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Abstract

Landau–Zener–Stückelberg–Majorana (LZSM) transitions occur between quantum states when 

parameters in the system’s Hamiltonian are varied continuously and rapidly. In magnetic 

resonance, losses in adiabatic rapid passage can be understood using the physics of LZSM 

transitions. Most treatments of LZSM transitions ignore the T2 dephasing of coherences, however. 

Motivated by ongoing work in magnetic resonance force microscopy, we employ the Bloch 

equations, coordinate transformation, and the Magnus expansion to derive expressions for the 

final magnetization following a rapid field sweep at fixed irradiation intensity that include T2

losses. Our derivation introduces an inversion-function, Fourier transform method for numerically 

evaluating highly oscillatory integrals. Expressions for the final magnetization are given for 

low and high irradiation intensity, valid in the T2 ≪ T1 limit. Analytical results are compared to 

numerical simulations and nuclear magnetic resonance experiments. Our relatively straightforward 

calculation reproduces semiquantitatively the well known LZSM result in the T2 0 limit.
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1. Introduction

The rapid detection and imaging of single electron spins would be a powerful tool for 

the atomic-scale characterization of samples ranging from emerging quantum computing 

materials to individual spin-labeled biomolecules. Applying single-spin imaging to nitroxide 

spin labels — widely employed to study globular proteins, membrane proteins, and nucleic 

acids — is an especially exciting prospect. Since pioneering experiments in the early 1990’s 

optically detected magnetic resonance in individual pentacene molecules [1, 2], more widely 

applicable magnetic resonance experiments have demonstrated the detection and imaging 

of individual electron spins. The two most generally applicable such experiments involve 

using magnetic resonance force microscopy to detect an individual E′ defect in quartz [3] 

and employing a nitrogen-vacancy center in diamond to observe a single adventitious radical 

located nearby [4, 5].

Frustratingly, both these experiments observed essentially unpolarized spins and 

consequently required signal-averaging times of 13 hour/pt. in Ref. 3 and 40 min/pt. in 

Ref. 5 [6]. For imaging nitroxide-labeled proteins, magnetic resonance force microscopy 

(MRFM) is preferable to NV-center magnetometry because of the MRFM experiment’s 

superior depth of view. Moore and coworkers showed that small numbers of nitroxide spins 

could be observed as a cantilever frequency shift in an MRFM experiment [7]. Motivated 

by this breakthrough, Nguyen and Marohn proposed a single-spin MRFM experiment 

optimized to detect and image individual nitroxide spin labels using a magnet-tipped 

cantilever, with an estimated signal averaging time of only seconds per point [8]. In contrast 

with the spin-noise experiments of Refs. 3 and 5, the proposed experiment measures the 

average (i.e. thermal) spin polarization, greatly improving the signal-averaging statistics.

In the Ref. 8 proposal, spin magnetization is manipulated with short bursts of microwave 

irradiation applied in synchrony with cantilever motion. The resulting changes in spin 

magnetization are detected as a force-gradient-induced shift in cantilever frequency [7, 9]. 

Computing spin evolution in the Ref. 8 experiment is challenging. To detect spin-induced 

changes in cantilever frequency, the cantilever must be moving. Large time-dependent 

resonance offsets are experienced by electron spins below the moving magnet-tipped 

cantilever, and one is concerned that the resonance offset changes so rapidly that spins 

may not be in resonance with the applied microwaves long enough to invert or even saturate. 

The purpose of this manuscript is to assess the potential loss of signal due to this effect.

The magnetic resonance community is familiar with the problem of magnetization 

loss during an adiabatic rapid passage through resonance [10–18]. Adiabatic rapid 

passage is an example of a Landau–Zener–Stückelberg–Majorana (LZSM) transition [19] 

— wavefunction evolution that occurs when the Hamiltonian parameters are changed 
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continuously. LZSM transitions are used to describe a wide range of phenomena beyond 

magnetic resonance — atomic collisions [20] chemical reaction rates [21, 22], population 

inversion in electronic states [23], and qubit control [24–27] for example. LZSM transitions 

have recently been used to describe the quantum dynamics of two coupled qubits [28, 29], 

qutrits [30–32], coupled qutrits [29], and quantum annealing protocols [33].

State-to-state transition probabilities following an LZSM transition can be calculated for a 

two-level system exactly using the Schrödinger equation [19, 26, 27, 34]. If the frequency of 

applied irradiation is swept through resonance too quickly, level populations are unaffected 

by the irradiation. If, on the other hand, the irradiation is swept through resonance 

slowly, i.e. adiabatically, then a population inversion is achieved. The Schrödinger-equation 

treatment of the LZSM transition is not obviously valid at low irradiation intensity and, 

moreover, neglects relaxation. Our nitroxide spin of interest has T2 = 0.45 μs, comparable 

to or shorter than the time to sweep through resonance in a magnetic resonance force 

microscope experiment. Relaxation during a rapid passage through resonance is, therefore, a 

concern.

Assessing how relaxation modifies the transition probabilities during an LZSM transition is 

an area of active research. There are two issues to consider in magnetic resonance versions 

of the LZSM experiment. The first is computing spin relaxation during a perfectly adiabatic 

sweep through resonance; even when losses due to violation of the adiabatic condition 

are negligible, magnetization can still be lost due to relaxation. There is a large body of 

magnetic resonance literature treating relaxation from dipolar interactions and chemical 

exchange during an adiabatic, frequency-swept pulse [35–42]. This body of literature, 

however, neglects non-adiabatic losses.

The second issue is computing the final magnetization when the adiabatic condition is 

violated and relaxation is present. This is the issue considered here. One must take care 

assessing LZSM-transition studies, because, outside the magnetic resonance literature, non-

adiabatic losses are often called “dissipation” despite their being due to neither T1 nor T2

relaxation. While numerous studies have modeled T2 losses during an LZSM transition [23, 

43–55], none of these studies obtain a simple and accurate closed-form solution for the 

T2-modified transition probabilities in the simple case of a linear energy-level sweep, and 

none consider both low- and high-intensity irradiation.

To address this deficiency, here we compute the magnetization evolution following a fast 

sweep through resonance in the T2 ≪ T1 limit using the Bloch equations [56–59], coordinate 

transformations, and the Magnus expansion [60, 61]. We consider both low-intensity and 

high-intensity limits and obtain approximate solutions for the magnetization following an 

LZSM transition that accounts for T2 losses.

2. Theory

2.1. The connection between LZSM transitions and the Bloch equations

To see the connection between LZSM transitions and the Bloch equations, let us write out 

the LZSM problem in the language of magnetic resonance. Consider a spin with magnetic 
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moment μ = ℏγI, with ℏ Planck’s constant, γ the spins’s gyromagnetic ratio, and I the 

unitless angular momentum operator having components Ix, Iy, and Iz. This spin is placed in 

a magnetic field B t = B0 t z + B1 cos ωt x + sin ωt y , formed from a longitudinal magnetic 

field of magnitude B0 t  plus a transverse magnetic field of magnitude B1 rotating about the z
axis at angular frequency ω. The Hamiltonian for the spin, ℋ = − μ ⋅ B, is given by

ℋ t = ℏω0 t Iz + ℏω1 cos ωt Ix + sin ωt Iy .

(1)

with ω0 t = − γB0 t  the (time-dependent) Larmor frequency and ω1 = − γB1 the Rabi 

frequency. The eq. 1 Hamiltonian gives rise to LZSM transitions, instead of the usual Rabi 

oscillations, because in eq. 1 the longitudinal field amplitude B0 t  is now time-dependent; a 

static field B0 and time-dependent irradiation frequency ω t  also yields LSZM transitions.

