Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1994 Jun 15;300(Pt 3):805–820. doi: 10.1042/bj3000805

Structure of chymopapain M the late-eluted chymopapain deduced by comparative modelling techniques and active-centre characteristics determined by pH-dependent kinetics of catalysis and reactions with time-dependent inhibitors: the Cys-25/His-159 ion-pair is insufficient for catalytic competence in both chymopapain M and papain.

M P Thomas 1, C M Topham 1, D Kowlessur 1, G W Mellor 1, E W Thomas 1, D Whitford 1, K Brocklehurst 1
PMCID: PMC1138238  PMID: 8010964

Abstract

Chymopapain M, the monothiol cysteine proteinase component of the chymopapain band eluted after chymopapains A and B in cation-exchange chromatography, was isolated from the dried latex of Carica papaya and characterized by kinetic and chromatographic analysis. This late-eluted chymopapain is probably a component of the cysteine proteinase fraction of papaya latex discovered by Schack [(1967) Compt. Rend. Trav. Lab. Carlsberg 36, 67-83], named papaya peptidase B by Lynn [(1979) Biochim. Biophys. Acta 569, 193-201] and partially characterized by Polgár [(1981) Biochim. Biophys. Acta 658, 262-269] and is the enzyme with unusual specificity characteristics (papaya proteinase IV) that Buttle, Kembhavi, Sharp, Shute, Rich and Barrett [Biochem. J. (1989) 261, 469-476] claimed to be a previously undetected cysteine proteinase eluted from a cation-exchange column near to the early-eluted chymopapains. A study of the time-dependent chromatographic consequences of thiol-dependent proteolysis of the components of papaya latex is reported. Chymopapain M was isolated by (i) affinity chromatography followed by separation from papain using cation-exchange f.p.l.c. on a Mono S HR5/5 column and (ii) cation-exchange chromatography followed by an unusual variant of covalent chromatography by thiol-disulphide interchange. The existence in chymopapain M of a nucleophilic interactive Cys/His catalytic-site system analogous to those in papain (EC 3.4.22.2) and other cysteine proteinases was deduced from the characteristics shape of the pH-second-order rate constant (k) profiles for its reactions with 2,2'-dipyridyl disulphide and ethyl 2-pyridyl disulphide. Analysis of the pH-k data for the reactions of chymopapain M with the 2-pyridyl disulphides and with 4,4'-dipyridyl disulphide permits the assignment of molecular pKa values of 3.4 and 8.7 to the formation and subsequent dehydronation of the Cys-S-/His-Im+H state of the catalytic site and reveals three other kinetically influential ionizations with pKa values 3.4, 4.3 and 5.6. The pH-dependences of kcat./Km for the hydrolysis of N-acetyl-L-Phe-Gly-4-nitroanilide at 25.0 degrees C and I0.1 M catalysed by chymopapain M and papain were determined. For both enzymes, little catalytic activity (5-7% of the maximal) develops consequent on formation of the catalytic site Cys-S-/His-Im+H ion-pair state (across pKa 3.4 for both enzymes). For papain, full expression of Kcat./Km for the uncharged substrate requires only the additional hydronic dissociation with pKa 4.2. By contrast, full expression of kcat./Km for chymopapain M requires additional hydronic dissociation with pKa values of 4.3 and 5.6.(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
805

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker E. N. Structure of actinidin, after refinement at 1.7 A resolution. J Mol Biol. 1980 Aug 25;141(4):441–484. doi: 10.1016/0022-2836(80)90255-7. [DOI] [PubMed] [Google Scholar]
  2. Bender M. L., Kézdy F. J. The trypsin-catalyzed hydrolysis of the p-nitrophenyl, methyl, and benzyl esters of alpha-N-benzyloxycarbonyl-L-lysine. J Am Chem Soc. 1965 Nov 5;87(21):4954–4955. doi: 10.1021/ja00949a049. [DOI] [PubMed] [Google Scholar]
