). It took 0.7 h us-
ing Densified MinHash for building and is slower using Su-
perMinHash (4.7 h) and SetSketch (2.4 h) ( Supplementary 
Table S18 ). Maximum memory (RAM) required for the build-
ing step was 15.3 GB. The total size of the written database
files on disk was 3.0 GB. There are 3 layers for the resulting
graph, with 65 180, 519 and 4 genomes for layers 0, 1 and
2, respectively. The searching of query genomes against the
GTDB database graph, which represented previously known
as well as novel species of eight bacterial phyla (see Materi-
als and methods for details on query genome selection), re-
questing best 50 neighbors for 1000 query genomes, took
2.3 min (database loading was 6 s) on a 24-thread ma- 
chine and scaled well with increasing number of threads (Fig- 
ure 2 D). The memory requirement for the request (search) 
step was 3.0 GB for loading the entire database file in 

memory. 
We also built a database of all NCBI / RefSeq prokaryotic 

genomes ( ∼318K genomes, 2 TB in size, in total), which 

took 4.1 h using 24 threads with maximum memory usage 
of ∼21 GB (1.2 h with 128 threads) and created a stored 

database file size of 15 GB. It took 1.4 h using Densified Min- 
Hash for building and was slower using SuperMinHash (27 h) 
and SetSketch (13 h) ( Supplementary Table S19 ). Searching of 
8466 query genomes against this RefSeq database took 9.33 

min (Table 2 , ProbMinHash) and ∼16 GB of memory, which 

was significantly better than alternative state-of-the-art tools 
for the same purposes such as skani, Dashing v1 and v2 and 

BinDash. For example, Dashing v1 or v2 and BinDash (brute 
force HyperLogLog or MinHash) took 21, 42 min and 41 min 

for the same task, respectively (Table 2 ). To evaluate the per- 
formance against Mash, Dashing, Sourmash or BinDash more 
fully, we increased the number of database genomes gradually 
from a subset of 65 703 to the full set of 315 686 genome 
while using the same number of query genomes (8466). We 
observed that GSearch follows a log fitting, consistent with the 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
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Table 2. Comparisons of database size, running time for ProbMinHash, Densified MinHash, SuperMinHash and SetSketch with all other pieces of 
software 

Database size (indicates 
minimum memory required) 

database loading 
time 

Sketching & 

searching T otal W all time 

GSearch(ProbMinHash) 29GB (sketch + graph) 57.2 s 8 min 23 s 9 min 20 s 
GSearch(Densified MinHash) 9.7GB 27.2 s 4 min 12s 4 min 40 s 
GSearch(SuperMinHash) 25GB (sketch + graph) 41 s 24 min 13 s 24 min 54 s 
GSearch(SetSketch) 2.5GB (sketch + graph) 9.1 s 12 min 14 s 12 min 23 s 
Mash 19.8GB 1 min 11 s 182.1 min 183 min 
Sourmash (branchwater) 7.9GB ∼30 s 64.3 min 65 min 
Dashing 1 2.7GB (sketch) ∼61 s 20.5 min 21.5 min 
Dashing 2 (ProbMinHash) 4.7GB (sketch) ∼61 s 47.5 min 48.5 min 
skani a 30.1GB - 74.42 min 74.42 min 
BinDash 16.2GB (Sketch) 16 s 51.4 min 41.4 min 
a For ∼8000 query genomes, skani total memory requirement is larger than 60GB, the largest among all pieces of software. 
Results are based on searching 8466 query genomes against all NCBI / RefSeq genomes ( ∼318K) on a 24-thread machine. Times reported are average values 
from 3 runs. 
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(log(N)) theoretical prediction, while Dashing, Sourmash,
ASH and BinDash followed linear fitting (Figure 3 A and C,

upplementary Figures S4 a and b, S5 a and b). For example,
Search was 3–4 times faster than Dashing when the num-
er of database genomes increased from 65 703 to 315 686
Figure 3 A), and 20–30 times faster with the 3 million refer-
nce virus genomes (Figure 3 B, see also below). With Densified

inHash, GSearch can be even faster than this (Table 2 ). 
To build the amino-acid-level graph for moderately novel

uery genomes, all GTDB v207 proteomes were predicted us-
ng FragGeneScanRs and subsequently, the predicted amino
cid sequences were used for building the database graph.
he graph building step took 1.4 h (Figure 2 B) with a maxi-
um memory requirement of 37.7 GB on a 24-thread node.