Consider the resulting dynamics of a spin I = 1/2 particle having two energy levels: 

a ground state and an excited state. In the eigenbasis of the Iz operator, the spin’s 

wavefunction is given by

ψ t =
ce t
cg t

(2)

with cg t  and ce t  the ground-state and excited-state wavefunction coefficients, respectively. 

Plugging ψ t  and ℋ t  into the Schrödinger equation gives a set of two coupled non-linear 

equations for cg t  and ce t . These coupled equations can be simplified by applying a unitary, 

rotating-frame transformation ψ = Uψ with U = eiωtIz. The transformed wavefunction is 

governed by an effective Hamiltonian ℋeff = UℋU† + iU̇U† = ω0 t − ω Iz + ω1Ix, leading to 

the following two coupled differential equations for the complex-valued coefficients of the 

wavefunction ψ

iċe = 1
2 ω0 t − ω ce + 1

2ω1cg

(3)

iċg = 1
2ω1ce − 1

2 ω0 t − ω cg .

(4)

Eliminating cg gives a second order differential equation for ce t . For a linear sweep 

through resonance, ω0 t − ω = − vt and the coefficients in this differential equation are time 

dependent. Closed-form solutions for ce t ∞  and cg t ∞ , given ce 0  and cg 0 , can be 

written in terms of Weber functions [19].

Boucher et al. Page 4

J Magn Reson. Author manuscript; available in PMC 2024 September 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



According to the Feynman-Vernon-Hellwarth theorem [58], the dynamics of a two-level 

quantum system can be solved by following the time evolution of a real, three-dimensional 

vector whose components are

u = cecg
* + cgce

*

(5)

v = i cecg
* − cgce

*

(6)

w = cece
* − cgcg

* .

(7)

For the magnetic two-level system, the numbers u, v, and w are the components of the Bloch 

unit vector that points in the direction of spin’s magnetization. Recasting the LZSM problem 

in terms of the Bloch vector, we obtain the Bloch equations of the next section in the T1 ∞
and T2 ∞ limit. By recasting the LZSM problem as a modified set of Bloch equations, we 

can introduce saturation and dephasing effects by adding finite T1 and T2.

2.2. Unitless Bloch equations

Defining a unitless magnetization vector as follows,

m = (u, v, w)T = 1
Meq

Mx, My, Mz
T ,

(8)

with Meq the thermal-equilibrium magnetization, the Bloch equations in the rotating frame 

can be written as

d
dτ

u
v
w

=
−β δ 0
−δ −β 1

0 −1 −α
Bloch matrixB

u
v
w

+
0
0
α

vectorb

(9)

with

τ ≡ γB1t

(10)

a unitless time parameter created by multiplying time t by the Rabi frequency γB1, with γ
the electron gyromagnetic ratio and B1 the irradiation intensity in the rotating frame. The 
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inverse Rabi frequency is chosen as the time basis because B1 is held constant in experiments 

considered here. In eq. 9

α ≡ 1
γB1T1

(11)

and

β ≡ 1
γB1T2

(12)

are unitless relaxation-time parameters and

δ ≡ ΔB0/B1

(13)

is a unitless resonance-offset parameter, with ΔB0 = B0 − ω/γ the resonance offset and ω
the irradiation frequency. In experiments considered here, ω is constant, and B0 is time-

dependent due to tip motion in the MRFM experiment.

If we neglect the relaxation terms in the Bloch matrix, then eq. 9 is equivalent to ṁ = m × beff

with beff = xr + δz an effective magnetic field in the rotating frame and xr, yr, and z the 

rotating-frame unit vectors. The above ṁ equation describes the undamped precession of 

magnetization about the effective field in the rotating frame.

2.3. Breakdown of saturation when the resonance offset is time-dependent

Closed-form solutions to eq. 9 can be obtained when the intensity, B1, and resonance 

offset, ΔB0, of the applied irradiation are both time-independent. In the presence of the 

moving tip in the MRFM experiment, however, spins experience a large time-dependent 

resonance offset. The evolution of magnetization in this situation requires the development 

of approximate solutions. Below we develop approximate solutions in a low-B1 limit and a 

high-B1 limit. The transition between the two limits occurs at a critical field

B1
crit = 1

2γ
1
T2

− 1
T1

(14)

below which all the Bloch-matrix eigenvalues are real, and no Rabi oscillations are evident.

2.4. Breakdown in the low-B1 limit

We are interested in spins with T2 ≪ T1, i.e. β ≫ α. In this limit, the transverse magnetization 

quickly reaches a pseudo-equilibrium with the slowly evolving longitudinal magnetization. 
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We can use this pseudo-equilibrium condition to develop a useful approximation for how 

the rate at which the longitudinal magnetization reaches equilibrium depends on irradiation 

intensity and resonance offset.

The Bloch equations describing the unitless transverse magnetization can be written

d
dτ

u
v = −β δ

−δ −β
u
v + 0

w τ

(15)

where we write w τ  to emphasize that the z-axis magnetization is time dependent. Let us 

nevertheless treat w τ  in the above equation as if it was time-independent and solve for the 

steady-state transverse magnetization. The result is

uss = δ
β2 + δ2w τ and vss = β

β2 + δ2w τ .

(16)

We should regard w τ  in these equations as a slowly varying function of time that u and v
respond to instantaneously. Substituting u uss in the Bloch equation for w, we obtain the 

differential equation

d
dτ w = − α + β

β2 + δ(τ)2
reff τ

w + α

(17)

where the underbraced term is an effective relaxation rate reff τ . This rate is time-dependent 

if the resonance offset is time-dependent, as indicated. Changing the independent variable in 

eq. 17 from τ to t we obtain a new differential equation dw/dt = − reff t w + T1
−1, with

reff t = 1
T1

+ γB1
2T2

1 + γT2ΔB0 t 2

(18)

the effective relaxation rate in units of s−1, now written in terms of time t. The above 

treatment is valid when r t ≪ 1/T2, which is true, assuming T2 ≪ T1, when B1 ≪ Bhomog with

Bhomog = 1
γT2

(19)

the homogeneous linewidth. In other words, the solution is valid in the low- B1 limit.
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Now consider an experiment in which the resonance offset is swept from above resonance 

(at time −t0) to below resonance (at time t0). In this experiment, the unitless resonance offset 

can be expressed as follows

δ τ = − α1πτ

(20)

with

α1 ≡ 1
πγB1

2
dΔB0

dt

(21)

a unitless sweep-rate parameter. We are interested in the z-magnetization at the end of the 

sweep. The exact solution to eq. 17 is

w τ0 = e−R τ0 w −τ0 + αe−R τ0 ∫
−τ0

τ0
eR τ dτ

(22)

with τ0 = γB1t0,

R τ0 = ∫
−τ0

τ0
reff τ′ dτ′ = ατ0 + 2 arctan a0/β

πα1
,

(23)

and a0 = πα1τ0. The argument of the arctan function in the above equation can be written

a0
β = γT2t0

dΔB0
dt = Bfinal

Bhomog

(24)

with Bfinal = t0dΔB0/dt the resonance offset at the end of the sweep.

In the limit that (a) Bfinal ≫ Bhomog and (b) the sweep time 2t0 is fast compared to T1 (i.e. 

ατ0 ≪ 1), the integrated relaxation rate simplifies to R τ0 ≈ 1/α1. Making these assumptions, 

and switching notation w mz for clarity, the second term in eq. 22 can be neglected and

mz
final = e−1/α1mz

initial

(25)

in the low-B1 limit. When the field is swept slowly through resonance, α1 ≪ 1, the final z
magnetization is zero, and the sample has been fully saturated. On the other hand, when 
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the field is swept quickly through resonance, α1 ≫ 1, mz
final ≈ mz

initial, and the magnetization is 

essentially unaffected by the irradiation.