  3. Blundell T., Carney D., Gardner S., Hayes F., Howlin B., Hubbard T., Overington J., Singh D. A., Sibanda B. L., Sutcliffe M. 18th Sir Hans Krebs lecture. Knowledge-based protein modelling and design. Eur J Biochem. 1988 Mar 15;172(3):513–520. doi: 10.1111/j.1432-1033.1988.tb13917.x. [DOI] [PubMed] [Google Scholar]
  4. Brocklehurst K. A sound basis for pH-dependent kinetic studies on enzymes. Protein Eng. 1994 Mar;7(3):291–299. doi: 10.1093/protein/7.3.291. [DOI] [PubMed] [Google Scholar]
  5. Brocklehurst K., Baines B. S., Salih E., Hatzoulis C. 'Chymopapain S' is chymopapain A. Biochem J. 1984 Jul 15;221(2):553–554. doi: 10.1042/bj2210553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brocklehurst K., Brocklehurst S. M., Kowlessur D., O'Driscoll M., Patel G., Salih E., Templeton W., Thomas E., Topham C. M., Willenbrock F. Supracrystallographic resolution of interactions contributing to enzyme catalysis by use of natural structural variants and reactivity-probe kinetics. Biochem J. 1988 Dec 1;256(2):543–558. doi: 10.1042/bj2560543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brocklehurst K., Carlsson J., Kierstan M. P., Crook E. M. Covalent chromatography by thiol-disulfide interchange. Methods Enzymol. 1974;34:531–544. doi: 10.1016/s0076-6879(74)34069-4. [DOI] [PubMed] [Google Scholar]
  8. Brocklehurst K., Carlsson J., Kierstan M. P., Crook E. M. Covalent chromatography. Preparation of fully active papain from dried papaya latex. Biochem J. 1973 Jul;133(3):573–584. doi: 10.1042/bj1330573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brocklehurst K., Kowlessur D., O'Driscoll M., Patel G., Quenby S., Salih E., Templeton W., Thomas E. W., Willenbrock F. Substrate-derived two-protonic-state electrophiles as sensitive kinetic specificity probes for cysteine proteinases. Activation of 2-pyridyl disulphides by hydrogen-bonding. Biochem J. 1987 May 15;244(1):173–181. doi: 10.1042/bj2440173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Brocklehurst K., Kowlessur D., Patel G., Templeton W., Quigley K., Thomas E. W., Wharton C. W., Willenbrock F., Szawelski R. J. Consequences of molecular recognition in the S1-S2 intersubsite region of papain for catalytic-site chemistry. Change in pH-dependence characteristics and generation of an inverse solvent kinetic isotope effect by introduction of a P1-P2 amide bond into a two-protonic-state reactivity probe. Biochem J. 1988 Mar 15;250(3):761–772. doi: 10.1042/bj2500761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brocklehurst K., Mushiri S. M., Patel G., Willenbrock F. Evidence for a close similarity in the catalytic sites of papain and ficin in near-neutral media despite differences in acidic and alkaline media. Kinetics of the reactions of papain and ficin with chloroacetate. Biochem J. 1982 Jan 1;201(1):101–104. doi: 10.1042/bj2010101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Brocklehurst K., O'Driscoll M., Kowlessur D., Phillips I. R., Templeton W., Thomas E. W., Topham C. M., Wharton C. W. The interplay of electrostatic and binding interactions determining active centre chemistry and catalytic activity in actinidin and papain. Biochem J. 1989 Jan 1;257(1):309–310. doi: 10.1042/bj2570309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Brocklehurst K., Salih E. A re-evaluation of the nomenclature of the cysteine proteinases of Carica papaya and a rational basis for their identification. Biochem J. 1983 Aug 1;213(2):559–560. doi: 10.1042/bj2130559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Brocklehurst K., Salih E., McKee R., Smith H. Fresh non-fruit latex of Carica papaya contains papain, multiple forms of chymopapain A and papaya proteinase omega. Biochem J. 1985 Jun 1;228(2):525–527. doi: 10.1042/bj2280525. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Brocklehurst K. Two-protonic-state electrophiles as probes of enzyme mechanisms. Methods Enzymol. 1982;87:427–469. doi: 10.1016/s0076-6879(82)87026-2. [DOI] [PubMed] [Google Scholar]
