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Abstract 

In settings requiring synthetic data generation based on a clinical cohort, e.g., due to data protection regulations, 
heterogeneity across individuals might be a nuisance that we need to control or faithfully preserve. The sources 
of such heterogeneity might be known, e.g., as indicated by sub-groups labels, or might be unknown and thus 
reflected only in properties of distributions, such as bimodality or skewness. We investigate how such heterogeneity 
can be preserved and controlled when obtaining synthetic data from variational autoencoders (VAEs), i.e., a genera-
tive deep learning technique that utilizes a low-dimensional latent representation. To faithfully reproduce unknown 
heterogeneity reflected in marginal distributions, we propose to combine VAEs with pre-transformations. For dealing 
with known heterogeneity due to sub-groups, we complement VAEs with models for group membership, specifi-
cally from propensity score regression. The evaluation is performed with a realistic simulation design that features 
sub-groups and challenging marginal distributions. The proposed approach faithfully recovers the latter, compared 
to synthetic data approaches that focus purely on marginal distributions. Propensity scores add complementary 
information, e.g., when visualized in the latent space, and enable sampling of synthetic data with or without sub-
group specific characteristics. We also illustrate the proposed approach with real data from an international stroke 
trial that exhibits considerable distribution differences between study sites, in addition to bimodality. These results 
indicate that describing heterogeneity by statistical approaches, such as propensity score regression, might be more 
generally useful for complementing generative deep learning for obtaining synthetic data that faithfully reflects struc-
ture from clinical cohorts.
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Introduction
There has been a surge of interest in methods for generat-
ing synthetic datasets based on real clinical data [1]. Such 
approaches may, e.g., be useful for providing data protec-
tion when even heavily sampled anonymized datasets do 
not meet privacy standards [2]. In addition to the applica-
tion for single datasets, another usage scenario is in fed-
erated computing platforms, such as DataSHIELD [3], for 
simultaneously generating synthetic data at several sites 
and then pooling the synthetic data for test-driving anal-
yses (e.g., [4] or our own proposal in [5]). Beyond these 
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data protection use cases, synthetic data can also be used 
for oversampling minority classes [6] or, more generally, 
augmenting the data (e.g., [7, 8]). Furthermore, simula-
tion studies and in silico clinical trials can benefit [9–12].

When using such techniques for clinical cohort data 
from observational studies, or also from randomized 
trials, faithful handling and potential preservation of 
heterogeneity across patients is important, in particu-
lar concerning sub-group structure. The importance of 
sub-groups in a clinical setting is reflected in a long his-
tory of research on biases that can arise when ignoring 
sub-group structure, e.g., as in Simpson’s paradox [13]). 
Furthermore, there is a multitude of approaches for deal-
ing with sub-group effects, such as propensity scores 
for properly assessing treatment effects [14], and also 
for more generally combining groups in clinical cohorts 
(e.g., our results in [15]). Therefore, it might also be 
attractive to complement synthetic data techniques with 
approaches such as propensity score regression for han-
dling heterogeneity due to known sub-groups. In addi-
tion to proposing a corresponding approach, we will 
also address heterogeneity due to unknown sub-groups. 
In clinical settings the known sub-groups may consist 
of unknown sub-groups, e.g., different severity of the 
disease. Contrary to the known sub-groups, which have 
explicit labels, the unknown ones are only reflected in 
the distributions of different variables. Therefore, one of 
the methods to check for the presence of unknown sub-
groups is the use of descriptive statistics and visualiza-
tion methods, which can reveal the potential presence 
of sub-groups. It includes examining the distribution of 
predictor variables and looking for patterns that suggest 
multiple underlying patterns that might not be obvious in 
aggregated data. For instance, specific sub-groups might 
have distinct frequencies or relationships between cat-
egorical variables, or certain distributions like skewed 
and bimodal might suggest the presence of an unknown 
sub-group [16]. Therefore, we complement synthetic 
data techniques with pre-transformations to preserve the 
unknown structures and recover the bimodal or skewed 
distributions of continuous covariates. Moreover, adapt-
ing our approach, we consider relationships between 
continuous and binary variables to reproduce the char-
acteristics of unknown sub-groups in the synthetic data.

The challenge of properly handling sub-groups 
already becomes apparent when considering one of 
the most prominent techniques for synthetic data 
generation, namely generative adversarial networks 
[17]), which had initially been developed for image 
data. There, the price for generating crisp synthetic 
images seems to be mode collapse, where certain sub-
groups of the original dataset are no longer reflected 

[18]. Therefore, we consider an alternative popular 
technique as the basis for our proposed approach, 
specifically variational autoencoders (VAEs) [19]. For 
modeling the relationships between multiple variables 
in a given dataset, VAEs build on an underlying low-
dimensional latent representation, where artificial deep 
neural networks are used for estimating conditional 
distributions. The latter are amenable for combination 
with propensity scores obtained from regression 
models involving sub-group labels.

However, VAEs have also been developed with image 
data in mind, where some homogeneity in distributions 
can be assumed [20]. This is reflected in an underlying 
assumption of a Gaussian prior on the latent represen-
tation, and thus VAEs have limitations with data devi-
ating from unimodal symmetric distributions. While 
VAE-based approaches already exist for addressing data 
diverging from normal distributions based on modify-
ing the prior on the latent representation (e.g., [21]), 
these are not flexible enough when different variables in 
the original data exhibit different kinds of peculiarities 
in their distribution. This motivates our pre-transfor-
mation component at the level of the original variables 
in our proposal.

There are also proposals for synthetic data outside 
the deep neural network community, e.g., using sam-
pling based on the correlation matrix [22]. Similarly, 
we have introduced an approach based on Gaussian 
copula together with simple non-disclosive summaries 
[23]. While we will consider the latter for performance 
comparison, our focus is on VAEs as their latent repre-
sentations provide a starting point for complementing 
information from propensity score approaches. Figure 1 
shows the schematic overview of our approach.