2.5. Breakdown in the high-B1 limit

For sufficiently high B1 and sufficiently slow sweep rate, when δ is swept from well above 

resonance to well below resonance, the magnetization m follows the effective field beff

adiabatically. The initial unitless magnetization is minit = (0, 0, 1)T . Ideally, if B1 is suitably 

strong and the sweep suitably slow, then the final magnetization is (0, 0, − 1)T . If these 

conditions are not met, then mz
final will deviate from −1.

Klein et al. [62] and Harrell et al. [63] have considered the loss of magnetization during 

adiabatic rapid passage in the context of magnetic resonance force microscope experiments. 

Following Harrell et al., the probability of a deleterious diabatic transition follows from the 

long-known LZSM result [34, 64],

Pdia = e−1/2α1

(26)

with α1 the unitless sweep-rate parameter given by eq. 21 above. We see that this parameter 

also governs the efficacy of the adiabatic rapid passage. The probability of not making a 

diabatic transition is

Padia = 1 − Pdia = 1 − e−1/2α1 .

(27)

Assume the initial magnetization is minit = (0, 0, 1)T . If the magnetization follows the 

effective field adiabatically, then final z-component of magnetization is mz
final = − 1. If, on 

the other hand, a diabatic transition occurs, then the magnetization remains unchanged by 

the sweep and mz
final = 1. To obtain the final magnetization, we should weight each of these 

two possible outcomes by their probabilities,

mz
final = − 1Padia + 1Pdia

(28)

= − 1 + 2e−1/2α1 .

(29)

The adiabatic rapid passage is successful, mz
final ≈ − 1, when α1 ≪ 1 (i.e. B1 is large and dB0/dt

is small).

While the LZSM result is a remarkably simple equation, the result comes from a limiting 

solution to the Schrödinger equation, so completely neglects relaxation. Our sample of 
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interest has a short T2, so we are concerned about the validity of neglecting relaxation. We 

now use the Bloch equations to derive a result analogous to eq. 29. This approach opens a 

route to amending the Landau-Zener result to capture additional losses of magnetization due 

to T2 relaxation during the rapid passage through resonance.

To describe the loss of magnetization during a rapid passage through resonance, let us first 

approximate eq. 9 by neglecting the inhomogeneous term,

ṁ ≈ Bm

(30)

With the resonance offset time-dependent, δ t , let us work in a tilted coordinate system that 

keeps the effective field directed along the z axis. We define a tilted magnetization ma as 

follows

m = Tama

(31)

with T a a coordinate-rotation matrix. The inverse relation is ma = T a
−1m. Plugging eq. 31 

into 30 we obtain the following differential equation governing the evolution of the rotated 

magnetization,

ṁa = Ta
−1BTa − Ta

−1Ṫa

effective Bloch matrixBeff
a

ma

(32)

Using the intuition that tilting the rotating-frame around the yr axis will align beff with the z
axis, we choose T a to be a rotation around the yr axis:

Ta = Ry θ =
cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

(33)

with

θ τ = tan−1 1/δ τ δ τ ≥ 0
tan−1 1/δ τ + π δ τ < 0.

(34)

At large positive resonance offset, θ is zero, T a is the diagonal matrix, and the axes are 

untilted. At large negative resonance offset, T a implements a 180∘ rotation around the yr axis.

Using trigonometric relations,
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sinθ τ = 1
1 + δ(τ)2

(35)

cosθ τ = δ τ
1 + δ(τ)2

.

(36)

Substituting Eqs. 33 through 36 into eq. 32 yields the following effective Bloch matrix in the 

tilted frame

Beff
a =

− α + βδ2

1 + δ2 1 + δ2 α − β + δ̇
1 + δ2

− 1 + δ2 −β 0

α − β − δ̇
1 + δ2 0 − β + αδ2

1 + δ2

.

(37)

For compactness, we have dropped the explicit time dependence of δ. Neglecting relaxation 

by setting α 0 and β 0 gives the approximate Bloch matrix

Beff
a ≈

0 1 + δ2 δ̇
1 + δ2

− 1 + δ2 0 0

− δ̇
1 + δ2 0 0

.

(38)

This Bloch matrix describes the precession of magnetization about an effective field

beff
a = 1 + δ2za + δ̇

1 + δ2ya

(39)

with za and ya unit vectors in the tilted frame of reference defined by T a. Because δ is 

time dependent, the direction of beff
a  is continuously changing, giving rise to complicated 

magnetization dynamics, even in the tilted frame of reference.

To simplify the evolution further, let us apply an additional rotation to our coordinate 

system. Let the magnetization in the new coordinate system be

Boucher et al. Page 11

J Magn Reson. Author manuscript; available in PMC 2024 September 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ma = T bmb

(40)

with

T b = Rz ϕ τ =
cosϕ τ −sinϕ τ 0
sinϕ τ cosϕ τ 0

0 0 1

(41)

a transformation designed to rotate the magnetization ma around za, the z axis in the tilted 

frame; below we will choose ϕ τ  judiciously to simplify the effective Bloch matrix. The 

rotated magnetization mb is now governed by the differential equation

ṁb = Beff
b mb

(42)

where the effective Bloch matrix is given by

Beff
b τ = T b

−1Beff
a T b − T b

−1Ṫ b

(43)

which reduces to

0 1 + δ(τ)2 + ϕ̇ τ cosϕ τ δ̇ τ
1 + δ(τ)2

− 1 + δ(τ)2 − ϕ̇ τ 0 sinϕ τ δ τ
1 + δ(τ)2

− cosϕ τ δ̇ τ
1 + δ(τ)2

− sinϕ τ δ̇ τ
1 + δ(τ)2

0

.

(44)

For a linear field sweep, evolving from way above resonance to way below, δ τ  is given by 

eq. 20. Here we have used eqs. 10, 13, and 21 to write the time-dependent resonance offset 

in unitless form.

We are interested in following magnetization from time −τ0 to +τ0 where we will ultimately 

take the limit τ0 ∞. The effective Bloch matrix Beff
b τ  can be simplified by choosing the 

phase angle ϕ τ  to be

ϕ τ = ϕ0 + ∫
−τ0

τ
dτ′ 1 + δ τ′ 2 .

(45)
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This choice of phase makes the (1,2) and (2,1) matrix elements of Beff
b τ  vanish. Carrying out 

the above integral,

ϕ τ = 1
2τ 1 + α1

2π2τ2 + 1
2πα1

arcsinh πα1τ

(46)

where, for simplicity, we have set the initial condition to be

ϕ0 = − 1
2τ0 1 + α1

2π2τ0
2 − 1

2πα1
arcsinh πα1τ0 .

(47)

Choosing this initial phase is required to obtain a phase of ϕ = 0 at τ = 0, when the system 

has reached resonance.

To solve eq. 42 we use a 1st-order Magnus expansion [60, 61]. We are interested in the 

long-time solution, so will take the integration limits to be −∞ and +∞. In integrating eq. 44 

to obtain the 1st -order Magnus exponent Ω1 below we used a change of variables a = πα1τ; 

the variable a0 = πα1τ0 is the associated integration limit. We obtain

mb +∞ ≈ eΩ1mb −∞

(48)

with

Ω1 = ∫
−∞

+∞
Beff

b τ dτ =
0 0 −πI13 tsweep

0 0 0
πI13 tsweep 0 0

(49)

where the relevant integral can be written as follows

I13 a0, tsweep = ∫
−a0

+a0 1
π

cos 2πtsweepg a
1 + a2 da

(50)

with

tsweep = 1
(2π)2α1

(51)

a unitless sweep-time parameter, and
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g a = a 1 + a2 + arcsinh a .