  16. Brocklehurst K., Willenbrock S. J., Salih E. Effects of conformational selectivity and of overlapping kinetically influential ionizations on the characteristics of pH-dependent enzyme kinetics. Implications of free-enzyme pKa variability in reactions of papain for its catalytic mechanism. Biochem J. 1983 Jun 1;211(3):701–708. doi: 10.1042/bj2110701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Brocklehurst S. M., Brocklehurst K. Appendix: Analysis of pH-dependent kinetics in up to four reactive hydronic states. Biochem J. 1988 Dec 1;256(2):556–558. doi: 10.1042/bj2560556. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Brocklehurst S. M., Topham C. M., Brocklehurst K. A general kinetic equation for multihydronic state reactions and rapid procedures for parameter evaluation. Biochem Soc Trans. 1990 Aug;18(4):598–600. doi: 10.1042/bst0180598. [DOI] [PubMed] [Google Scholar]
  19. Buttle D. J., Barrett A. J. Chymopapain. Chromatographic purification and immunological characterization. Biochem J. 1984 Oct 1;223(1):81–88. doi: 10.1042/bj2230081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Buttle D. J., Kembhavi A. A., Sharp S. L., Shute R. E., Rich D. H., Barrett A. J. Affinity purification of the novel cysteine proteinase papaya proteinase IV, and papain from papaya latex. Biochem J. 1989 Jul 15;261(2):469–476. doi: 10.1042/bj2610469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Buttle D. J., Ritonja A., Dando P. M., Abrahamson M., Shaw E. N., Wikstrom P., Turk V., Barrett A. J. Interactions of papaya proteinase IV with inhibitors. FEBS Lett. 1990 Mar 12;262(1):58–60. doi: 10.1016/0014-5793(90)80153-a. [DOI] [PubMed] [Google Scholar]
  22. Buttle D. J., Ritonja A., Pearl L. H., Turk V., Barrett A. J. Selective cleavage of glycyl bonds by papaya proteinase IV. FEBS Lett. 1990 Jan 29;260(2):195–197. doi: 10.1016/0014-5793(90)80101-n. [DOI] [PubMed] [Google Scholar]
  23. Carne A., Moore C. H. The amino acid sequence of the tryptic peptides from actinidin, a proteolytic enzyme from the fruit of Actinidia chinensis. Biochem J. 1978 Jul 1;173(1):73–83. doi: 10.1042/bj1730073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Clagett J. A., Tokuda S., Engelhard W. E. Chymopapain C, an immunosuppressive protease. I. Partial purification and characterization. Proc Soc Exp Biol Med. 1974 Apr;145(4):1250–1257. doi: 10.3181/00379727-145-37991. [DOI] [PubMed] [Google Scholar]
  25. Cohen L. W., Coghlan V. M., Dihel L. C. Cloning and sequencing of papain-encoding cDNA. Gene. 1986;48(2-3):219–227. doi: 10.1016/0378-1119(86)90080-6. [DOI] [PubMed] [Google Scholar]
  26. Dixon H. B. Shapes of curves of pH-dependence of reactions. Biochem J. 1973 Jan;131(1):149–154. doi: 10.1042/bj1310149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Dubois T., Jacquet A., Schnek A. G., Looze Y. The thiol proteinases from the latex of Carica papaya L. I. Fractionation, purification and preliminary characterization. Biol Chem Hoppe Seyler. 1988 Aug;369(8):733–740. doi: 10.1515/bchm3.1988.369.2.733. [DOI] [PubMed] [Google Scholar]
  28. Dubois T., Kleinschmidt T., Schnek A. G., Looze Y., Braunitzer G. The thiol proteinases from the latex of Carica papaya L. II. The primary structure of proteinase omega. Biol Chem Hoppe Seyler. 1988 Aug;369(8):741–754. doi: 10.1515/bchm3.1988.369.2.741. [DOI] [PubMed] [Google Scholar]
  29. ERLANGER B. F., KOKOWSKY N., COHEN W. The preparation and properties of two new chromogenic substrates of trypsin. Arch Biochem Biophys. 1961 Nov;95:271–278. doi: 10.1016/0003-9861(61)90145-x. [DOI] [PubMed] [Google Scholar]
  30. Jacquet A., Kleinschmidt T., Dubois T., Schnek A. G., Looze Y., Braunitzer G. The thiol proteinases from the latex of Carica papaya L. IV. Proteolytic specificities of chymopapain and papaya proteinase omega determined by digestion of alpha-globin chains. Biol Chem Hoppe Seyler. 1989 Aug;370(8):819–829. doi: 10.1515/bchm3.1989.370.2.819. [DOI] [PubMed] [Google Scholar]