t took 0.7 h using Densified MinHash and was slower us-
ng SuperMinHash (3.9 h) and SetSketch (2.7 h). The total
ize of the written database files on disk was 5.9 GB. With
he SetSketch option, CPU time was slightly longer (2.7 h)
ut maximum memory (9.4 GB) and database size (0.5 GB)
ere substantially smaller, as anticipated (Figure 3 D). There
ere 65 158, 543 and 2 genomes for layer 0, 1 and 2 re-

pectively. The entire RefSeq genome database ( ∼318K) took
.7 hours to build at the proteome level with maximum
emory ∼30 GB. Dumped files size was 29 GB (2.5 GB
ith the SetSketch option). Requesting 50 neighbors for
uerying 1000 genomes at the amino-acid level took 1.52
in with a memory requirement of ∼6.0 GB (database load-

ng 9 s; Figure 2 E) for the GTDB database. Requesting 50
eighbors for 8466 query genomes against the NCBI / RefSeq
roteome graph, took about 6.2 min ( Supplementary 
able S3 ). In comparison, Mash dist took 207.2 min
gainst NCBI / RefSeq for the same task with 24 threads
no amino acid option is available for Dashing, skani and
inDash). 
Finally, for most distantly related query genomes, the graph

uilding for the universal gene set follows the same logic as
he amino acid level graph mentioned above except for using a
maller k-mer size ( k = 5) due to the smaller k-mer space of the
120 universal genes used in this graph vs. the whole-genome
reviously. It took 7.76 min to build the GTDB database
raph (Figure 2 C), and 7 s to request 50 neighbors for 1000
ueries on a 24 threads node against the database (Figure 2 F,
upplementary Table S5 ). Building the entire NCBI / RefSeq
atabase took about 27 min while requesting 1000 queries
gainst it took about 0.445 min ( Supplementary Table S3 ). 
Searching accuracy and speed for prokaryotic 

genomes 

The accuracy of GSearch and other tools in finding the best
matching genomes among the database genomes was eval-
uated by comparing their results against those identified by
traditional alignment-based methods, namely BLAST-based
ANI for query genomes with close relatives in the databases
and BLAST-based AAI for more divergent query genomes.
The query genomes originated from two datasets, the Tara
Ocean (8466) and the collection put together by Ye et al . For
the genomes in these two datasets that had closely related
genomes in the RefSeq database (showing > 78% ANI, 6992
and 906 query genomes, respectively), we observed an aver-
age top 10 recall of 96.2% and 95.1%, respectively (similar
results were obtained for top-5 matching genomes; Table 3 ).
For query genomes with no closely related database genomes
showing higher than 78% ANI, 1474 and 91 genomes from
the two datasets, respectively, recall was significantly lower,
around 60% or below (Table 3 ). However, when we search
these genomes at the proteome level using BLAST-based AAI
as the reference standard for calculating recall, the recall value
increased to 96.9% and 95.2%, respectively (Table 3 ). There
were 327 and 25 genomes, respectively, that, even at the pro-
teome level, had no related genome in the RefSeq database
showing higher than 52% AAI, and these genomes accounted
for most of differences with the top-10 matching genomes
by BLAST-based AAI. These genomes apparently reflect the
fact that the public genome databases are still sparse and
do not cover well all biological diversity. When we searched
these deep-branching (highly novel) genomes at the universal
gene proteome level, using the universal gene AAI as the ref-
erence standard, the average top-10 recall value was 95.5%
and 94.6%, respectively (Table 3 ). We also examined the re-
sults obtained by BinDash, Dashing v1 and v2 and Sour-
mash for the same query genomes. We found that Sourmash
was as accurate as GSearch but much slower, while Dash-
ing is less accurate than GSearch and Sourmash or BinDash,
especially when the closest database genomes showed less
than 80% ANI to the query genomes (moderately or dis-
tantly related) ( Supplementary Tables S13 and S14 ). The re-
sults were similar independent of the estimator used in Dash-
ing (e.g. MLE or JMLE) ( Supplementary Table S15 ), consis-
tent with theoretical predictions ( Supplementary Table S2 ).
GSearch’s Densified MinHash, SetSketch and SuperMinHash
options showed similar results with the default ProbMinHash

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
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Figure 3. Running time, memory consumption and classification accuracy of GSearch against Dashing, Sourmash and BLAST-based ANI / AAI tools. ( A ) 
Running time of GSearch versus Dashing for searching 8466 query genomes against the RefSeq prokaryotic genome database as a function of the 
number of genomes used in the database (x-axis) at the nucleotide le v el. ( B ) Running time of GSearch (blue) versus Dashing (orange) for 10 0 0 0 query 
viral genomes against the IMG / VR v4 database at amino acid le v el. ( C ) Same as in (A) abo v e but comparison is against Sourmash multisearch (orange). 
( D ) Memory consumption of GSearch versus Dashing and Sourmash searc h. Searc h is to load database into memory, thus maximum memory is directly 
related to database size. Since Sourmash search is not parallelized, GNU parallel was used for process-level parallelism. Note that y-axis values are in log 
scale in panels (B)–(D). ( E ) Comparison of GSearch classification results with GTDB-Tk and Blastp-based AAI tools for moderate-to-distantly related 
query genomes based on the bacterial proteome database (e.g. ANI between the query genome and its best match in the database was lower than 
78% for these genomes). Each point represents a comparison between two genomes, query and the best match found by GSearch, showing RED 