(52)

In writing eq. 49 we have employed the convention that when the integral I13 is 

written with a single argument, the integration limits are assumed to be −∞, + ∞ , i.e. 

I13 tsweep = I13 ∞, tsweep . In writing eq. 49 we have also used that the sin ϕ τ  integral vanishes 

by symmetry.

By inspection, I13 tsweep  runs from 1 to 0 as the inverse-sweep-rate parameter tsweep runs 

from 0 to ∞. However, the eq. 50 integrand is highly oscillatory, and I13 tsweep  is therefore 

challenging to compute both quickly and accurately at arbitrary tsweep. A fast numerical 

method for computing the eq. 50 integral is reported in Appendix A. The integral I13 is 

plotted versus the parameter tsweep in Fig. A.8.

Taking into account eqs. 48 and 49 and eq. 31, the final magnetization in the rotating frame 

is given by

mz
final = − cos πI13 tsweep mz

initial

(53)

with tsweep given by eq. 51. The final magnetization mz
final is plotted versus the unitless sweep-

rate α1 in Fig. 1. The LZSM result, eq. 29, is plotted for comparison. We can see in Fig. 

1 that eq. 53 predicts semiquantitatively the LZSM breakdown of adiabatic rapid passage 

through resonance at high α1.

In summary, neglecting relaxation, we can recover Landau–Zener–Stückelberg–Majorana 

behavior from the Bloch equations using appropriately chosen coordinate transformations 

and the Magnus expansion.

We now expand our treatment to include T2-related magnetization losses during rapid 

passage. Returning to eq. 37, we set α 0, retain β, and recompute Beff
b , eq. 44, setting 

the angle ϕ τ  according to eq. 45. The result is

Beff
b τ =

−β + β cos2ϕ τ
1 + δ(τ)2

β
2

sin2ϕ τ
1 + δ(τ)2

cosϕ τ −βδ τ + δ̇ τ
1 + δ(τ)2

β
2

sin2ϕ τ
1 + δ(τ)2

− β
2

1 + cos2ϕ τ + 2δ(τ)2

1 + δ(τ)2
sinϕ τ −βδ τ + δ̇ τ

1 + δ(τ)2

− cosϕ τ βδ τ + δ̇ τ
1 + δ(τ)2

− sinϕ τ βδ τ + δ̇ τ
1 + δ(τ)2

− β
1 + δ(τ)2

.

(54)
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Integrating Beff
b τ  over −∞, + ∞  to obtain the first-order Magnus exponent Ω1 is now 

problematic, giving a divergent answer. To avoid this divergence, let us instead compute Ω1

by integrating from −τ0, + τ0  as follows:

Ω1 τ0 = ∫
−τ0

+τ0
Beff

b τ dτ

(55)

with

Ω1 τ0 =

−2βτ0 + I1 a0 + I11 a0, tsweep
2α2

0 −πI13 a0, tsweep

0 −2βτ0 + I1 a0 − I11 a0, tsweep
2α2

I23 a0, tsweep
α2

+πI13 a0, tsweep
I23 a0, tsweep

α2
− I1 a0

α2

.

(56)

In the above equation, the integration limit is a0 = πα1τ0. The new integrals appearing in Ω1

are I1 a0 = 2 arctan a0 /π, I11 a0, tsweep = I13 a0, 2tsweep , and

I23 a0, tsweep = ∫
−a0

+a0 1
π

a sin 2πtsweepg a
1 + a2 da .

(57)

The integrals I11 and I23 are plotted versus the inverse sweep-rate parameter tsweep = 1/(2π)2α1

in Fig. A.8. Also appearing in Ω1 is a second unitless sweep-rate parameter

α2 ≡ T2
πB1

dΔB0
dt .

(58)

We can see that eq. 49 is recovered from eq. 56 by taking the T2 ∞ limit (i.e. setting β 0
and α2 ∞). Comparing eqs. 21 and 58,

α2 = B1
Bhomog

α1,

(59)

where Bhomog = 1/γT2 is the homogeneous linewidth. We expect α2 > α1 in the high-B1 limit 

where B1 > Bhomog.

Let us use eq. 56 as a starting point for developing an approximate mz
final expression that 

accounts for T2 losses during the rapid passage. Developing this approximate expression is 

tricky because the Magnus expansion is not unconditionally convergent. The convergence 
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condition for the Magnus expansion is an ongoing area of research [61, 65–68]. The 

convergence condition is usually formulated for a quantum-mechanical system undergoing 

unitary evolution, with relaxation neglected. The usually-given convergence condition is 

[61]

∫
−τ0

+τ0
Beff

b τ 2dτ < π,

(60)

with ∥ ⋅ ∥2 shorthand for the 2-norm. At large integration times τ0, the diagonal elements of 

the Ω1 matrix become large and negative, violating the eq. 60 condition. However, in Ref. 

67 it is noted that “one can easily construct examples showing that [eq. 60] is not necessary 

for the convergence of the expansion.” It would appear that our eqs. 42 and 54 are one such 

example. At long time, 2βτ0 ≫ 1, the matrix Ω1 is dominated by two large negative matrix 

elements at diagonal positions (1,1) and (2,2). In this limit, eΩ1 is bounded, and the Magnus 

expansion is convergent by inspection.

In the absence of a clearly applicable convergence criterion, how to proceed? To guarantee 

convergence, we will be conservative and assume 2βτ0 ≪ 1, equivalent to requiring the 

total sweep time 2t0 to be much shorter than T2, so that eq. 60 holds. At the same time, 

we would like to approximate the integrals in Ω1 by their a0 ∞ values. The integrands 

are of the form 1/ 1 + a2 × oscillating function. We surmise that the integrals will be 

approximately converged for α0 ≳ π. This is equivalent to requiring α2 ≥ 1, which guarantees 

that the α2-related matrix elements in Ω1 are suitably small. At very large α2, however, eq. 56 

reverts to eq. 49 and is uninteresting; we expect interesting behavior as α2 decreases towards 

1.

When 2βτ0 ≪ 1, α2 ≥ 1, and α2 ≫ α1, we find that Ω1 is well approximated by

Ω1 ≈

1
2α2

0 −πI13 tsweep

0 1
2α2

0

πI13 tsweep 0 − 1
α2

.

(61)

When α1 ≪ 1, the I13 terms are negligible and

mz
final ≈ − e−1/α2mz

initial .

(62)

In this limit, magnetization losses are small when α2 ≫ 1. Mathematically, this limit is 

achieved when T2 is large, B1 is small, or the sweep is fast. To avoid T2 losses, we need the 

magnetization to spend as little time as possible “near” the plane, where “near” means when 
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the resonance offset becomes comparable to B1. This behavior is somewhat counterintuitive, 

because adiabatic losses are small when B1 is large and the sweep is slow. We conclude 

that some compromise might be required to limit both T2 and adiabatic losses during rapid 

passage. Considering eqs. 62 and 29, we propose

mz
final = e−1/α2 −1 + 2e−1/2α1 mz

initial

(63)

as an approximate expression that captures both T2 and fast-sweep losses during rapid 

passage at high B1.

3. Numerical simulations

Numerical simulations of magnetization versus time in a time-dependent offset experiment 

were carried out for the representative TEMPAMINE radical. Except where noted, the 

electron spin resonance parameters in Table 1 were used. Also shown in the table are 

useful reference fields: the saturation field Bsat, the critical Rabi frequency B1
crit, and the 

homogeneous linewidth Bhomog.