  31. Kamphuis I. G., Drenth J., Baker E. N. Thiol proteases. Comparative studies based on the high-resolution structures of papain and actinidin, and on amino acid sequence information for cathepsins B and H, and stem bromelain. J Mol Biol. 1985 Mar 20;182(2):317–329. doi: 10.1016/0022-2836(85)90348-1. [DOI] [PubMed] [Google Scholar]
  32. Kamphuis I. G., Kalk K. H., Swarte M. B., Drenth J. Structure of papain refined at 1.65 A resolution. J Mol Biol. 1984 Oct 25;179(2):233–256. doi: 10.1016/0022-2836(84)90467-4. [DOI] [PubMed] [Google Scholar]
  33. Kowlessur D., Thomas E. W., Topham C. M., Templeton W., Brocklehurst K. Dependence of the P2-S2 stereochemical selectivity of papain on the nature of the catalytic-site chemistry. Quantification of selectivity in the catalysed hydrolysis of the enantiomeric N-acetylphenylalanylglycine 4-nitroanilides. Biochem J. 1990 Mar 15;266(3):653–660. doi: 10.1042/bj2660653. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kunimitsu D. K., Yasunobu K. T. Chymopapain. IV. The chromatographic fractionation of partially purified chymopapain and the characterization of crystalline chymopapain B. Biochim Biophys Acta. 1967 Jul 11;139(2):405–417. doi: 10.1016/0005-2744(67)90044-7. [DOI] [PubMed] [Google Scholar]
  35. Lynn K. R. A purification and some properties of two proteases from papaya latex. Biochim Biophys Acta. 1979 Aug 15;569(2):193–201. doi: 10.1016/0005-2744(79)90054-8. [DOI] [PubMed] [Google Scholar]
  36. Lynn K. R., Yaguchi M. N-Terminal homology in three cysteinyl proteases from Papaya latex. Biochim Biophys Acta. 1979 Dec 14;581(2):363–364. doi: 10.1016/0005-2795(79)90257-5. [DOI] [PubMed] [Google Scholar]
  37. Malthouse J. P., Brocklehurst K. Preparation of fully active ficin from Ficus glabrata by covalent chromatography and characterization of its active centre by using 2,2'-depyridyl disulphide as a reactivity probe. Biochem J. 1976 Nov;159(2):221–234. doi: 10.1042/bj1590221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Mellor G. W., Patel M., Thomas E. W., Brocklehurst K. Clarification of the pH-dependent kinetic behaviour of papain by using reactivity probes and analysis of alkylation and catalysed acylation reactions in terms of multihydronic state models: implications for electrostatics calculations and interpretation of the consequences of site-specific mutations such as Asp-158-Asn and Asp-158-Glu. Biochem J. 1993 Aug 15;294(Pt 1):201–210. doi: 10.1042/bj2940201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Mellor G. W., Sreedharan S. K., Kowlessur D., Thomas E. W., Brocklehurst K. Catalytic-site characteristics of the porcine calpain II 80 kDa/18 kDa heterodimer revealed by selective reaction of its essential thiol group with two-hydronic-state time-dependent inhibitors: evidence for a catalytic site Cys/His interactive system and an ionizing modulatory group. Biochem J. 1993 Feb 15;290(Pt 1):75–83. doi: 10.1042/bj2900075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Mellor G. W., Thomas E. W., Topham C. M., Brocklehurst K. Ionization characteristics of the Cys-25/His-159 interactive system and of the modulatory group of papain: resolution of ambiguity by electronic perturbation of the quasi-2-mercaptopyridine leaving group in a new pyrimidyl disulphide reactivity probe. Biochem J. 1993 Feb 15;290(Pt 1):289–296. doi: 10.1042/bj2900289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Mitchell J. B., Thornton J. M., Singh J., Price S. L. Towards an understanding of the arginine-aspartate interaction. J Mol Biol. 1992 Jul 5;226(1):251–262. doi: 10.1016/0022-2836(92)90137-9. [DOI] [PubMed] [Google Scholar]