values generated by GTDB-tk (y-axis) versus Blastp-based AAI between these two genomes. The taxonomic rank that the query and the best database 
match share is shown (see figure key). Two vertical lines indicate Blastp-based AAI threshold for family and genus level classification threshold. Note 
that the best match was always the same genome between GSearch and all vs. all Blastp AAI, and the overall consistency between GSearch / AAI and 
GTDB-tk in identifying the same best database genomes for the same query genomes. ( F ) Overview of GSearch’s 3-step pipeline for classifying 
prokaryotic genomes. Orange boxes denote steps that aim to prepare genome files, in different formats, for graph building while green boxes denote 
building steps of the graph database (in nucleotide or amino acid format). Blue boxes indicate input / query genomes to search against the database 
while grey boxes indicate classification output for each input. Two key steps of GSearch: tohnsw and request are used to build graph database and 
request (or search) new genomes against the database, respectively. Two thresholds are used in the pipeline to decide between whole nucleotide vs. 
whole-genome amino acid search and whole-genome amino acid vs. universal gene amino acid; that is, 78% ANI and 52% AAI, corresponding to 
Probminhash distance 0.9850 and 0.9375, respectively (see main text for details). 
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Table 3. Recall of GSearch for two query genome datasets containing various levels of novel genomes relative to the genomes in the reference database 

Dataset 
Dataset size 

(# of genomes) level Recall (top 5) Recall (top 10) 

Tara (with best matches in database) a 6992 nucleotide 98.3% 96.2% 

Tara (without best matches in database) 1474 nucleotide 62.4% 43.1% 

Tara (with best matches in database) b 1147 proteome 97.2% 96.9% 

Tara (without best matches in database) 327 proteome 65.0% 50.8% 

Tara (with best matches in database) c 327 universal 96.4% 95.5% 

Ye (with best matches in database) a 906 nucleotide 97.7% 95.1% 

Ye (without best matches in database) 91 nucleotide 54.8% 48.5% 

Ye (with best matches in database) b 66 proteome 96.3% 95.2% 

Ye (without best matches in database) 25 proteome 76.0% 55.5% 

Ye (with best matches in database) c 25 universal 95.7% 94.6% 

a Defind as query genomes that had best match in the database better than 78% ANI. b Defined as query genomes that had best match in the database better 
than 52% AAI. c defined as query genomes that had best match in the database better than 55% AAI based on universal genes. 
The query genome datasets are the same as those used in Table 2. BLAST -ANI, BLAST -AAI and universal gene BLAST-AAI were used as the reference results 
(or standards) to compare against. Recall is the average across all query genomes. 
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or the same query genomes ( Supplementary Table S16 ). We
hose the 78% ANI and 52% AAI as thresholds to switch
etween whole-genome nucleotide vs. amino acid (proteome)
earch and whole-genome proteome vs. universal gene only,
espectively (Figure 3 f). Detailed nucleotide-level accuracy re-
ults for all tools based on a single query genome (not av-
rage recall across all query genomes as shown above) can
e found in the Supplementary Tables S13 –S15 . Proteome-
evel results for this single query genome can be found in
upplementary Table S17 , which shows that GSearch is as ac-
urate as Sourmash and MASH. 

We also evaluated the effect of genome completeness on
he accuracy of GSearch given that bacterial genomes recov-
red from environmental metagenomic surveys are frequently
ncomplete. We found that for genome completeness higher
han 50%, the accuracy / recall in the top 10 best matches was
igher than 80% and decreased considerably below this com-
leteness level ( Supplementary Table S12 ). Hence, GSearch
nalysis is not recommended for genome completeness less
han 50% due to the normalization step in ProbMinHash. 

raph database building and searching accuracy 

or viral and fungal genomes 

raph building and requesting for viral genomes is not effec-
ive at the nucleotide level because many viral genera are ge-
etically too distant from each other and do not have close rel-
tives in the public genomic database; that is, the database is
oo sparse. Therefore, we built only an amino acid level graph
or viral genomes, using all genes in the genome due to the lack
f universal genes for viral genomes. Database building took
3.89 h for all ∼3 million IMG / VR4 genomes on a 24-thread
ode, and graph file size on disk was 15.8 GB ( Supplementary 
igure S6 a). Requesting 1000 top neighbors (10 are used for
ccuracy evaluation) scaled well with increasing number of
hreads and took 3.63 min (database loading took an addi-
ional 1.1 min) using 24 threads ( Supplementary Figure S6 b).
he top-5 neighbors for 1000 query phage genomes were
ighly overlapping (98.32% recall; Supplementary Table S6 )
ompared number of genomes, GSearch is about 20X faster
han Mash and Dashing in finding the top-5 neighbors (Fig-
re 3 B, Supplementary Tables S6 ). We also compared GSearch
ith a new database building method, called PhageCloud,
hich relies on manually curated genome labels (e.g. environ-
ental source) for graph database building using the Neo4j
software and Dashing for genetic distance computation. Since
PhageCloud provides a web implementation with one genome
query at a time, we limited the search to one viral query
genome against the same database used by PhageCloud i.e.
the Gut Phage Database. It took 37 s to find the two best
matches with PhageCloud while GSearch took 15 s (database
loading 14 s, search 1.5 s) for the same search. It should be
noted, however, that, because the database is already avail-
able (loaded) on PhageCloud’s website, 37 s is for the search-
ing step and website responses (average value for 5 runs on 5
different days) whereas GSearch took 1.5 s for this same step.
For comparison, Mash took 4 minutes to find the same two
best matches. 