In this study, we introduce a deep learning arechitec-
ture to generate synthetic data in presence of sub-groups. 
To achieve this, we integrate the propensity score con-
cept with and adapted version of VAE, a combination 
that, to the best of our knowledge, has not previously 
been explored. “Methods”  section introduces the pro-
posed approach, specifically highlighting how heteroge-
neity due to known and unknown sub-group structures 
is handled. “Evaluation of the method for unknown sub-
group structures”  section contrasts our pre-transforma-
tion-enhanced VAE with other techniques in a simulation 
study and real data from a stroke trial. “Evaluation of the 
method for known sub-group structures”  section pre-
sents the combination of propensity scores with the latent 
representation of VAEs for simulation data, and weighted 
sampling is illustrated for the stroke trial example. We 
conclude with a discussion in “Discussion”  section. 
Source code for our approach is available on GitHub.

https://github.com/kianaf/LatentSubgroups
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Methods
General framework
Encoding data into a latent space allows for a better 
understanding of the data structure by revealing patterns 
not apparent in the original high-dimensional space. Spe-
cifically, dimension reduction techniques using two or 
three dimensions provide a visual insight into the data. 
If we consider the latent space to be given by a random 
variable z, we can define a model p(z|x) as the probabil-
ity distribution of the latent space given x, which denotes 
the whole set of observations. As mentioned before, we 
should consider the heterogeneity between sub-groups 
in the dataset. In instances where we have known sub-
groups with labels, a distinct model can approximate 
p(g|x) , where g is a random variable producing the sub-
group label. In this setting, our objective is to formulate 
a function f(p(z|x),  p(g|x)) so that we can produce the 
structure of interest in our generated data (e.g., remov-
ing systematic differences or pronouncing one sub-group 
structure). For the other sub-groups with no explicit 
label, i.e., where we do not have access to p(g|x) , and f 

would be implemented only based on p(z|x), our goal is 
to shape a latent structure reflecting the unknown sub-
groups and consequently reconstruct the marginal dis-
tributions which are indications of existing underlying, 
yet unrecognized, sub-group structures. In the following 
sections, we explain different parts of our general frame-
work, including the approximation for p(z|x) using a vari-
ational autoencoder, dealing with unknown and known 
sub-groups and how we implement f.

Variational autoencoders (VAEs)
One of the standard methods to approximate p(z|x) is 
the use of a specific type of autoencoders called vari-
ational autoencoder (VAE). The simplest autoencoders 
consist of an encoder and a decoder, which are both 
multi-layer perceptrons, i.e., a neural network with 
one input layer, one output layer, and one or multiple 
hidden layers. As shown in Eq. (1), each layer, denoted 
by l, corresponds to a linear combination of its inputs 
hl−1 (which is the output vector of the previous layer or 
input data if l = 1 ) and weights w(l) , and biases b(l−1) , 

Fig. 1  Schematic overview of the proposed VAE-based approach, consisting of two primary components: (1) Unknown sub-groups 
within heterogeneous distributions are addressed through pre-transformations, as indicated by model components in red boxes. (2) Known 
sub-groups are handled using propensity score modeling p(g|x) and weighted prior sampling, indicated by blue boxes. The function ω incorporates 
the weights based on estimated propensity scores shown in Eqs. (14) or (15)
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followed by a non-linear transformation g (l) called acti-
vation function. The layer output is a vector, which is 
used as input for the next layer.

The encoder part reduces the dimensions of the input 
layer to a latent embedding, and the decoder part tries 
to reconstruct the data from that [24]. A VAE [19] is 
a probabilistic version of an autoencoder, where the 
latent representation is considered to be given by a ran-
dom variable with a prior distribution assumed to be 
a standard normal distribution. Based on Bayes’ rule, 
the posterior distribution of the latent variable z given 
the observed variable x can be obtained via the Bayes’ 
rule in Eq.  (2). The integral in the denominator of the 
formula is computationally intractable, even for a rela-
tively low-dimensional z. One solution is to use varia-
tional inference to approximate p(z|x) by a distribution 
q(z|x), which is a member of a parametric family of dis-
tributions, e.g., a Gaussian distribution with diagonal 
covariance, which is typically used in VAEs. Then, find-
ing the posterior becomes an optimization problem, 
i.e., minimizing the Kullback-Leibler (KL) divergence 
between these two distributions, which can be calcu-
lated as shown in Eq. (3).

Since log(px(x)) in Eq.  (3) is constant, and the KL 
divergence is a positive value, minimizing it is equiva-
lent to maximizing the so-called evidence lower bound 
(ELBO) Eq(z|x)[log(q(z|x))− log(p(x, z))] . In the VAE, 
the encoder models qϕ(z|x) , where the parameters ϕ 
are the encoder weights and biases, and the decoder 
models pθ (x|z) , with parameters θ . The ELBO can be 
rewritten to obtain the loss function, shown in Eq. (4), 
optimizing ϕ and θ . The first term on the right-hand 
side corresponds to reconstruction loss. The second 
term is the Kullback-Leibler divergence between the 
approximated posterior and the prior distribution.

There are two methods for obtaining synthetic data 
from a trained VAE: 1) sampling z from the approxi-
mated posterior given the original data or 2) sampling 
z from the standard normal distribution (prior), fol-
lowed in both cases by using the obtained values of z 
as input for the decoder. The latter can better preserve 
the privacy because the original data can influence the 

(1)h
(l) = g (l) W

(l)
h
(l−1) + b

(l)

(2)p(z|x) =
p(z, x)

p(x)
=

p(z, x)∫
p(z, x)dz

(3)DKL(q�p) = Eq(z|x)[log(q(z|x))− log(p(x, z))] + log(p(x))

(4)loss(xi) = −Eqϕ (z|xi)[logpθ (xi|z)]+ DKL

(
qϕ(z|xi)||pθ (z)

)

synthetic data only via the trained parameters of the 
decoder. Therefore, if the VAE is not overfitted, hav-
ing a low-dimensional latent space and sampling from 
prior can decrease the risk of data leakage.

Dealing with unknown sub‑groups
To preserve the unknown sub-group structure, we aim to 
faithfully recover the marginal distributions. In this work, 
we concentrate on reconstructing Bernoulli (for binary 
variables), skewed and bimodal distributions. First, we 
need a VAE architecture to generate both continuous 
and binary variables (“VAE for combining continuous 
and binary variables” section). Then, we use pre-transfor-
mations to transform the original data to remove skew-
ness and bimodality so that a VAE can better model it. 
As is common in machine learning, to speed up the VAE 
training, we scale the data between zero and one. This 
needs to be considered in the backward process as well, 
i.e., after getting the output from the VAE, we have to 
transform the output back. Figure 1 shows how the pre-
transformation steps are incorporated into the general 
framework. The pre-transformation for skewed distribu-
tions is explained in “Box-Cox transformation”  section, 
and the pre-transformation for bimodal distributions is 
described in “Transformation for bimodality” section.