  42. Patel M., Kayani I. S., Mellor G. W., Sreedharan S., Templeton W., Thomas E. W., Thomas M., Brocklehurst K. Variation in the P2-S2 stereochemical selectivity towards the enantiomeric N-acetylphenylalanylglycine 4-nitroanilides among the cysteine proteinases papain, ficin and actinidin. Biochem J. 1992 Jan 15;281(Pt 2):553–559. doi: 10.1042/bj2810553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Patel M., Kayani I. S., Templeton W., Mellor G. W., Thomas E. W., Brocklehurst K. Evaluation of hydrogen-bonding and enantiomeric P2-S2 hydrophobic contacts in dynamic aspects of molecular recognition by papain. Biochem J. 1992 Nov 1;287(Pt 3):881–889. doi: 10.1042/bj2870881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Patel M., Thomas M. P., Kayani I. S., Mellor G. W., Thomas E. W., Brocklehurst K. Ficin: a cysteine proteinase with binding site-catalytic site signalling characteristics intermediate between those of papain and actinidin. Biochem Soc Trans. 1993 May;21(2):216S–216S. doi: 10.1042/bst021216s. [DOI] [PubMed] [Google Scholar]
  45. Pickersgill R. W., Goodenough P. W., Sumner I. G., Collins M. E. The electrostatic fields in the active-site clefts of actinidin and papain. Biochem J. 1988 Aug 15;254(1):235–238. doi: 10.1042/bj2540235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Pickersgill R. W., Sumner I. G., Collins M. E., Goodenough P. W. Structural and electrostatic differences between actinidin and papain account for differences in activity. Biochem J. 1989 Jan 1;257(1):310–312. doi: 10.1042/bj2570310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Pickersgill R. W., Sumner I. G., Goodenough P. W. Preliminary crystallographic data for protease omega. Eur J Biochem. 1990 Jun 20;190(2):443–444. doi: 10.1111/j.1432-1033.1990.tb15594.x. [DOI] [PubMed] [Google Scholar]
  48. Podivinsky E., Forster R. L., Gardner R. C. Nucleotide sequence of actinidin, a kiwi fruit protease. Nucleic Acids Res. 1989 Oct 25;17(20):8363–8363. doi: 10.1093/nar/17.20.8363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Polgár L., Halász P. Evidence for multiple reactive forms of papain. Eur J Biochem. 1978 Aug 1;88(2):513–521. doi: 10.1111/j.1432-1033.1978.tb12477.x. [DOI] [PubMed] [Google Scholar]
  50. Polgár L. Isolation of highly active papaya peptidases A and B from commercial chymopapain. Biochim Biophys Acta. 1981 Apr 14;658(2):262–269. doi: 10.1016/0005-2744(81)90296-5. [DOI] [PubMed] [Google Scholar]
  51. Ritonja A., Buttle D. J., Rawlings N. D., Turk V., Barrett A. J. Papaya proteinase IV amino acid sequence. FEBS Lett. 1989 Nov 20;258(1):109–112. doi: 10.1016/0014-5793(89)81627-8. [DOI] [PubMed] [Google Scholar]
  52. Ritonja A., Colić A., Dolenc I., Ogrinc T., Podobnik M., Turk V. The complete amino acid sequence of bovine cathepsin S and a partial sequence of bovine cathepsin L. FEBS Lett. 1991 Jun 3;283(2):329–331. doi: 10.1016/0014-5793(91)80620-i. [DOI] [PubMed] [Google Scholar]
  53. Ritonja A., Krizaj I., Mesko P., Kopitar M., Lucovnik P., Strukelj B., Pungercar J., Buttle D. J., Barrett A. J., Turk V. The amino acid sequence of a novel inhibitor of cathepsin D from potato. FEBS Lett. 1990 Jul 2;267(1):13–15. doi: 10.1016/0014-5793(90)80275-n. [DOI] [PubMed] [Google Scholar]
  54. Robinson G. W. Isolation and characterization of papaya peptidase A from commercial chymopapain. Biochemistry. 1975 Aug 12;14(16):3695–3700. doi: 10.1021/bi00687a028. [DOI] [PubMed] [Google Scholar]
  55. Salih E., Malthouse J. P., Kowlessur D., Jarvis M., O'Driscoll M., Brocklehurst K. Differences in the chemical and catalytic characteristics of two crystallographically 'identical' enzyme catalytic sites. Characterization of actinidin and papain by a combination of pH-dependent substrate catalysis kinetics and reactivity probe studies targeted on the catalytic-site thiol group and its immediate microenvironment. Biochem J. 1987 Oct 1;247(1):181–193. doi: 10.1042/bj2470181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Schack P. Fractionation of proteolytic enzymes of dried papaya latex. Isolation and preliminary characterization of a new proteolytic enzyme. C R Trav Lab Carlsberg. 1967;36(4):67–83. [PubMed] [Google Scholar]