Graph building for fungal genomes is slower compared to
prokaryotic genomes, despite the smaller number of avail-
able fungal genomes ( n = 9700), because the average fun-
gal genome size, and thus k-mer and sketch space, are much
larger ( k = 21, s = 48 000 were used). It took 2.3 h on a
24-thread node to build the nucleotide level graph for these
fungal genomes. Searching step was also slower due to the
larger k-mer space. Accordingly, it took 3.13 min to request 50
neighbors for 50 query fungal genomes while Mash tool 4.4
min. Nonetheless, top 10 recall was still very high ( ∼99.4%)
using MUMMER-based ANI as the reference in the compari-
son. For the amino acid level graph, the time for graph build-
ing was 0.61 h, shorter than the corresponding prokaryotic
graph. Identifying 50 neighbors for 50 query fungal genomes
at the amino-acid level took 1.24 min (Mash took 2.59 min)
with similarly high top 5 and top 10 recall (99.7% and 98.5%,
respectively) against the BLAST-based AAI. Note that the dif-
ference in run time will be more pronounced between Mash
and GSearch with a larger number of fungal database genomes
available in the future, as also exemplified above for the bac-
terial genomes. 

Comparing the three-step framework for classifying
prokaryotes against GTDB-Tk 

To evaluate the accuracy of classification / searching results
based on the complete 3-step framework of GSearch, we
compared the best neighbors found by GSearch with brute-
force ANI (estimated by FastANI) and GTDB-Tk, a refer-
ence standard for microbial taxonomy classification that is
phylogenetic-tree-based. The reader is reminded that GSearch
does not assign taxonomy to query genomes itself; rather, it

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
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only identifies the best match and the ANI / AAI value of the
query genome to the best match(es). The user is then respon-
sible to transfer the taxonomy of the best match to the query
genome, and we offered suggestions above on what thresh-
olds to use, e.g. if AAI is above 65% to assign it to the same
genus. Accordingly, the comparison to GTDB-Tk (as well as
the other approaches mentioned above) focused on whether
the same best match was found by the two approaches and
if yes, then the search (or taxonomic assignment) was consid-
ered to be successful (or correct). 

The overall running time to classify 1000 prokaryotic
genomes of varied levels of taxonomic novelty against
the GTDB database using different computing platforms is
showed in Supplementary Table S5 . On a 24-thread Linux
node with Intel Xeon Gold 6226 CPU, GSearch took a to-
tal of 5.85 min while it took 19.49 min on an intel Core i7
laptop (2017 release) CPU personal laptop (6.02 min on the
most recent ARM64 CPU laptop). Classifying 1000 genomes
using GTDB-Tk took 5.91 h on the same Linux node with 24
threads (memory requirement was ∼328GB). We also eval-
uated the most recent GTDB-Tk v2.0 with MASH option,
which took 76.2 min for the same task. We were not able to
assess Dashing or BinDash for this analysis because they do
not provide proteome (amino acid) level implementations. 

In terms of classification accuracy, all query genomes
that had a best match higher than 78% ANI against the
GTDB database genomes (i.e. a match at the same or closely
related species, 699 out of the total 1000 queries) were
identically classified by GSearch, GTDB-Tk and FastANI
( Supplementary Table S4 and Supplementary file S1 , 100 / 699
are shown). Therefore, species-level classifications are highly
consistent, further confirmed by Sourmash LCA methods
( Supplementary file S4 , 100 / 699 are shown), which performs
genome k-mer classification using an ‘lowest common an-
cestor’ approach. Among the remaining 301 genomes that
did not have same or closely related species-level matches,
266 of them (or 87.1%) had identical classifications be-
tween GSearch and GTDB-Tk at genus or family levels
( Supplementary Table S4 ) but several inconsistencies were ob-
served for 35 / 301 genomes (Figure 3 e). Specifically, we no-
ticed that for GTDB-Tk, which relies on RED values and tree
topology, several genomes ( n = 14) were still classified at
the genus level even though the AAI value against the best
database genome in these case was below 60% (typically,
genomes assigned to the same genus show > 65% AAI( 54 )),
and some genomes ( n = 16) were still classified at the fam-
ily level but not at the genus level even though their best AAI
value was above 65%. Similarly, several genomes ( n = 9) were
classified at the order level but not family level even though
their best AAI value was above 52%. Therefore, high con-
sistency was overall observed between GSearch and GTDB-
Tk assignments, and the few differences noted were probably
associated with contaminated (low quality) MAGs or taxo-
nomic inconsistencies, which was challenging to assess further,
and / or the peculiarities of each method. Since ProbMASH-
ANI distance correlated well with BLAST-based AAI after
transformation in the range of AAI values between 52% and
95%, the classification results were always consistent with
AAI-based classification based on the abovementioned thresh-
olds. For example, best matches with AAI ≥ 65% were classi-
fied in the same genus by GSearch and BLAST-based AAI, and
best matches of 52% < AAI < 65% were typically classified
in the same family (but sometimes different genus within the 
family). 