VAE for combining continuous and binary variables
To generate both continuous and binary variables, we use an 
architecture with separate parts corresponding to the two 
variable types. For a decoder with l + 1 layers, hidden layer 
h
(l)
D  serves as the joint basis for continuous and binary covar-

iates, e.g., for representing correlation patterns between the 
two types of variables. Then, in the next layer, we have a 
group of neurons denoted by µD and σD for the continuous 
variables and a group of neurons represented by πD for the 
binary variables. This means that the reconstructed values 
for the continuous variables are subsequently sampled from 
N
(
µD(h

(l)
D (z)), σD(h

(l)
D (z))

)
 and for the binary variables by 

sampling from Bernoulli (πD(h
(l)
D (z))) . Assuming xi,j as the 

j-th continuous variable of xi and xi,k as the k-th binary vari-
able of xi and for x with pc continuous variables and pb 
binary variables, the loss function can be computed by 
Eq. (5). The parameters of VAE are the weights and biases of 
the encoder and decoder (ϕ, θ).

With this modification, we can generate both binary and 
continuous variables, and thus cover the heterogeneity in 

(5)

loss(xi) = −
pb∑

k=1

logpdf
(
Bernouli

(
πDk

(h
(l)
D (zi))

)
, xi,k

)

−
pc∑
j=1

logpdf
(
Normal

(
µDj (h

(l)
D (zi)), σDj (h

(l)
D (zi))

)
, xi,j

)

+DKL

(
qϕ(z|xi)�pθ (z)

)
.
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the data types. However, another well-known problem 
when having different data types, e.g., binary and continu-
ous or different sources, e.g., image and tabular data, is 
data fusion. There are different ways to tackle this (intro-
duced in [25]). Given that there is no universally superior 
method for data fusion, we try two strategies as a hyper-
parameter in each of our experiments. In this work, we 
investigate the early fusion, i.e., concatenation of the data 
type from the beginning, or late fusion, i.e., having two 
different encoders for binary and continuous variables.

Box‑Cox transformation
To remove the skewness, we use a family of power trans-
formations called the Box-Cox transformation, shown in 
Eq.  (6), suggested by [26]. In this formula, �2 is a shifting 
value to make the data positive, and �1 is the main param-
eter of the transformation. To estimate �1 , we minimize the 
negative log-likelihood of the transformed values using gra-
dient descent using Eq.  (7). In this optimization problem, 
we try to find the local minimum of this criterion using the 
gradient concept. After getting the output from the VAE, 
we have to transform the data back. The back-transforma-
tion for Box-Cox transformation is shown in Eq. (8).

Transformation for bimodality
The second transformation aims to make a bimodal dis-
tribution closer to an unimodal one by bringing the 
peaks closer and keeping the shape of the tails close to 
a normal distribution. We use a power function xρ with 
the odd integer (ρ = 2k + 1 with k = 1, . . . ,N ) , and this 
will work if we can shift and scale values such that the 
two peaks of the bimodal distribution fall within (−1, 1) . 
Therefore, we must find the best values for the shifting 
parameter α , positive scaling parameter β2 , and power ρ . 
to be able to continuously differentiate w.r.t these param-
eters for gradient-based optimization, we use sgn(x)|x|ρ , 

(6)fBoxCox(x; �1, �2) =

{
(x+�2)

�1−1
�1

�1 �= 0

ln(x + �2) �1 = 0

(7)
L(�1, �2|x) = −N

2 log(σ
2 + ǫ)+ (�1 − 1)

N∑
i=1

log(xi + �2 + ǫ)

where

σ 2 = Var(fBoxCox(x; �1, �2))

(8)f −1
BoxCox(y) =

{
�1
√

�1y(�) + 1− �2, �1 �= 0

ey(�) − �2, �1 = 0

so that we have the same behavior for all different values 
of ρ . Hence, our transformation will be as Eq. (9).

For parameter optimization, we need a criterion that 
reflects closeness to an unimodal distribution. We con-
sidered maximum likelihood and the bimodality coeffi-
cient ( 

(
b =

γ 2+1
κ

 where γ is the skewness and κ is the 
kurtosis), which both did not give adequate results as 
they decreased the variance too strongly. Therefore, we 
minimize a 1-sigma criterion, shown in Eq. (10), to opti-
mize the parameters. In this Equation, Qτ (x) represents 
the τ-th percentile of x. This optimization problem 
requires careful initialization of the parameters since the 
1-sigma criterion is only a proxy for the deviation from 
an unimodal distribution. First, to have ρ > 1 , we define 
the power parameter as ρ = 1+ pow2 . We start with 
pow = 0 and β2 = 1 for the scaling parameter to keep the 
data unchanged if it is normal/unimodal. Furthermore, 
finding the valley between two peaks in a heuristic way is 
a good starting point for the shifting variable ( α ). We use 
an iterative heuristic algorithm based on kernel density 
estimation to initialize this value. In this method, we start 
estimating the density function with a very small band-
width and find the local maxima of the function. Conse-
quently, we gradually increase the bandwidth and 
continue until we only have a limited number of peaks 
(e.g., five). Then, we pick the two highest peaks and the 
deepest valley between these two. The value of the valley 
can be set as the initial value of α.

Like the first transformation, we also need the back 
transformation function for the second one. The reverse 
function is shown in Eq. (11). Applying the pre-transfor-
mations addresses the challenge of heterogeneity in the 
distributions of continuous variables.

Dealing with known sub‑groups
Propensity score estimation
Dealing with known sub-groups requires an approach 
that generates the structure of interest, i.e., removing 
the systematic differences between sub-groups or pro-
nouncing the characteristics specific to one sub-group. 
To sample from areas of the latent space which have our 
structure of interest, we need a quantitative guide, such 

(9)f (x) = sgn(
(x + α)

β2
)|
(x + α)

β2
|ρ

(10)1− sigmacriterion(x) = |Q0.84(x)−Q0.5(x)− σx| + |Q0.5(x)−Q0.16(x)− σx|

(11)f −1(y) = β2y
1
ρ sgn(y)− α
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as p(g|x) , to be used as a weighting system when sam-
pling from the prior distribution of z. Therefore, we build 
a model for estimation of p(g|x) to predict the sub-group 
membership for each observation xi . To achieve this, we 
use propensity scores, i.e., the probability of an observa-
tion belonging to a group given a set of covariates [27]. 
We use a logistic regression for the binary classification 
of sub-groups in our datasets outlined in “Datasets and 
results”  section. The model prediction for a data point 
xi will then be the probability of xi belonging to the sub-
group number one, i.e., p(g = 1|x = xi) , where g ∈ {1, 2} . 
We use the original data space for propensity score esti-
mation for two main reasons. First, this approach allows 
us to leverage the rich information inherent in the origi-
nal data, which can be crucial for accurate propensity 
score estimation. Second, logistic regression is effective 
in the original data space, even when faced with complex 
data distributions. This model robustness might not hold 
in a reduced-dimensional latent space. In such lower-
dimensional spaces, the simplification of data can lead to 
a loss of important information, especially when dealing 
with heterogeneous and complex distributions.