  57. Stuchbury T., Shipton M., Norris R., Malthouse J. P., Brocklehurst K., Herbert J. A., Suschitzky H. A reporter group delivery system with both absolute and selective specificity for thiol groups and an improved fluorescent probe containing the 7-nitrobenzo-2-oxa-1,3-diazole moiety. Biochem J. 1975 Nov;151(2):417–432. doi: 10.1042/bj1510417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Sumner I. G., Vaughan A., Eisenthal R., Pickersgill R. W., Owen A. J., Goodenough P. W. Kinetic analysis of papaya proteinase omega. Biochim Biophys Acta. 1993 Aug 7;1164(3):243–251. doi: 10.1016/0167-4838(93)90255-p. [DOI] [PubMed] [Google Scholar]
  59. Sutcliffe M. J., Haneef I., Carney D., Blundell T. L. Knowledge based modelling of homologous proteins, Part I: Three-dimensional frameworks derived from the simultaneous superposition of multiple structures. Protein Eng. 1987 Oct-Nov;1(5):377–384. doi: 10.1093/protein/1.5.377. [DOI] [PubMed] [Google Scholar]
  60. Sutcliffe M. J., Hayes F. R., Blundell T. L. Knowledge based modelling of homologous proteins, Part II: Rules for the conformations of substituted sidechains. Protein Eng. 1987 Oct-Nov;1(5):385–392. doi: 10.1093/protein/1.5.385. [DOI] [PubMed] [Google Scholar]
  61. Thomas M. P., Mellor G. W., Brocklehurst K. The kinetically influential ionizations of chymopapain M. Biochem Soc Trans. 1993 May;21(2):217S–217S. doi: 10.1042/bst021217s. [DOI] [PubMed] [Google Scholar]
  62. Topham C. M., McLeod A., Eisenmenger F., Overington J. P., Johnson M. S., Blundell T. L. Fragment ranking in modelling of protein structure. Conformationally constrained environmental amino acid substitution tables. J Mol Biol. 1993 Jan 5;229(1):194–220. doi: 10.1006/jmbi.1993.1018. [DOI] [PubMed] [Google Scholar]
  63. Topham C. M., Overington J., Kowlessur D., Thomas M., Thomas E. W., Brocklehurst K. Investigation of mechanistic consequences of natural structural variation within the cysteine proteinases by knowledge-based modelling and kinetic methods. Biochem Soc Trans. 1990 Aug;18(4):579–580. doi: 10.1042/bst0180579. [DOI] [PubMed] [Google Scholar]
  64. Topham C. M., Overington J., Thomas M., Kowlessur D., Thomas E. W., Brocklehurst K. Three-dimensional structure and thiol reactivity characteristics of chymopapain M (papaya proteinase IV). Biochem Soc Trans. 1990 Oct;18(5):934–935. doi: 10.1042/bst0180934. [DOI] [PubMed] [Google Scholar]
  65. Topham C. M., Salih E., Frazao C., Kowlessur D., Overington J. P., Thomas M., Brocklehurst S. M., Patel M., Thomas E. W., Brocklehurst K. Structure-function relationships in the cysteine proteinases actinidin, papain and papaya proteinase omega. Three-dimensional structure of papaya proteinase omega deduced by knowledge-based modelling and active-centre characteristics determined by two-hydronic-state reactivity probe kinetics and kinetics of catalysis. Biochem J. 1991 Nov 15;280(Pt 1):79–92. doi: 10.1042/bj2800079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Topham C. M., Thomas P., Overington J. P., Johnson M. S., Eisenmenger F., Blundell T. L. An assessment of COMPOSER: a rule-based approach to modelling protein structure. Biochem Soc Symp. 1990;57:1–9. [PubMed] [Google Scholar]
  67. Varughese K. I., Su Y., Cromwell D., Hasnain S., Xuong N. H. Crystal structure of an actinidin-E-64 complex. Biochemistry. 1992 Jun 9;31(22):5172–5176. doi: 10.1021/bi00137a012. [DOI] [PubMed] [Google Scholar]
  68. Wharton C. W., Crook E. M., Brocklehurst K. The preparation and some properties of bromelain covalently attached to O-(carboxymethyl)-cellulose. Eur J Biochem. 1968 Dec 5;6(4):565–571. doi: 10.1111/j.1432-1033.1968.tb00482.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES