Skip to main content
. 2024 Aug 10;10(16):e36112. doi: 10.1016/j.heliyon.2024.e36112

Table 4.

Table representing the performances of various State-of-art models.

Approach Dataset Sensitivity Specificity Accuracy F1-Score
SW-FFANN [56] PIMA 0.85 0.96 0.91 N/A
ResNet18 [55] PIMA 0.88 0.66 0.80 0.85
ResNet50 [55] PIMA 0.94 0.57 0.80 0.85
SVM [55] PIMA 0.95 0.83 0.90 0.93
SVM + RF + MLP + ANFIS [57] Real-time sensor data N/A N/A 0.90 N/A
Deep transfer learning [58] OhioT1DM dataset 0.59 0.98 0.95 0.61
LR [59] PPG Signal data 0.73 0.64 0.69 N/A
GSVM [60] PPG Signal data 0.79 0.83 0.81 N/A
Bayesian classifier [61] PPG Signal data 1.00 0.87 0.93 N/A
SVM [62] PPG Signal data 0.98 0.96 0.97 N/A
AdaBoost [63] ECG Signal data 0.92 0.88 0.90 N/A
IGRNet [64] ECG Signal data 0.80 0.77 0.77 N/A
GoogLeNet [64] ECG Signal data 0.69 0.83 0.75 N/A
AlexNet [64] ECG Signal data 0.77 0.82 0.74 N/A
HoG with K-NN [64] ECG Images 0.70 0.79 0.76 N/A
AlexNet [19] Spectrogram images 0.93 0.96 0.95 0.92
ResNet [19] Spectrogram images 0.93 0.96 0.95 0.92
KNN [12] Spectrogram images 0.89 0.89 0.86 0.86
SVM [12] Spectrogram images 0.91 0.91 0.89 0.89
DenseNet-121 [65] Spectrogram images 0.72 0.73 0.98 N/A
ResNet with SVM [66] Spectrogram images 0.98 0.98 0.98 0.98
Proposed Approach Spectrogram images 0.97 0.96 0.96 0.93