Propensity score‑based sampling method
We can use the propensity score concept for assigning 
weights to different areas of the latent space learned by 
the VAE. To see whether we can use propensity scores 
concept as a guide for sampling from the latent space, 
after training the VAE, we visualize the latent space with 
the propensity score values. For this, we divide the latent 
space into a grid of cells with a tenable size d. For a two-
dimensional latent space z = ((z)1, (z)2) , we then define 
a matrix A, where Ai,j is a cell in the grid on the latent 
space. In this grid, i denotes the index of the cell along 
the (z)1-axis, while j denotes the index of the cell along 
the (z)2-axis. Therefore, for each cell Ai,j we have that for 
all z ∈ Ai,j:

After making a grid on the latent space, we need to cal-
culate the propensity score for each cell. For this, we fit 
a logistic regression on the observations x1...n , and then 
we calculate the propensity score using the predictions 
of a logistic regression model. After this, each point in 
the latent space of VAE zk , which is the mapping of an 
observation xk , has a propensity score pxk . Then, we cal-
culate the propensity score for each cell, averaging the 

(12)

min
z

(z)1 < (z)1 < (min
z

(z)1 + (i − 1) · d),

for i = 1, . . . ,N1 =

⌈
maxz(z)1−minz(z)1

d

⌉
,

min
z

(z)2 < (z)2 < (min
z

(z)2 + (j − 1) · d),

for j = 1, . . . ,N2 =

⌈
maxz(z)2−minz(z)2

d

⌉
.

propensity score of the points that are in that specific cell. 
This is shown in Eq. (13).

After the propensity score calculation, as shown in Fig. 1 
we can overlay the grid with the scatter plot of the latent 
space, color-coded by the existing sub-groups in our data-
set. If the cells in the grid, colored by propensity score, cor-
respond to the color of the majority group of the points in 
each cell, we can use this as a guide for sampling from the 
prior distribution, i.e., we can define weights based on the 
scenario in which we want to generate synthetic data. For 
this, we use Inverse Probability of Treatment weighting 
(IPTW) [28] to define a new weighting approach for our 
scenario. Suppose we only want to generate individuals that 
are common for both sub-groups. In that case, we can use 
Eq. (14). If we want only to have individuals with the char-
acteristics of one group, say, where g = 0 , and individuals 
should have a small value of p̄i,j , we can use the weighting 
system shown in Eq. 15. In both equations, δ denotes the 
acceptable deviation from p̄i,j = 0.5 , representing the areas 
common for both populations. This value can be tuned as 
a hyperparameter. In this work, we tried δ = 0.05, 0.1, 0.2 . 
A key consideration in selecting this hyperparameter is the 
degree of overlap among sub-groups in the latent space, i.e., 
the more overlap, the larger the value for δ . Even though the 
method is described for two-dimensional latent space, this 
method is generalizable to any size of latent space dimen-
sions as long as we can avoid the curse of the dimension-
ality problem, i.e., the number of points in the grid cells is 
not very sparse. However, in the clinical settings we discuss 
in this work, the number of variables is not very large to 
necessitate going for a higher-dimensional latent space. 
Moreover, for the visualization part, we can always use 
dimensionality reduction techniques like principle compo-
nent analysis (PCA) to be able to overlay the latent struc-
ture and the propensity score based guide.

We obtain weights for each cell using Eqs. (14) or Eq. (15) 
and subsequently normalize them, as shown in Eq. (16).

(13)p̄i,j =
1

n

n∑

k=1

pxk · I(zk ∈ Ai,j)

(14)wi,j =






0
��p̄i,j − 0.5

�� > δ
1
p̄i,j

p̄i,j > 0.5
1

1−p̄i,j
p̄i,j < 0.5

(15)wi,j =

{
0 p̄i,j > 0.5+ δ
1
p̄i,j

p̄i,j ≤ 0.5+ δ

(16)w̄i,j =
wi,j

∑N1
i=1

∑N2
j=1 wi,j
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We can now use propensity scores as a guide for prior 
sampling to generate a synthetic dataset. Specifically, 
we sample from the prior distribution, N(0, 1), then find 
the corresponding cell and the weight assigned to that 
cell. Next, we sample from a Bernoulli distribution with 
P(X = 1) = w̄i,j . This step is the decision flag to include 
or reject the sampled value. Repeating the process until 
we reach the intended sample size gives us a set of sam-
ples to feed to the decoder and get the output as our 
synthetic dataset. Note that the weighted sampling is 
performed in the data generation step, and in the training 
phase of VAE, we just use the posterior sampling.

Evaluation of the method for unknown sub‑group 
structures
Baseline approaches
To evaluate our method in dealing with unknown sub-
groups, we compare the utility of synthetic data gen-
erated with the standard VAE [19] with the minor 
modifications in encoder and decoder (without pre-
transformations), the VAE with an autoregressive implicit 
quantile network (AIQN) [29] (called QVAE here), gener-
ative adversarial networks (GAN) [17] and NORTA-J, our 
Gaussian copula-based approach with first four moments 
[23]. For simplicity, we use the same architecture for all 
the VAE-based approaches. The evaluation metrics are 
explained in “Approaches for comparison and evaluation 
criteria” section.

In the QVAE approach, quantile regression allows for 
more flexibility in the VAE latent space. Specifically, a 
neural network embedded in the latent space implements 
the quantile regression for each dimension. For each data 
point xi , we get a zi in the latent space. We use a random 
number 0.05 < τ < 0.95 as an input of each quantile net-
work, and then for each dimension k, we use the τ and 
zi1 , . . . , zik−1

 as the input and zik as the output. This means 
that for the first dimension, the network has one input, 
i.e., τ , and one output, i.e., z1 . Because we have a condi-
tional network based on the previous dimensions and τ , 
we need to use the best order of zi1,...,l for the quantile net-
work architecture. We use the Kolmogrov-Smirnov test 
to determine which order makes the conditional distri-
bution closer to a normal distribution. We train the net-
work with the quantile regression loss function for each 
dimension. For more information on the details of the 
QVAE approach, see [29].