Database split for large genome databases 

For large databases (for example, > 100 million bacterial 
genomes), the graph building and requesting step could re- 
quire a large amount of memory (due to much larger k-mer 
space) that is typically not available in a single computer node.
We therefore provide a database split solution for such large 
databases. The average database building time on each node 
for each piece of the database after the splitting step scales 
linearly with increasing nodes / processors (Figure 2 G) and re- 
quires much less memory (1 / n total memory compared to 

when building in one node, where n is the number database 
pieces after splitting; for GTDB v207 nucleotide graph build- 
ing and n = 5, it will be 28.3 / 5 = 5.66 GB). The search- 
ing time scales sub-linearly with increasing number of nodes 
(Figure 2 H) but offers the advantage of a reduced memory 
footprint with respect to the single-node search. The top 10 

best neighbors with the database split strategy were exactly 
the same as the non-splitting strategy ( Supplementary file S2 ).
Note that without multi-node support (e.g. run database build 

sequentially), database build time is nearly the same with the 
non-split strategy, but memory requirement is 1 / n (e.g. for 
GTDB v207, 28.3 GB / 5 = 5.66 GB at nucleotide level and 

27.7 GB / 5 = 5.54 GB at amino acid level), even though to- 
tal request time will be longer (time*n in Figure 2 h). How- 
ever, since the request step is very fast relative to the graph 

building step, overall runtime is still small with the database 
split approach even for a relatively large number of genomes.
Therefore, the database split strategy is especially useful when 

memory requirement is not satisfied on the host machine for 
large genome databases. 

Discussion 

A popular way to assess genetic relatedness among genomes 
is ANI, which corresponds well to both 16S / 18S rRNA 

gene identity and DNA-DNA hybridization values, the gold 

standards of fungal and prokaryotic taxonomies ( 13 ). How- 
ever, the number of available microbial genomes has recently 
grown at such a speed that the all versus all search using tra- 
ditional BLAST-based ANI or faster k-mer-based implementa- 
tions has become intractable. Phylogenetic approaches based 

on quick (approximate) maximum likelihood algorithms and 

a handful of universal genes as implemented, for example, in 

GTDB-Tk could be faster than brute-force approaches but 
are often not precise and require a large amount of memory 
for the querying step ( 15 ) while the database building step 

could take several weeks of run time. Further, approaches to 

speed up the searching step that rely on k-medoid cluster- 
ing to avoid all versus all comparisons could be sometimes 
trapped into local minima because of arbitrary partitioning of 
database genomes into clusters, a known limitation of these 
methods ( 18 ). GSearch effectively circumvents these limita- 
tions by combining new k-mer hashing-based probabilistic 
data structures for fast computation of genomic relatedness 
among genomes (i.e. ProbMinHash, SuperMinHash and / or 
SetSketch) with a graph based nearest neighbor search al- 
gorithm (HNSW). Accordingly, GSearch is at least an order 
of magnitude faster than alternative approaches (e.g. Mash,

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
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ashing, Sourmash, GTDB-Tk) for the same tasks based on
urrent datasets and will be even faster as the number of
atabase genomes grows due to O(log( N )) complexity (ver-
us linear complexity for these other approaches). We have
hown that the speed advantage of GSearch will be even larger
s the number of database genomes continues to grow. There-
ore, GSearch solves an important challenge associated with
he tasks to search and / or classify microbial genomes and will
erve well these tasks for years to come. 

To the best of our knowledge, no current tools have com-
ined two sub-linear algorithms, and thus can efficiently
earch very large genome databases while maintaining high
ccuracy. Several sub-linear algorithms such as Sequence
loom Tree or COBS (cross-over between an inverted similar-

ty and Bloom filters) can do sequence to sequence (or genome
o genome) search but do not provide ANI / AAI values, which
re key parameters for microbial genome search and clas-
ification (Table 1 ), and these tools are generally less accu-
ate than the ANI / AAI-based approach. GSearch can handle
everal million of microbial genomes on a small-to-average
omputer cluster, or even personal laptop (depending on the
atabase size), since the database file size is proportional to the
otal number of genomes in the database for fixed sketch size
nd graph parameters, and generally rather small. Specifically,
ith one million prokaryotic genomes, the dumped database
le size will be 5.9 GB*20 = 118 GB (currently, there are
60K in the GTDB database, creating a database file size of
.9 GB). With the SetSketch option, database file size will be
.5 GB for the GTDB database, 2.5 GB for the entire Ref-
eq genome databases ( ∼318K genomes), and 9.8 GB for one
illion genomes, and thus save on disk space, if needed, for
 slight decrease in accuracy. Further, due to the nature of the
NSW graph, there is no need to build the entire database

