Table 4.
Table representing the performances of various State-of-art models.
| Approach | Dataset | Sensitivity | Specificity | Accuracy | F1-Score |
|---|---|---|---|---|---|
| SW-FFANN [56] | PIMA | 0.85 | 0.96 | 0.91 | N/A |
| ResNet18 [55] | PIMA | 0.88 | 0.66 | 0.80 | 0.85 |
| ResNet50 [55] | PIMA | 0.94 | 0.57 | 0.80 | 0.85 |
| SVM [55] | PIMA | 0.95 | 0.83 | 0.90 | 0.93 |
| SVM + RF + MLP + ANFIS [57] | Real-time sensor data | N/A | N/A | 0.90 | N/A |
| Deep transfer learning [58] | OhioT1DM dataset | 0.59 | 0.98 | 0.95 | 0.61 |
| LR [59] | PPG Signal data | 0.73 | 0.64 | 0.69 | N/A |
| GSVM [60] | PPG Signal data | 0.79 | 0.83 | 0.81 | N/A |
| Bayesian classifier [61] | PPG Signal data | 1.00 | 0.87 | 0.93 | N/A |
| SVM [62] | PPG Signal data | 0.98 | 0.96 | 0.97 | N/A |
| AdaBoost [63] | ECG Signal data | 0.92 | 0.88 | 0.90 | N/A |
| IGRNet [64] | ECG Signal data | 0.80 | 0.77 | 0.77 | N/A |
| GoogLeNet [64] | ECG Signal data | 0.69 | 0.83 | 0.75 | N/A |
| AlexNet [64] | ECG Signal data | 0.77 | 0.82 | 0.74 | N/A |
| HoG with K-NN [64] | ECG Images | 0.70 | 0.79 | 0.76 | N/A |
| AlexNet [19] | Spectrogram images | 0.93 | 0.96 | 0.95 | 0.92 |
| ResNet [19] | Spectrogram images | 0.93 | 0.96 | 0.95 | 0.92 |
| KNN [12] | Spectrogram images | 0.89 | 0.89 | 0.86 | 0.86 |
| SVM [12] | Spectrogram images | 0.91 | 0.91 | 0.89 | 0.89 |
| DenseNet-121 [65] | Spectrogram images | 0.72 | 0.73 | 0.98 | N/A |
| ResNet with SVM [66] | Spectrogram images | 0.98 | 0.98 | 0.98 | 0.98 |
| Proposed Approach | Spectrogram images | 0.97 | 0.96 | 0.96 | 0.93 |