GANs comprise two multiple-layer perceptrons, called 
the discriminator and the generator. The generator part 
is responsible for generating synthetic data, and the dis-
criminator aims to distinguish between real data and 
generated data. The better the generator, the harder it is 
for the discriminator to distinguish real and generated 

data. After training the generator to fool the discrimina-
tor, which is trained simultaneously, the generator should 
be able to generate realistic synthetic data. For more 
information see [17].

The method from our previous work, which we call 
NORTA-J here, infers the original individual person 
data (IPD) characteristics from summary statistics. This 
method generates synthetic data through a Gaussian cop-
ula inversion technique known as NORTA, which models 
the dependency structure of the data variables. The mar-
ginal distributions of IPD are constructed using the John-
son system of distributions, parameterized by empirical 
marginal moments (e.g., mean, variance) and the correla-
tion matrix [23].

Additionally, we consider comparing our approach 
with a method that involves applying the empirical CDF 
(cumulative distribution function) followed by a quantile 
transformation to a normal distribution (i.e., applying the 
inverse Normal CDF). This method is a non-parametric 
pre-transformation technique. We refer to it as a quan-
tile pre-transformation approach or QP-VAE. For such 
transformation, increasing the number of quantiles raises 
the risk of identification [30, 31]. This issue is especially 
pronounced for extreme quantiles, which are sensitive to 
outliers or unique values, potentially exposing informa-
tion about specific individuals [32]. Nevertheless, we use 
this approach as a baseline model to show the impact of 
proper pre-transformations on the data.

Approaches for comparison and evaluation criteria
As the first quantitative measure to compare syn-
thetic data from the different approaches, we use a util-
ity metric ψ , proposed by Karr et  al. [33] and extended 
by Snoke et  al. [34]. The idea behind this metric is that 
if a synthetic dataset has a high quality in terms of util-
ity, a classification model cannot distinguish the syn-
thetic samples from real observations well. This means 
that, ideally p(xi ∈ Ssyn) ∼ p(xi ∈ Sorig ) , where Ssyn is the 
synthetic dataset and Sorig is the original dataset. There-
fore, if we can show the probability of being a member 
of the synthetic dataset is around 0.5, we can claim that 
synthetic and original datasets have similar distribu-
tions. Therefore, we combine these two datasets, and add 
a label variable yi , where yi = 1 if ( xi ∈ Ssyn ) and yi = 0 
if ( xi ∈ Sorig ). Following this, we apply the Classification 
and Regression Tree (CART) method to construct a deci-
sion tree. We choose the CART model because it excels 
in scenarios where the original dataset deviates from 
a normal distribution due to its ability to form decision 
boundaries in complex, non-linear data spaces. Using 
this fitted model, we can predict ŷi for xi=1,...N where 
N = nsyn + norig , which is the probability of each obser-
vation belonging to synthetic data. The more ŷi deviates 
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from the ratio of synthetic data size to the merged data 
size 

(
c =

nsyn
N

)
 , the less similar are original and synthetic 

data. Hence, this utility metric can be measured as shown 
in Eq. (17).

Snoke et  al. [34] suggested another metric with the 
same idea, where the null hypothesis is defined by the 
CART-based classifier trained on the data with true 
labels performing as random as for permuted labels, i.e., 
the original dataset is very similar to the synthetic data-
set. Based on several permutations of the labels ( yi ), the 
value ψpermj

 can then be calculated as in Eq. (17), where 
permj is the j-th permutation. We can then calculate the 
mean over all iterations ψ̄ using Eq. (18). We set the num-
ber of permutations to 100. Then, the final metric is given 
by Eq. (19).

In the second approach, we use visual comparisons of 
marginal distributions. This way, we can check which 
methods can reconstruct the marginal distributions and 
which ones and to what extent fail to do so.

Datasets and results
Simulation data
To evaluate our method, we use a published realistic 
simulation design based on a large breast cancer study 
[35, 36]. Specifically, we use the specification published 
on Zenodo by [37]. In this simulation study, there is an 
Exposure variable indicating two different cohorts, i.e., 
the patients exposed to radiotherapy and non-exposed 
patients. The outcome of this dataset, denoted as y, is 
defined as having 5-year progression-free survival. The 
sample size equals 2,500, and there are 21 variables, 
where 12 are binary, and the rest are continuous 

(17)ψ =
1

N

N∑

i=1

(
ŷi − c

)2

(18)ψ̄ =
1

nperm

nperm∑

j=1

ψpermj

(19)ψratio =
ψ

ψ̄

variables. Since this simulation data is designed to have 
real-world distributions, it contains moderate to highly 
skewed variables. We modify the dataset to additionally 
include a variable with a bimodal distribution. For 
this, we generate a bimodal distribution based on the 
exposure variable by sampling from N(0, 1) for E = 0 and 
sampling from N(4,  1) for E = 1 . The obtained bimodal 
distribution is also attractive for evaluating our proposed 
approach because this distribution is not symmetric due 
to the imbalanced distribution of the exposure variable. 
On the other hand, we pick the mean of two normal 
distributions such that the modes are not very far and 
have overlaps, making it harder for the VAE to imitate 
the data. As explained above, we optimize the parameters 
of the pre-transformations and then train the VAE. 
Table  1 shows the quantitative comparisons described 
in   “Approaches for comparison and evaluation criteria”. 
To report uncertainty, we ran all the experiments 10 
times in a 10-fold cross-validation approach. Then we 
report the mean and standard deviation of defined 
criteria for ten trained models on the heldout data. 
Running the experiments in the 10-fold cross-validation 
setting has a limitation for the QP-VAE. When we fit the 
quantile transformers, the learned quantiles are based 
on the range and distribution of training set and when 
we apply this to unseen data (validation or test sets) with 
values outside that range, it can lead to undefined values. 
Therefore, we have to clip the out-of-bound values in the 
range of training set. After doing this, the approaches 
with pre-transformations show the best performance 
based on both of these criteria, followed by the NORTA-J 
approach. The decision trees are fitted with a minimum 
leaf size of 20 and a maximum depth of 25. With this 
quantitative measurement QP-VAE shows better results 
in comparison to our proposed pre-transformation.