The Bloch equations were numerically integrated in Python. To facilitate numerical 

integration, the equations were put in the following homogeneous form [69]:

d
dtm4 = A t m4

(64)

with

m4 = Mx, My, Mz, Meq
T

(65)

an expanded 4-dimensional magnetization vector and

A t =

−r2 γΔB0 t 0 0
−γΔB0 t −r2 γB1 0

0 −γB1 −r1 r1

0 0 0 0

(66)

an expanded 4 × 4 Bloch matrix. In these equations Meq is the equilibrium magnetization, 

r1 = 1/T1 is the spin-lattice relaxation rate, and r2 = 1/T2 is the spin dephasing rate. For 

numerical stability, time was expressed in units of μs, rates in units of μs−1, and fields in 

units of mT.
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When the resonance offset ΔB0 is time-independent, eqs. 65 can be integrated to 

give m4 t = etAm4 0 . Implementing the matrix exponential using the SciPy package’s 

linalg.expm function, we verified that direct integration of eqs. 65 gives an m4 t
exhibiting the expected magnetization evolution and decay, including spin-lattice relaxation, 

following pulses applied both on and off resonance.

When the resonance offset is a function of time,

ΔB0 t = t − tres
dΔB0

dt ,

(67)

with tres the time at which resonance was reached and dΔB0/dt the field derivative. 

Simulations were run from time 0 to 2tres, with 2tres ≪ T1. In this case eqs. 65 were 

numerically integrated using the scipy.integrate module’s odeint function to obtain 

mz t .

3.1. Low-B B1 simulations

To study the dependence of the final magnetization on α1 in the low-B1 regime, we fixed 

B1 = B1
crit = 6.3μT and varied dΔB0/dt. The Bloch equations were integrated with carefully 

chosen values of the sweep time tres and sweep rate. The numerical integration became 

unstable at long time if the sweep rate was too large. If the final time was shortened to avoid 

this instability, then steady state was not reached. So the largest sweep rate could not be too 

large and the final time could not be too long.

With tres = 6 μs, we evolved magnetization with dΔB0/dt between 0.001 mT μs−1 and 

1 mT μs−1; the associated α1 values ranged from 4.54 × 10−2 to 4.54 × 101. Representative 

plots of mz t  versus time t are shown in Fig. 2. From these plots a final magnetization was 

extracted as ms
final = mz 12 μs  and plotted versus α1.

3.2. High-B1 simulations

To simulate magnetization dynamics in the high-B1 regime, we set 

dΔB0/dt = 0.70 mT μs−1, tres = 2 μs, and varied B1 from 1.12 mT to 3.56 μT; the associated α1

values ranged from 1 × 10−3 to 1 × 102. As mentioned above, the simulation parameters were 

carefully chosen to meet the competing constraints of covering a five-order-of-magnitude 

variation in α1, reaching steady-state, and avoiding long-time instability in the numerical 

integration of the Bloch equations.

Simulations were carried out for T2 = 0.45 μs, 2.25 μs, and 13.5 μs. Representative plots of 

mz t  versus time t are shown in Fig. 3 for the T2 = 2.25 μs simulation. In contrast with the 

low-B1 simulations of Fig. 2, large Rabi oscillations are now apparent. From such plots a 

final magnetization was extracted as ms
final = mz 4μs  and plotted versus α1. To compare ms

final to 
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theory, eqs. 56 and 63, we also need to know α2. In an experiment in which B1 is varied and 

dΔB0/dt is fixed, α2 can be computed from α1 as follows:

α2 = T2
α1γ
π

dΔB0
dt

1/2
.

(68)

4. Experiments

Experimental studies of  1H magnetization after an adiabatic rapid passage were carried out 

in a nuclear magnetic resonance experiment on polystyrene. The proton spins in polystyrene, 

like the unpaired electron spin in TEMPAMINE, have a T1 and T2 that differ by orders of 

magnitude [70, 71]. Atactic polystyrene (Sigma Aldrich, Mw = 211.6k, lot no. 11326LH) 

was dissolved at 0.8% w/w in deuterated chloroform (Cambridge Isotopes, 99.8%, lot no. 

PR-33545/04142). No care was taken to remove dissolved oxygen from the solution. Liquid 

NMR experiments were performed at −60°C, slightly above the chloroform solvent freezing 

point, on a 500MHz Varian INOVA spectrometer equipped with an extended VT range 

Varian broadband probe; cooling the sample reduced T2. Shaped pulses were generated with 

Pbox, as implemented in VnmrJ 2.2D, using a hard 90° pulse as a reference (14.9 μs at 

57 dB coarse power). The longitudinal relaxation time T1 was measured with the Varian 

Chempack inversion recovery sequence (INVREC; hard 180∘ and 90∘ pulses, 8 time points, 

2 s acquisition time and 8 s repetition time). The transverse relaxation time T2 was acquired 

with the Varian Chempack Carr-Purcell-Meiboom-Gill (CPMGT2) sequence; the echo time 

was 1 ms giving a 2 ms time resolution between positive echos.

The polystyrene NMR spectrum consists of  1H resonances from aliphatic backbone protons 

(0.975 to 1.686 ppm and 1.778 to 2.289 ppm) and aromatic protons (ortho and meta at 

6.031 to 6.913 ppm and para at 6.922 to 7.254 ppm). These resonances have distinct T2

values. Equation 63 was tested by producing, using a modified Varian s2pul sequence, 

a fixed-amplitude linear frequency sweep “chirped” pulse followed by a π/2 pulse; the 

interpulse delay was 10 μs. The chirped pulse was between 25 and 100 ms long with a 

47619 Hz sampling rate. For each measurement chirp B1 was varied between 0.2 μT and 

80 μT, corresponding to an α1 sweep-rate parameter of 10−2 to 102. Data were processed with 

MNova 14.3.2 (Mestrelab Research). The T1 and T2 measurement integrals were fit in Python 

using the lmfit package.

5. Results and discussion

Simulation results are shown in Fig. 4, where they are compared to theory.

At low-B1, Fig. 4(a), we see that saturation is effective for slow sweeps (i.e. small α1) but 

becomes ineffective for fast sweeps (i.e. large α1). Equation 25 quantitatively predicts the 

numerically calculated final magnetization over a three-order-of-magnitude variation in α1.
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At high-B1, the final magnetization depends on α1 in a more complicated way. Consider 

the T2 = 0.45 μs simulation in Fig. 4(b). At large α1, the irradiation is ineffective, as in the 

low-B1 case. Now as α1 is decreased, the magnetization becomes negative, indicating the 

onset of adiabatic inversion. Yet as α1 is decreased further, adiabatic inversion fails, and the 

magnetization becomes merely saturated.

This counter-intuitive behavior can be understood as follows. During a suitably “slow” 

sweep (i.e. small α1), the magnetization is effectively spin-locked along the direction of the 

effective field during an adiabatic passage through resonance. This situation corresponds to 

the magnetization remaining along the za axis in the tilted frame defined by T a. According 

to eq. 37, the decay of the za-axis magnetization is governed by the matrix element Beff
a

33. 

Writing out the differential equation governing this spin-locked magnetization ma z in terms 

of time t,

d
dt ma z = − rz

a ma z

(69)

with

rz
a = 1

T1

ΔB0(t)2

B1
2 + ΔB0(t)2

+ 1
T2

B1
2

B1
2 + ΔB0(t)2

(70)

an effective relaxation rate. We see that the decay of spin-locked magnetization is T1-like 

(i.e. slow) far away from resonance but is T2-like (i.e. fast) near resonance. In the Fig. 