t once; rather, the database can be split into smaller pieces,
s exemplified above and depending on the computational re-
ources available. For a modern laptop with 16 GB memory,
 database with one million species can be split into 10 pieces,
o the dumped file for each piece will be 11.8 GB, which can
e efficiently loaded into the 16GB memory. With this logic,
 computing node with 24 threads and 256 GB of memory
vailable can easily deal with 20 million bacterial database
enomes, or billions of bacterial genomes if using SetSketch.
his represents a substantial improvement compared to ex-

sting tools for the same purposes. This database split idea of
NSW, or other graph-based NNS libraries more generally,

as been successfully applied to several industrial-level appli-
ations for other purposes ( 38 ,39 ). 

We also want to point out that the size of the com-
ressed sketches (database file) from SetSketch is compara-
le to other space efficient algorithms such as HyperLogLog
with b = 2, Setsketch asymptotically corresponds to Hyper-
ogLog), ExtendedHyperLogLog ( 55 ), HyperLogLogLog ( 56 )
nd UltraLogLog ( 57 ) (25% more space efficient than Hyper-
ogLog). The Shannon entropy of SetSketch we implemented

s m 

l n (2) l n (b) ( ( 1 − 1 
b ) + 

∫ 

1 
0 z 

1 / ( b−1 ) ( 1 −z ) ln ( 1 −z ) 
zln (z ) dz ) , where m is the

umber of registers, b is the key parameter of SetSketch. For
 = 1.001 that we used here, the entropy is 13.24 per regis-
er (divided by m). Therefore, compared to an uncompressed
egister size of 16 bits, there is still some room for improve-
ent for SetSketch. Theoretically, an additional 17.25% re-
uction in space could be achieved but it would add imple-
entation complexity. For any HyperLogLog-like algorithm

e.g. SetSketch, UltraLogLog), a theoretical limit for sketch
size is O ( ε−2 + log(n ) ) , or slightly worse but easy to imple-
ment ( 58 ,59 ), where n is the number of elements / k-mers while
ε is the error. This means that we cannot improve further
without losing accuracy as database size grows unless we
rely on database split strategy. SetSketch shares this property
with HyperLogLog, and thus we cannot improve space further
without theoretical breakthroughs. 

Another distinguishing aspect of GSearch (tohnsw module)
is the speed and flexibility in building reference databases.
Users could build reference databases (graphs) for any num-
ber and type (e.g. microbial versus viral) of genomes. The high
efficiency in building graphs allows users to also test and op-
timize the key parameters of the graph, the M (maximum al-
lowed neighbors) and ef_construct (width of search for neigh-
bor during building) parameters. For any given database size,
M and ef_construct determine the quality of the graph and
graph build speed. Small M and ef_construct may lead to fre-
quent traps in local minima, and thus, low recall while large M
and ef_construct may lead to slow speed without proportional
improvement in recall ( Supplementary Table S7 ). Therefore,
there is a tradeoff between accuracy and speed that should be
evaluated first. However, for most users this task would not
be necessary because they will work with pre-built databases
such as those provided here. Also, GSearch provides an op-
tion to add new genomes to the database without the need to
rebuild the database from scratch, making it convenient and
very fast to expand the current genome database. 

GSearch could also be applied to whole metagenome search
and identification of the most similar metagenomes in a series
or a database because the relatedness among metagenomes
can be estimated in a similar way to genomes using Prob-
MinHash as implemented, for example, in the HULK soft-
ware ( 60 ). However, to allow for sketching of the much larger
metagenome sequence data (compared to genomes) for build-
ing the HNSW graph, weighted k-mer (e.g. ProbMinHash)
approaches require much larger memory than unweighted
approaches. Probabilistic or approximate counting of k-mer
abundances, such as the Count-Min sketch or a combina-
tion of Count-Min Sketch with HyperLogLog sketch ( 61 ), can
be used instead for k-mer counting for metagenome search
and / or when the computer memory is limited ( 62 ,63 ). Sim-
ilarly, we could seamlessly replace ProbMinHash with an-
other relatedness algorithm should such an algorithm be-
comes available and has advantages in terms of speed and / or
precision in its locality sensitive hashing property (and thus
estimation of Jaccard similarity). For example, the SuperMin-
Hash option is provided for its high accuracy over traditional
MinHash but not speed ( 43 ), or other newer implementations
such as the One Permutation MinHash with Optimal Densifi-
cation for its speed (one hash function, average case O( n + m ))
and locality sensitive hashing property (via optimal densifica-
tion or faster densification)( 31 ,42 ) ( Supplementary Table S1
and S2 ). Note that the bottom-K sketch implementation in
Mash ( 19 ) or FracMinHash ( 25 ) in Sourmash ( 64 ) use just
one hash function or a much smaller number of hash func-
tions than classic MinHash, and thus lose the locality sen-
sitive hashing property, which is essential for nearest neigh-
bor search purposes ( 31 , 42 , 65 ). Further, BagMinHash ( 66 ) or
DartMinHash ( 67 ) for weighted (but not normalized) Jaccard
similarity can also be used in place of ProbMinHash (also
LSH). Since the number of genomic distance computations is
O(log( N )) in GSearch, the computational time for estimating
genomic distance for a pair of genomes is not a major bottle-