In addition to quantitative comparisons, Fig.  2 shows 
the visual comparisons of the marginal density diagrams 
and histograms of selected variables. In this step, we used 
all the data points to generate the synthetic data. Here, 
we show three exemplary continuous variables (slightly 
skewed, severely skewed, and bimodal) generated by 
different methods in comparison to the original data and 
the histograms of a binary variable. As illustrated, our 
method can generate both slight and severe skewness 

Table 1  Comparison of synthetic data generated from simulation data, evaluated by two utility metrics (lower values indicate better 
performance)

Metric Methods

Our method NORTA-J GAN VAE QVAE QP-VAE

ψ̄ 0.068± 0.01 0.097± 0.01 0.156± 0.01 0.093± 0.01 0.094± 0.00 0.057± 0.01

ψratio 1.292± 0.15 2.272± 0.23 3.008± 0.16 1.776± 0.14 1.776± 0.08 1.153± 0.12
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in the data, i.e., first and second rows. This is when the 
standard VAE and QVAE methods cannot reconstruct 
the skewness as realistically as the original data. Looking 
at the generated marginal distributions with QP-VAE, 
we see that none of the tails of the distributions are well 
reconstructed, and we have in particular undesirable 
patterns in the tails of skewed distribution. The trained 
GAN also fails to reproduce the skewness. Norta-J can 
perfectly reconstruct the slight skewness, but when it 
comes to severe skewness, our approach outperforms it 
with respect to the mode and range of data. In addition, 
the pre-transformation VAEs are the only ones that 
can reconstruct the bimodality, and still, the QP-VAE 
approach fails in the reconstruction of the range of data. 
For GANs, the problem of mode collapse makes synthetic 
data generation with bimodality more complicated, 
in particular, when there are different unknown sub-
groups. It is worth mentioning that we use different 
sets of hyperparameters for the deep learning-based 
approaches, and we pick the most robust results.

Real data
For a real data evaluation, we consider the IST dataset, 
which originates from a large international multi-
center clinical trial for stroke patients [38] and was also 
used in our other work in [23]. Specifically, we use a 
subset of variables, including randomization variables, 

i.e., conscious state (RCONSC = drowsy, unconscious 
or alert), the delay between stroke and randomization 
(RDELAY in hours), gender (SEX = male/female), AGE, 
RSLEEP (symptoms noted on waking yes/no), atrial 
fibrillation (RATRIAL= yes/no), CT before randomization 
(RCT = yes/no), infarct visible on CT (RVISINF = yes/no), 
heparin with 24 hours prior to randomization (RHEP24 = 
yes/no), aspirin with three days prior to randomization 
(RASP3 = yes/no), systolic blood pressure (RSBP), 
trial aspirin allocated (RXASP = yes/no, trial heparin 
allocated (RXHEP = yes/no). We exclude the other 
randomization variables because of the high proportion 
of missing values. In addition to this, we used FDEAD, 
i.e., the outcome defined as dead at six-month follow-up. 
We also added COUNTRY and derived the REGION 
(EU-EAST, EU-NORTH, EU-WEST, and EU-SOUTH) 
from that, to have labels for known sub-groups in the 
data for using the propensity score-based approach. 
Excluding the individuals with missing values and those 
in EU-WEST and EU-SOUTH, we create a rather small 
dataset with 2,668 records. Among these features, blood 
pressure, age, and the RDELAY are continuous, the 
level of consciousness is categorical (with three different 
values), and the rest are binary. The variable RDELAY 
has bimodality. We change the level of consciousness 
to two binary variables (RCONSC1 = drowsy/alert and 
RCONSC2 = unconscious/ alert) as in [23]. We follow the 

Fig. 2  Visual comparisons of marginal distributions in synthetic dataset generated by different methods. In this figure, we show four different 
variables with different types of distributions. The first row shows the slightly skewed variables, the second is the severely skewed variable, 
and the third row shows the bimodal variable. The fourth row shows a binary variable. In the columns, different methods are illustrated
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same steps as the steps in the simulation data application, 
optimizing the parameters of the pre-transformations 
and then training the VAE. Table 2 shows the quantitative 
comparisons. For the real data, we see that the QP-VAE is 
performing the best followed by our proposed approach 
and the Norta-j, which outperforms our method in ψ̄ 
and it performs worse in the ψratio . In general, as the data 
structure becomes more complex, the ability of CART 
to accurately distinguish between synthetic and original 
data can fluctuate more, leading to greater variability 
in ψ . This increased variability reflects the challenges of 
capturing complicated patterns in the data and is further 
amplified when using the ψratio metric. Therefore, it is 
expected that moving from a simulation data to a real 
example data, we have higher variability in ψratio using 
Norta-J, our approach, standard VAE, and QVAE. For 
GANs, we observe less variability, which, in combination 
with a higher mean, reflects a consistent level of poor 
performance in capturing the data complexities. This 
consistency suggests that GANs tend to generalize rather 

than specialize, leading to stable, though potentially less 
detailed synthetic data. The decision trees are fitted with a 
minimum leaf size of 20 and a maximum depth of 25.

In addition to quantitative comparisons, Fig.  3 
shows the visual comparisons of the marginal density 
diagrams. Again, in this step, we used all the data 
points to generate the synthetic data. Here, we show 
three continuous variables, which exist in the dataset 
by baselines in comparison to the original data. As 
illustrated, only the VAEs with pre-transformation can 
generate the bimodality of the RDELAY variable in the 
data in contrast to the other variations of the VAE and 
the GAN, which generate an unimodal distribution. For 
the bimodality, the QP-VAE reconstructs the modes 
better than our proposed pre-transformation, but it still 
cannot generate a realistic range of data for the skewed 
distributions. For the real data, Norta-J cannot generate 
severe skewness as well as our approach, while it is 
successful in slight skewness. The other methods fail in 
the generation of skewed distributions. We use different 

Table 2  Comparison of synthetic data generated from IST data, evaluated by two utility metrics (lower values indicate better 
performance)

Metric Methods

Our method NORTA-J GAN VAE QVAE QP-VAE

ψ̄ 0.091± 0.03 0.085± 0.04 0.114± 0.01 0.106± 0.03 0.094± 0.03 0.041± 0.00

ψratio 2.449± 0.94 2.707± 1.15 3.084± 0.25 2.85± 0.92 2.525± 0.82 1.277± 0.11

Fig. 3  Visual comparisons of marginal distributions in synthetic dataset generated by different methods. This figure shows three continuous 
variables, including a bimodal distribution, i.e., shown in the first row. In the columns, different methods are illustrated
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sets of hyperparameters for the deep learning-based 
approaches and pick the most robust results.