4(b–d) simulations, B1 is largest at small α1. At low α1, therefore, the magnetization spends a 

comparatively larger fraction of its evolution near resonance where T2 losses are significant. 

The apparent reversion to saturation apparent at low α1 in Fig. 4(b–d) is thus the result of a 

T2-related loss of magnetization. Consistent with this explanation, at fixed α1, these losses are 

smaller as T2 is increased, as can be seen in Fig. 4(c) and Fig. 4(d).

At high B1, we used two curves to describe the simulated magnetization in Fig. 4(b–

d) — the empirical eq. 63 (solid line) and the first-order Magnus expansion, eq. 56, 

taken in the 2βτ0 ≪ 1,   a0 ∞ limit (dotted line). Of the two, eq. 63 describes the 

simulated magnetization better. Although we derived it rigorously, eq. 56 agrees only 

semiquantitatively with the LZSM result in the T2 ∞ limit, so it is perhaps not surprising 

that this equation describes the magnetization imperfectly in the finite-T2 limit as well. 

While our proposed semi-empirical eq. 63 was not derived rigorously, our Sec. 2 derivation 

shows why it is physically plausible.

Equation 63 was tested experimentally using  1H spins in polystyrene dissolved in deuterated 

chloroform. The chemical structure and NMR spectrum of the polystyrene sample are 

shown in Fig. 5(top); four groups of protons are spectroscopically resolvable. The measured 
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relaxation times of the sample’s protons are tabulated in Table 2. The T1/T2 ratio ranged from 

41 for the group 1 aromatic protons to 241 for the group 4 aliphatic protons. Since T1/T2 ≫ 1, 

the primary assumption underlying eq. 63 is valid for all groups of spins in the sample. For 

comparison, T1/T2 = 2.8 × 103 for electron spins in TEMPAMINE.

The proton spectrum was acquired following an adiabatic rapid passage through all proton 

resonances in the sample. Rapid passages were carried out at a fixed sweep rate with B1

varied. The final magnetization, normalized to the initial magnetization, was plotted versus 

α1; see Fig. 5(bottom). The measured (colored squares), calculated (lines), and numerically 

computed (black circles) values of mz
final are in good agreement. For all four groups of spins, 

eq. 63 correctly predicts (a) the failure to invert or even saturate magnetization at low B1

(i.e. large α1), (b) the existence of a maximally inverted magnetization at intermediate B1 (at 

an α1 value between 0.1 and 1), and (c) and a reversion to saturation at high B1 (i.e. small 

α1). The group 4, aliphatic spins follow eq. 63 quantitatively while spin groups 1 through 

3 follow eq. 63 only qualitatively. This discrepancy cannot be due to the breakdown of the 

infinite-time approximation, i.e. a0 ∞, because the numerical simulations (black circles) 

accounted for the finite sweep time. We surmise that the discrepancy is due to spins not 

behaving as isolated two-level systems, as our theory also assumes. The sweep time, 100 ms, 

is on the order of the inverse J coupling, so interference effects during the sweep could be a 

complicating factor.

6. Conclusions

Our main findings are Eqs. 25 and 63, plotted against numerical simulations in Fig. 4. 

These simple analytical expressions for the final magnetization after a rapid passage through 

resonance, valid at low and high intensity, respectively, account for both the non-adiabatic 

and T2 losses seen in exact numerical simulations over a wide range of irradiation intensities 

and field-sweep rates. Equation 63 was tested experimentally using nuclear spins and 

found to be in good agreement with experiment. The Appendix A method for numerically 

evaluating highly oscillatory integrals and the eq. 53 and 56 intermediate results are also 

noteworthy.

There is a large body of literature concerned with creating population inversions using 

adiabatic sweeps optimized for total power or operational bandwidth [10–18, 26, 27]. The 

most effective of these inversions employ sweeps in which both B1 and the resonance 

offset ΔB0 are time-dependent. Although we assumed above that B1 was time-independent, 

it is straightforward to modify the definition of θ τ  in eqs. 35 and 36 to account for a 

time-dependent B1. Our approach can thus be applied to account for non-adiabatic and T2

losses in these more sophisticated inversion protocols.

Prior studies addressing relaxation in LZSM transitions have employed a wide range 

of methods: formal perturbation expansion series [23], a sum over paths [43], Bloch 

equations [44, 46, 54], Linblad equations [46, 50, 54], an imaginary Hamiltonian [52], 

master equations [54], and a two-level system coupled to a bath of bosons [45, 47–49, 51, 

53, 55] or other two-level systems [47] (e.g. spin-boson models). The spin-boson models 
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generally include longitudinal (i.e. diagonal) bath couplings [49, 51, 55], to model T2-like 

dephasing of coherence, and may also include transverse (i.e. off-diagonal) bath couplings 

[45, 47, 48, 53], to model T1-like spin-lattice relaxation of population differences. Here 

we addressed relaxation in LZSM transitions using the Bloch equations, three coordinate 

transformations, and the Magnus expansion. There are only a few prior examples of using 

a Magnus expansion to treat LZSM transitions [33, 68], but these treatments neglected 

relaxation. Calculating the LZSM-transition probabilities in the dissipationless limit usually 

requires contour integration [34] or invoking opaque special-function solutions to a third-

order differential equation [19]. It is therefore noteworthy that our relatively straightforward 

calculation reproduces semiquantitatively the well-known LZSM result (eq. 53, in the 

T2 ∞ limit). Working in the T2 ≪ T1 limit, it was easy to include T2 losses using our 

approach. In contrast with nearly all prior work, we obtained closed-form expressions for the 

final population difference that depend explicitly on B1 and T2.

Our results agree with prior work. Some [23, 49], but not all [44], prior numerical studies 

of LZSM transitions including T2 losses obtained behavior qualitatively similar to that seen 

in Fig. 4: the two-level system remains unperturbed at high sweep rate, imperfect adiabatic 

inversion is seen at intermediate sweep rate, and saturation is achieved at low sweep rate. 

Our low-B1 result, eq. 25, reproduces eq. 15 in Ref. 72, derived via resumming a formal 

perturbation expansion series. Our high-B1 result, eq. 63, has the same form as eq. 27 in Ref. 

46, derived using an approach complimentary to ours.1 The Ref. 46 derivation employed 

an interaction representation diagonalizing the Bloch matrix, assumed the nondissipative 

propagator is known, assumed (without justification) that the nondissipative propagator 

commutes with the dissipation matrix in both the adiabatic and non-adiabatic limits, and 

obtained corrections to the known LZSM dynamics arising from dissipation. In contrast, we 

have derived a T2 correction to LZSM dynamics from first principles, eq. 56, having made no 

ab initio assumptions about the nondissipative propagator.

Nevertheless, we make a number of uncontrolled approximations, and further work is 

needed to make our derivation more rigorous. The first such assumption requires 2βτ0 ≪ 1. 

This condition seems unnecessarily conservative given (1) the obvious convergence of the 

Magnus expansion at long times, as discussed following eq. 60, and (2) the good agreement 

between eq. 63, numerical calculations, and experiments at times 2βτ0 ≫ 1. To go beyond the 

2βτ0 ≪ 1 requirement we need a Magnus-expansion convergence criterion applicable to the 

sort of real matrices considered here — a significant undertaking. The second uncontrolled 

approximation is computing the eq. 56 integrals only in the a0 ∞, infinite-time limit. 

We have not been able to generalize the Appendix A integration scheme to finite a0; the 

integrals at finite a0 can be computed numerically but this approach is prohibitively slow. 