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
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neck in overall computational speed because log( N ) is always
a small number. Accuracy in the genomic distance estimate is
relatively more important and the main reason that ProbMin-
Hash is the default option in GSearch. Related to this, ANI
as currently implemented, for instance, in FastANI is not ap-
propriate for this function because it is not metric; that is,
symmetry and triangle inequality properties do not hold ( 20 ).
Similarly, mutation rates (or ANI) estimated by FracMinHash,
CMash and related tools (e.g. Sourmash or skani-based calcu-
lated ANI) are also not metric ( 25 , 68 , 69 ). To solve this ‘met-
ric’ problem, a norm adjusted proximity graph (NAPG) was
proposed based on inner product, and shows improvements
in terms of both speed and recall using non-metric distances
( 70 ). This could be another direction for further improving the
speed and accuracy of GSearch in the future. The four options
provided as part of GSearch to estimate Jaccard-like similarity
are all metric, which ensures neighbor diversity when build-
ing the graph, and they are equally applicable to any microbial
genome, including viral, prokaryotic and fungal genomes. 

K-mer-based methods for genetic relatedness estima-
tion such as ProbMinHash have lower accuracy be-
tween moderately-to-distantly related genomes compare to
alignment-based tools (see Supplementary Note S2 and S4
for further discussion). Our empirical evaluation showed
that this relatedness level, for nucleotide searches, is around
78% ANI, and 52% AAI for the amino-acid searches (e.g.
Supplementary Figure S1 and S2 ). To circumvent this limita-
tion, we designed a 3-step framework as part of GSearch to
classify bacterial genomes that show different levels of nov-
elty compared to the database genomes. This framework in-
cluded a search at the universal gene level for deep-branching
genomes that are novel at the phylum level (AAI < 52%),
for which searching at the entire proteome level is less accu-
rate. Note that we did not make suggestions for thresholds for
(best-match) AAI values below 52% (or, in other words, clas-
sifications of novel query genomes at a level higher than the
family level) because the AAI values are too overlapping be-
tween the order, class and phylum levels based on existing tax-
onomy ( 71 ). We refer the users to other publications that pro-
pose AAI thresholds for these higher ranks ( 18 ,54 ). Finally, we
decided to not assign taxonomy within GSearch because such
taxonomic assignments and / or thresholds might be challeng-
ing to establish for viruses and microbial eukaryotes (or such
thresholds would likely differ from the prokaryotic thresh-
olds), and GSearch is aimed to be a universal (genome search)
tool, not only prokaryotic. Hence, the primarily objective of
GSearch is to find the most related genomes among millions
of database genomes and let the decision for taxonomic as-
signment, if this is a desirable output, to the user. 

Recently, methods that employ k-mers that allow mis-
matches, that is, spaced k-mers, have shown promise in ac-
curately estimating genomic relatedness even among distantly
related genomes with gains in speed ( 72 ). To apply spaced k-
mers to entire genomes, the recently developed ‘tensor sketch’
approaches could be explored in the future to simplify the
distance computation for distantly related bacterial and vi-
ral genomes ( 73 ) instead of relying on the mentioned 3-step
framework. In the meanwhile, the default ProbMinHash ap-
proach employed is highly efficiently and, importantly, can ef-
fectively deal with incomplete genomes or genomes of (dras-
tically) different length, a known limitation of traditional
Mash-based methods ( 28 ). Comparing genomes of different
length is not uncommon, e.g. bacterial genome sizes can differ
by more than ten-fold, as can be the case between MAGs of 
different level of completeness or when searching a short se- 
quence (e.g. a bacteriophage genome) against a large genome 
collection (e.g. the whole viral genome database). Our own 

analysis showed that ProbMinHash is robust down to 50% 

completeness level ( Supplementary Table S12 ), which is also 

the most commonly used standard for selecting MAGs of suf- 
ficient quality for further analysis and reporting ( 74 ). Prob- 
MinHash is also robust for genomes with repeats or gene du- 
plications (e.g. fungal genomes) due to the k-mer weighting 
step by weighted MinHash, a property not shared by simple 
MinHash implementations. 