Robustness
As discussed in “Simulation data”  section, we applied 
the 10-fold cross-validation method to both datasets 
and reported the uncertainty metrics for all the evalu-
ated methods. To demonstrate the robustness of our 
approach, we have plotted the mean and standard devia-
tion of the reconstruction loss during the VAE training 
process for both the training data and the heldout data 
across ten different folds, as shown in Fig. 4. In both data 
scenarios, the behavior of the model for unseen data 
and training data is very consistent. In some parts of the 
curve for the IST data, we see a smaller standard devia-
tion (more stability) for the training data than the heldout 
data, which is a natural behavior.

Evaluation of the method for known sub‑group 
structures
Simulation data
We start with the simulation design to explore the 
possibility of integrating propensity scores with the 
latent representation of VAE. In this step we investigate 
the pre-transformation VAEs for their capabilities of 
building a meaningful latent structure. Figure  5 shows 
the two-dimensional latent structure produced by the 
VAEs following the quantile transformation (A) and 

our proposed pre-transformations (B). We see that the 
quantile structure is reflected in the latent representation 
learned by VAE, i.e., the latent structure is not as 
smooth as our approach, especially at the edges. These 
discontinuities can make extracting meaningful features 
or patterns from the latent representations harder. 
This, in addition to the privacy issue and compromised 
fairness in the data, makes the QP-VAE less effective for 
generating synthetic data in presence of sub-groups. To 
investigate the integration of propensity scores with the 
latent representation of VAE, we can use a validity check 
based on our previous study [15]. Since variable selection 
is one of the challenging steps of propensity score model 
building, in the previous study, we investigated the 
simulation design to see whether the variables should be 
selected in relation to exposure alone, outcome alone, 
exposure and outcome, or both exposure and outcome. 
In this use case, we concluded that selecting variables 
directly related to exposure for this breast cancer-based 
simulation study gives more reliable results for estimating 
the propensity score. To inspect whether the latent 
representation of the VAE also captures these patterns, 
we overlay a heat map based on the propensity score grid 
with a scatterplot of the latent representation color-coded 
by two cohorts (exposed and non-exposed), and the value 
of the outcome variable is differentiated by shape. If the 
color patterns from the propensity scores, calculated 
with variables related to exposure, align better with the 

Fig. 4  Mean and standard deviation of the reconstruction loss during the training of our VAE, plotted for both training and heldout data across 10 
different folds. This illustrates the robustness of our approach by showing consistent performance across training data and heldout data
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color of data points in the latent space, in comparison 
to the variable selection considering both exposure 
and outcome, it confirms our previous conclusion. 
This would suggest that our methodology is indeed 
promising for guided prior sampling. For training the 
VAE, we excluded the exposure and outcome variables. 
Moreover, we excluded the variable x6 , corresponding 
to the progesterone receptor status, because the data is 
simulated such that x6 is related to both exposure and 
outcome and can be approximated by other variables. So, 
this way, we can have a scenario that has an unmeasured 
confounder. Then, we can investigate whether the 
propensity score-based values match the latent structure 
and check if the latent structure corresponds to the 
mentioned results in [15].

Then, we use logistic regression on the original varia-
bles to predict the exposure and selected variables related 
to exposure if their p-value was smaller than 0.05. Then, 
we selected variables related to the outcome by applying 
the logistic regression on the original data for predict-
ing the outcome and including variables with a p-value 
smaller than 0.05. Then, we fitted four models. In Fig. 6, 
we see that regardless of the variable selection method, 
the general structure of latent space matches the pro-
pensity score-based values reflected in the colored grid 
behind the latent representation. Moreover, the area 
outlined by the red square shows that as this area has 
more blue data points, i.e., representing the non-exposed 

individuals, the propensity score model, which gener-
ates more blue grid cells would be the better approach. 
In Fig.  6, we see that the model with variables related 
to exposure and the E/O model, i.e., the selected vari-
ables are the union of variables related to outcome and 
variables related to exposure, are very similar and show 
a better match. Since the first model has fewer parame-
ters, the exposure-only approach is preferred. Therefore, 
the results align with our previous study, which found 
that the model with variable selection directly related to 
exposure is the better variable selection method for this 
dataset. With this, we can conclude that combining pro-
pensity score regression with VAEs can be a promising 
sampling guide for VAEs.

Real data
In the real data example, the sub-groups are related to the 
moderating variable of region membership, since it effects 
in different ways, e.g., variables related to the healthcare 
system or population-specific characteristics. Therefore, 
we use the REGION variable for the propensity score, 
fitting the logistic regression on original values predicting 
the REGION (EU-NORTH = 1 and EU-EAST = 0 ), and 
we select variables according to p-value with the cutoff 
α set to 0.05. Then, using the weighting approach for 
generating individuals common for both sub-groups 
from Eq. (14), we calculate the weights for the weighted 
sampling from the prior explained in “Propensity 

Fig. 5  The latent representation of simulation design removing the confounding variable. A shows the latent structure learned by VAE 
when applying the quantile transformation, and B is the visualization of latent space when using our proposed pre-transformations. In both plots, 
the red triangles denote the exposed individuals, and the blue circles symbolize the non-exposed individuals
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score-based sampling method”  section. Getting the 
latent representation from the trained VAE, explained 
in “Evaluation of the method for unknown sub-group 
structures”, and overlaying the propensity score heat map 

and weight heat map, we obtain Fig. 7. The left plot in the 
figure confirms the feasibility of combining propensity 
score regression with the latent representation of VAE, 
as the areas with a majority of red dots correspond 

Fig. 6  Latent representation of the simulation design extracted by a Variational Autoencoder (VAE), with the confounding variable x6 removed. 
Blue points represent the non-exposed cohort, while red points indicate the exposed cohort. Circles denote individuals who experienced 
the outcome, and triangles represent those without the outcome. A shows the heat map color-coded based on the propensity score, which 
is calculated by a selection of variables related to exposure, B the heat map color-coded based on the propensity score, which is calculated 
by a selection of variables related to outcome, C the heat map color-coded based on the propensity score, which is calculated by a selection 
of variables related to both exposure or outcome and D the heat map color-coded based on the propensity score, which is calculated by a selection 
of variables related to exposure and outcome. The area outlined by the red square shows the most important differences between the four variable 
selection methods
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to the red grid cells. In the right plot, the red grid cells 
correspond to the areas with larger weights, i.e., with 
less systematic differences between the two sub-groups, 
and the blue grid cells correspond to the areas with sub-
group-specific characteristics.