The agreement between eq. 63, numerical Bloch-equation simulations, and experiments 

indicates that the eq. 56 integrals are close to their a0 ∞ limit for the large-bandwidth, 

finite-time sweeps considered here.

1We caution that the exponential factor in the Ref. 46, eq. 15 formula contains a typographical error. In Ref. 46, the exponential factor 
η in Table I, the Landau-Zener sweep case, is given by η = πΓΩ0T , which has incorrect units Reproducing the last steps in the Ref. 

46 derivation of the exponential factor, we obtain η = πΓΩ0T 2, equal to 1/α2 in our notation.
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Finally, we can use our results to design magnetic resonance force microscope experiments. 

Consider an experiment [73] employing a radius a = 50 nm cobalt sphere (saturation 

magnetization μ0MS = 1.8 T) operating at a tip-sample separation of ℎ = 30 nm. The sphere 

is magnetized along the z direction and oscillates in the x direction, moving parallel to a 

sample surface. To compute the time-dependent magnetic field experienced by the sample, it 

is helpful to know the tip field gradient [74]

dBz
tip

dx = − a3μ0Ms

2r4 3 + 5 cos 2θ sin θ cos ϕ

(71)

where we have expressed the gradient in polar coordinates, with θ defined relative to z, ϕ
defined relative to x, and r the radial distance relative to the center of the sphere. The 

gradient is zero directly beneath the tip. The gradient is maximized along the x = 0 line (i.e. 

ϕ = 0) at an angle θopt ≈ 0.175π. At that location, using r = a + ℎ,

dBz
tip

dx = − 1.377 μ0Msa3

(a + ℎ)4

(72)

The spherical magnet is attached to a cantilever whose position is time dependent: 

x t = x0p cos 2πf0t , with x0p = 164 nm the zero-to-peak cantilever amplitude and f0 = 7.3 kHz
the cantilever oscillation frequency. The peak time-dependent field experienced by a spin at 

angle θopt and tip-sample separation ℎ is

dΔB0
dt = dBz

tip

dx
dx
dt = − 8.652f0μ0Msa3x0p

(a + ℎ)4
= 5.69 × 104 T s−1

(73)

where we have evaluated dx/dt at the zero crossing where the derivative is maximum.

In the presence of the eq. 73 field sweep, eq. 21 tells us that achieving α1 ≤ 1 requires 

B1 ≥ 320μT. One would naively think that to saturate the electron spin magnetization would 

require B1 ≈ 10Bsat = 2.4 μT. The above analysis shows that, surprisingly, an irradiation 

intensity B1 more than 102-fold larger than 10Bsat is actually required to fully saturate the 

electron spin in the presence of the moving tip.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A.: Numerically integrating a highly oscillatory function

We wish to evaluate the integral

I13 tsweep = ∫
−∞

∞ 1
π

cos 2πtsweep g a
1 + a2 da

(A.1)

with

g a = a 1 + a2 + arcsinh a

(A.2)

Figure A.6: 
The Eq. A.1 integrand is highly oscillatory. (a) The Eq. A.2 function g a  versus a. (b) The 

Eq. A.1 integrand for various values of the parameter t.
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and

tsweep = 1
(2π)2α1

(A.3)

an inverse sweep-rate parameter. Other integrals of interest are

I11 tsweep = ∫
−∞

∞ 1
π

cos 4πtsweepg a
1 + a2 da = I13 2tsweep

(A.4)

and

I23 tsweep = ∫
−∞

∞ 1
π

a sin 2πtsweepg a
1 + a2 da .

(A.5)

The function g a  is plotted in Fig. A.6(a). The Eq. A.1 integrand is plotted in Fig. A.6(b) 

for selected values of the parameter t. For large values of a, the integration variable, g a a2. 

The Eq. A.1 integrand is highly oscillatory, with the oscillation frequency continuously 

increasing. This is true of the Eq. A.4 and A.5 integrands as well.

Computing the Eq. A.1 integral using standard integration packages is problematic 

and slow, especially when t is large. When tsweep = 0, I 0 = 1. Another useful reference 

value is tsweep,ref = 0.0466475. Mathematica returns I tsweep,ref = 0.5000 without error in 85 

ms. Mathematica is advertised as handling a wide range of one-dimensional and 

multidimensional integrals. Yet for t ≥ 2.2, Mathematica returns the error NIntegrate 

failed to converge.

Computing I tsweep,ref  using the Python function scipy.integrate.quad() returns 0.4925 

± 0.0036 in 35 ms with the message IntegrationWarning: The maximum number 

of subdivisions (50) has been achieved. Increasing the number of subdivisions 

to limit = 5000 returns 0.500028 ± 2.2 × 10−5, but the integration requires 2.2 s and still 

returns an IntegrationWarning error.

The Python function mpmath.quadosc() is specifically optimized to integrate oscillating 

functions. The function performs the Eq. A.1 integral well, provided it is fed an 

asymptotic formula for the integrand’s zeros. Evaluating I tsweep,ref  using mpmath.quadosc 

() and integrating over the 0, ∞  interval with the argument zeros=lambda 

n:mp.sqrt(mp.pi*n/0.0466475) returns 0.50000046 without error, but takes 2.5 s to 

do so. In our application, we need many thousands of integral evaluations. These evaluations 

require over 30 min using mpmath.quadosc(). We clearly need a faster way to evaluate 

integrals like Eq. A.1.
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To carry out the above integrals, we adapted an inverse-function approach suggested by 

Evans [75, 76]. Let ℎ be the inverse function of g. That is

ℎ g a = a

(A.6a)

g a ≡ b

(A.6b)

a = ℎ b

(A.6c)

Substituting Eq. A.6b into Eq. A.1 and changing the integration variable from a to b using 

Eq. A.6c transforms Eq. A.1 to

I13 tsweep = ∫
−∞

∞ 1
π

cos 2πtsweepb
1 + ℎ(b)2

dℎ
db db .

(A.7)

By changing the integration variable, we have removed the variable-frequency oscillation 

from the integrand. However, at this point neither ℎ nor dℎ/db is known. We can actually 

derive a formula for dℎ/db, as follows. Substituting Eqs. A.6b and A.6c into Eq. A.2 we 

obtain

b = ℎ b 1 + ℎ(b)2 + arcsinh ℎ b .

(A.8)

Differentiating both sides of this equation with respect to b yields an implicit equation for 

dℎ/db, which may be solved to obtain

dℎ
db = 1

2 1 + ℎ(b)2
.

(A.9)

Substituting this result into Eq. A.7 gives

I13 tsweep = ∫
−∞

∞ 1
π

cos 2πtsweepb

1 + ℎ(b)2 3/2db .

(A.10)
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According to Eq. A.10, the integral I tsweep  and the function 1/ 1 + ℎ(b)2 3/2
 are Fourier 

transform pairs. We can therefore compute I at an array of tsweep values rapidly using the fast 

Fourier transform (FFT) algorithm.

It remains to determine the inverse function ℎ b . Given the complicated form of g a , Eq. 

A.2, there is unfortunately no analytic formula for the inverse function ℎ. Given a set of bj

values, however, we can determine values of the inverse function ℎj numerically using an 

iterative algorithm, as follows.