In general, the genome relatedness estimated, or best 
database matching genomes identified, by GSearch were 
highly consistent with BLAST-based ANI / AAI results or phy- 
logenetic placement of the genomes using GTDB-Tk, partic- 
ularly for query genomes with closely or moderately related 

genomes in the database, e.g. related at the species or genus 
levels ( Supplementary file S1 , Figure 3 E). For more distantly 
related query genomes relative to database genomes, clas- 
sification results of GSearch showed some differences with 

GTDB-Tk. These differences were not always possible to as- 
sess further for the most correct genome placement but could 

be due, at least partly, to the incompleteness and / or contam- 
ination of query or / and database genomes, which renders 
the resulting concatenated alignment of universal genes used 

by GTDB-Tk unreliable ( 74 ,75 ), as a few amino-acid posi- 
tions per gene are used in the final alignment. In contrast, the 
AAI and ProbMinHash approaches should be more robust to 

changes of a small number of genes because the entire pro- 
teome is considered. 

Graph-based NNS methods achieve good performance 
compared to tree based and locality-sensitive hashing (LSH) 
methods or space partitioning methods ( 40 ). Building a 
HNSW graph relies on proximity of the database elements.
Thus, if the distances among database elements, in our case 
genomes, cannot be effectively estimated, the navigation of 
graph becomes less efficient (e.g. gets trapped in local min- 
ima). This is especially problematic for highly sparse / distantly 
related and diverse datasets, like the viral genome database,
in which two phage genomes could often share very little 
genomic information (k-mers). Our results confirmed this 
expectation when we attempted to build a nucleotide-level 
graph for viral genomes. Hence, the amino acid level will 
be much more robust for viral genomes and is the recom- 
mended level to use. Finally, recent advancements in prox- 
imity graph building could further reduce database building 
time from O(N*log(N)) to O(N*c) (where c is a constant, in- 
dependent of the number of genomes or N ) and achieve bet- 
ter search performance than existing approximate proximity 
graph ( 76 ). This approach essentially reduces the number of 
points / genomes to be compared during graph building, and 

will be explored in future versions of GSearch to provide addi- 
tional speed-up and / or robustness for graph database build- 
ing. The HNSW graph, and graph-based K-NNS in general,
can be further improved by adding shortcut edges and main- 
taining a dynamic list of candidates compared to a fixed list 
of candidates used by default ( 77 ). Graph reordering, a cache 
optimization that works by placing neighboring nodes in con- 
secutive (or near-consecutive) memory locations, can also be 
applied to improve the speed of HNSW ( 78 ). It should be 
mentioned that in our HNSW Rust implementation, a mem- 
ory map was also implemented, which will solve the memory 

https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkae609#supplementary-data
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imit problem when building large graph with billions of data
oints or genomes. Another direction for further improve-
ent of GSearch could be the use of Graphics Processing Unit

GPU) instead of CPU because GPUs are more efficient in han-
ling matrix computations and machine learning tasks ( 79 ).
e will explore these options in future versions of GSearch. 
Finally, GSearch provides a framework to create a new

ata structure: combining probabilistic data structures (e.g.
inHash, HyperLogLog) with a graph-based nearest neigh-

or search algorithm that should be applicable to not only
enomes but also text searching purposes more broadly.
or example, the MinHash algorithm or SimHash, another
inHash-like algorithm, ( 80 ) can be applied to document

e.g. website, text) similarity search when combined with
NSW. Further, we can hash strings to approximate edit dis-

ance (a metric distance) to avoid expensive dynamic pro-
ramming ( 81 ) via order MinHash ( 82 ). In fact, we reimple-
ented order MinHash in our probminhash library, and it

an be easily applied to do fast DNA string (not fragmented
enomes) or general string search. 

To summarize, GSearch, based on MinHash-like algorithms
nd HNSW, solves a major current challenge in search and
lassification of microbial genomes due to its efficiency and
calability. Both the Densified MinHash and HNSW are ap-
roximating the theoretical optimality of similar algorithms
n terms of speed and accuracy trade-off. GSearch will serve
he microbial sciences for years to come since it can be equally
pplied to fungal, bacterial, and viral genomes, and thus offer
 common framework to identify, classify and study all micro-
ial genomes at a million-to-billion scale. 

ata availability 

ll the mentioned pre-built database for bacteria, fungi and
hage genomes can be found at: http://enve-omics.ce.gatech.
du/ data/ gsearch . Code can be found here: https://github.
om/ jean-pierreBoth/ gsearch or via Zenodo ( https://doi.org/
0.5281/zenodo.10543594 ) ( 83 ). GSearch relies on kmerutils
0.0.10 ( https:// github.com/ jean-pierreBoth/ kmerutils ) ( 83 ),
hich is a Rust package that we developed to process genome

asta files including k-mer string compression, recursive k-mer
ashing, k-mer counting and filtering using cuckoo filter. All
ests performed in this study were based on GSearch version
.1.3. Scripts for reproducing the results of this study can be
ound here: https:// github.com/ jianshu93/ gsearch _ analysis . 

upplementary data 

upplementary Data are available at NAR Online. 
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