To investigate the impact of our approach, we com-
pare marginal distributions from the two populations 
and generate data using standard and weighted sam-
pling approaches. For this, we choose blood pressure, 
which has a similar distribution across the regions, and 
age, which is differently distributed, e.g., with a higher 
age of stroke in the EU-NORTH population. So, in this 
specific scenario, removing systematic differences means 
that in the synthetic data, we should not have a very high 
frequency of older individuals. The red dashed line in 
Fig.  8.B for the blood pressure variable shows that our 
approach recognizes no systematic differences for this 
variable. Therefore, the generated data has the same 
marginal distributions in both sub-groups. Still, when it 
comes to age, the marginal distribution is completely dif-
ferent (red dashed line in Fig. 8A, having a higher peak 
but almost similar mode to EU-EAST. The explanation 
for this is that because of differences in the population 
or in the healthcare system, EU-NORTH has a differ-
ent underlying distribution. Getting back to the latent 
structure in Fig.  7B, the areas with blue grid cells, i.e., 
with smaller weights, have a higher concentration of EU-
NORTH members. Therefore, with weighted sampling, 
we have fewer samples from those areas and can ensure 
that we do not have, e.g., many individuals with stroke 
age of 80 and generate a population that is on average 
younger than EU-NORTH.

For this result, we set the threshold for a zero weight δ 
from Eq. (14) to 0.1. Lower values, δ ≈ 0 are suitable for 
the scenarios where we are interested in preferentially 
sampling from the areas that have a rather similar group 
membership probability, while for higher values of δ , we 
include samples which may be more common to one sub-
group but still can be found in other sub-group as well. 
The heuristic approach of choosing the proper value is 
done using the visualization of the latent space struc-
ture. When δ is too large, we would have limited areas of 
interest, and if it is too small, most of the grid cells are 
included in the sampling. Overall, the results show that 
the weighted sampling approach is helpful when dealing 
with known sub-groups.

It is important to note the architectural choices 
of our model. For both of our datasets, we used 
a simple VAE. That is because when the model is 
more complex, e.g., having a higher-dimensional 
latent space or deeper architecture, it may overfit the 
training data. This overfitting can lead to the model 
memorizing specific details of the training data rather 
than learning a generalized representation. As a result, 
the synthetic data generated by the VAE might closely 
resemble the training data, leading to potential data 
disclosure issues. Additionally, as discussed in “VAE for 
combining continuous and binary variables”  section, 
we tested both early and late fusion strategies as a 
hyperparameter. In our experiments, late fusion-using 
separate encoders for binary and continuous variables 
and averaging the latent space-yielded better latent 
structure and more realistic marginal distributions.

Fig. 7  The latent representation of IST data, extracted by VAE. In both A and B, the blue dots represent the observations that belong to the region 
EU-EAST, and the red dots represent the observations that belong to EU-NORTH. In A, the heat map is color-coded based on the averaged 
propensity score, which is calculated by variable selection related to the region. In B, the heat map is color-coded based on the calculated weights 
for prior sampling when the target scenario is to remove the systematic differences
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Discussion
Variational autoencoders (VAEs) have shown promis-
ing results for generating image data, which is often 
evaluated based on the overall visual impression with-
out analyzing individual pixel distributions. In contrast, 
synthetic clinical cohort data has different requirements, 
as heterogeneity is often a critical characteristic. Heter-
ogeneity may be due to known sub-groups, e.g., reflect-
ing different study sites, or may be unknown and just 
be reflected in marginal distributions. We investigated 
whether combining deep learning and classical statisti-
cal approaches — specifically pre-transformations for 
addressing heterogeneity reflected in bimodal or skewed 
distributions and propensity score regression for address-
ing known sub-groups — might be useful for synthetic 
data generation.

We used a realistic simulation based on a breast can-
cer study and a real international stroke dataset and 
showed that the proposed pre-transformation of the 

data can help reconstruct the complex marginal distri-
butions, thus preserving the unknown sub-group struc-
ture. We compared our method with different baseline 
methods, among which QP-VAE (the non-parametric 
quantile transformation) showed strong performance in 
terms of quantitative metrics. Therefore, while QP-VAE 
has the important weakness of potential data disclosure 
risk, it can still be useful when the goal of synthesizing 
data is for data augmentation. In particular, it can be 
interesting for future work to improve this approach by 
first, increasing the fairness, i.e., adding the possibility 
of reproducing the outliers, and second, using the exten-
sions that can handle out-of-distribution values. It is 
important to note that we need a higher number of quan-
tiles (not appropriate for privacy-preserving scenarios) 
to have a smooth latent space using this pre-transforma-
tion. Despite these limitations, QP-VAE is a simple, non-
parametric pre-transformation approach, which makes it 
a suitable option for data augmentation. For the known 

Fig. 8  Visual comparisons of marginal distributions in synthetic dataset generated by different methods. This figure shows three continuous 
variables, including a bimodal distribution, i.e., shown in the first row. In the columns, different methods are illustrated
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sub-groups, to see if propensity score estimation on the 
original data space can complement the VAE approach, 
we considered visualization in the latent VAE represen-
tation and found that propensity scores add complemen-
tary information. We illustrated the approach with a real 
dataset from an international stroke trial. The results 
show that our approach can reconstruct the more com-
plicated marginal distributions, such as bimodal ones, 
even in the presence of different categorical/binary vari-
ables. We could obtain a latent representation that was 
useful for subsequent propensity score-guided sampling. 
Thus, extremes of sub-groups could be avoided in syn-
thetic data.

Certainly, the proposed approach cannot address all 
potential types of heterogeneity, as we focused on bimodal 
and skewed marginal distributions, i.e., there might be 
other complex distributions that our approach cannot 
recover completely. Yet, these two are the most common 
marginal distributions in biomedical settings. Moreover, 
for the moment, we only focused on tabular data, but in 
clinical applications, such data may come in combination 
with other modalities like image data, and it needs 
specific considerations. Therefore, future work will need 
to investigate how to effectively integrate our approach 
with image data. Regarding the known sub-groups, we so 
far have not optimized the propensity score model, despite 
known challenges in model building [39]. Consequently, 
the proposed approach could probably be improved, 
e.g., by more closely investigating variable selection 
approaches for constructing the propensity score.

To summarize, the proposed approach illustrates that 
it can be useful to complement VAEs with more clas-
sical statistical modeling approaches for addressing 
heterogeneity when generating synthetic data. This can 
more generally pave the way for high-quality synthetic 
clinical cohort data in presence of sub-groups.
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