Suppose we have a good guess for the inverse function. At large a, g a ≈ a2, which suggests 

ℎapprox b = b as an approximate inverse function. Applied to b0, the approximate inverse 

function yields ℎ0 = ℎapprox b0 . If we have guessed the inverse function well, then g ℎ0  will be 

close to b0. Employing a Taylor series, let us write

b0 = g ℎ0 + δℎ0 ≈ g ℎ0 + g′ ℎ0 δℎ0

(A.11)

where δℎ0 is an error we can use to improve our estimate of the inverse function and 

g′ a = dg/da = 2 1 + a2. Solving for δℎ0,

δℎ0 ≈ b0 − g ℎ0
g′ ℎ0

(A.12)

We can create an updated estimate of the inverse function using

ℎ1 = ℎ0 + ϵδℎ0

(A.13)

with ϵ ≤ 1a convergence factor. We can apply Eqs. A.12 and A.13 iteratively to obtain a 

converged estimate of the value of the inverse function at b0. While the algorithm was 

just described for a single b value, it can be carried out on an entire array of values 

simultaneously.

Representative results are shown in Fig. A.7. An array of 5 × 105   b values was created and 

the above algorithm was run for 75 iterations with ϵ = 0.25, taking 2 s. The resulting inverse 

function is plotted in Fig. A.7(a). As an accuracy check, we can apply the original function 

g to the inverse function ℎ b . The result should be g ℎ b = b, a line with zero intercept and 

unit slope; this is observed, Fig. A.7(b). The relative error, g ℎ b − b /b, is plotted in Fig. 

A.7(c) with the b = 0 point removed to avoid a division-by-zero error. The relative error is 

worst at small b, but is no larger than approximately 10−7 after as few as 75 iterations.

Boucher et al. Page 27

J Magn Reson. Author manuscript; available in PMC 2024 September 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



From the resulting ℎj = ℎ bj  values we computed an array 1/ 1 + ℎj
2 3/2; Ij = I13 tsweep,j  values 

were computed from this array via FFT. Some thought is required to perform the FFT. 

The variables b and tsweep are Fourier transform pairs, with b and tsweep playing the role of 

frequency and time, respectively. Recall that tsweep = 1/(2π)2α1. We are interested in computing 

the integral for α1 values ranging from α1
max = 102 to α1

min = 10−3, corresponding to tsweep values 

ranging from

tsweep
min = 1/(2π)2α1

max = 2.53 × 10−4

tsweep
max = 1/(2π)2α1

min = 2.53 × 101 .

We created an array of Ntsweep = 217 = 131072 tsweep,j values using tsweep
min  as the time step. 

Working in Python, the np.fft.fftfreq function was used to create an array of negative 

and positive bj values from the tsweep,j values. We created an array of inverse function values ℎj

using the above algorithm and implemented the Eq. A.10 integral, using the np.fft.ifft 

function to obtain an array of Ij values. Because of the even symmetry of the ℎj values, the 

resulting Ij values are artificially symmetric; only tsweep,j values with indices 0, Ntsweep/2  are 

meaningful.

The I11 and I23 integrals were computed analogously. The resulting integrals are plotted 

versus tsweep in Fig. A.8.

Figure A.7: 
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Iterative determination of the inverse function ℎ b , Eq. A.6, using the algorithm described 

in the text. Upper: The resulting inverse function. Middle: An accuracy check. Bottom: The 

relative error.

Selected values of the integral were compared to mpmath.quadosc() results. The 

fractional error in I13 was as large as 1.4 × 10−2 at tsweep = 0 where I13 = 1, improved to 

7.2 × 10−4 at tsweep
min  where I13 = 0.5, and deceased further at larger tsweep values. The associated 

error in magnetization at tsweep = 0 is nevertheless only 1.0 × 10−3 because cos πI13  is a 

quadratic function near I13 = 1. The evaluation of the integral by the inverse-function/FFT 

method took only 0.5 s for 131072 points, compared to an extrapolated 80 h for the same 

number of points using mpmath.quadosc().

To create Fig. 1, a final magnetization, mz
final, was computed from the I13 integral and plotted 

versus the array α1 = 1/(2π)2tsweep, with the tsweep = 0 point discarded.

Figure A.8: 
The integrals I13 tsweep , I11 tsweep , and I23 tsweep  versus tsweep. Note the logarithmic x axis (the 

tsweep = 0 point has been discarded). The integral was computed numerically using the inverse-

function/FFT method described in the text. Declaration of Interest Statement (docx format)
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Revised Highlights

• Accounting for dephasing losses during rapid-passage experiments is 

challenging

• Treat with Bloch equations, coordinate transformations, and a Magnus 

expansion

• Obtain analytic equations accounting for both adiabaticity and T2 dephasing 

losses

• Need a larger B1 than expected in electron-spin magnetic resonance force 

microscopy

• A compromise B1 may be required to limit T2 and adiabatic losses during 

passage
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Figure 1: 
Final magnetization versus the unitless sweep-rate parameter. The final magnetization was 

computed, neglecting relaxation, using the Magnus expansion (dotted line, eq. 53) and the 

LZSM formula (solid line, eq. 29).
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Figure 2: 
Calculated magnetization versus time in the low-B1 regime. Simulation details: resonance 

parameters from Table 1; field intensity B1 = 6.3 μT; and, from bottom to top, 20 different 

sweep rates dΔB0/dt logarithmically distributed between 0.001 mT μs−1 (bottom) to 1 mT μs−1

(top).
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Figure 3: 
Calculated magnetization versus time in the high-B1 regime. Simulation details: resonance 

parameters from Table 1, except T2 = 2.25 μs sweep rate d ΔB0/dt = 0.70 mT μs−1 and, from 

bottom to top, 40 different B1 values logarithmically distributed between 1.12 mT (bottom) 

to 3.56 μT (top).
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Figure 4: 
Simulated final magnetization mz

final, after a sweep through resonance, plotted versus 

the unitless sweep rate α1. The Bloch equations were numerically integrated at (a) 

low intensity (B1 = 6.3 μT, T2 = 0.45 μs, and variable dΔB0/dt) and at (b-d) high intensity 

(dΔB0/dt = 0.70 mT μs−1, variable B1, and T2 equal to (b) 0.45 μs, (c) 2.25 μs, and (d) 13.5 μs). 
In the top plots we graph the varied parameter, d ΔB0/dt in (a) and B1 in (b-d), versus α1, 

while on the bottom plots we graph the final magnetization. Open circles are the numerically 

computed magnetization. In (a), the solid line is eq. 25. In (b-d), the solid line is eq. 63 while 

the dotted line is the magnetization computed using the first-order Magnus expansion in eq. 

56 taken in the 2βτ0 ≪ 1, a0 ∞ limit.
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Figure 5: 
Experimental measurement of final magnetization after a sweep through resonance. Top: 

Solution  1H NMR of 200k polystyrene in CDCl3 at −60∘C and 500 MHz. The integrated 

NMR peaks used in the analysis are numbered and shaded in purple. Bottom: Final 

magnetization after a chirped pulse plotted vs. the α1 sweep-rate parameter for the four 

numbered resonances (sweep rate = 800 kHz s−1, sweep time 2t0 = 100 ms). Colored squares 

are experimental data, black circles are numerical simulations, and black lines are eq. 63.
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Table 1:

Electron spin resonance parameters for TEMPAMINE.

variable definition numerical value

γ 2π × 28.0 GHz T−1

T2 1/r2 0.45 μs
T1 1/r1 1.3 ms

Bsat 1/ γ T1T2 0.24 μT
B1

crit r2 − r1 /(2γ) 6.3 μT
Bhomog 1/ γT2 12.6 μT
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Table 2:

Relaxation times of polystyrene in deuterated chloroform at −60 °C and 500 MHz.

spin T1[ms] T2[ms] T1/T2

1 1430 (10) 35.1 (0.6) 41

2 1393 (04) 24.5 (0.2) 57

3 1400 (10) 10.4 (0.2) 135

4 1370 (20) 5.6 (0.2) 241
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