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Abstract 

Purpose In the context of clinical research, there is an increasing need for new study designs that help to incorpo‑
rate already available data. With the help of historical controls, the existing information can be utilized to support 
the new study design, but of course, inclusion also carries the risk of bias in the study results.

Methods To combine historical and randomized controls we investigate the Fill‑it‑up‑design, which in the first step 
checks the comparability of the historical and randomized controls performing an equivalence pre‑test. If equivalence 
is confirmed, the historical control data will be included in the new RCT. If equivalence cannot be confirmed, the his‑
torical controls will not be considered at all and the randomization of the original study will be extended. We are 
investigating the performance of this study design in terms of type I error rate and power.

Results We demonstrate how many patients need to be recruited in each of the two steps in the Fill‑it‑up‑design 
and show that the family wise error rate of the design is kept at 5 % . The maximum sample size of the Fill‑it‑up‑
design is larger than that of the single‑stage design without historical controls and increases as the heterogeneity 
between the historical controls and the concurrent controls increases.

Conclusion The two‑stage Fill‑it‑up‑design represents a frequentist method for including historical control data 
for various study designs. As the maximum sample size of the design is larger, a robust prior belief is essential for its 
use. The design should therefore be seen as a way out in exceptional situations where a hybrid design is considered 
necessary.

Keywords Randomized clinical trial, Historical control, External controls, Type I error probability, Power, Sample size, 
Equivalence

Introduction
The traditional way to demonstrate efficacy of an inter-
vention compared to a control in clinical research is to 
carry out a randomized controlled trial (RCT) [28]. 

The control group enables the researcher to differenti-
ate between the effects of the intervention compared 
to the response under control treatments [14]. Concur-
rent enrollment, randomization and blinding are tools 
to ensure comparability of the treatment and the con-
trol group and to mitigate bias in the treatment effect 
estimate. On the other hand control groups, which are 
observed outside the randomized clinical trial, so called 
historical controls, can systematically differ from the 
control group of patients within the randomized clinical 
trial, e.g. due to time trends. These could be caused, for 
example, by a change in the standard of care, a change in 
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the patient population, or other external changes [2, 24]. 
However, in the context of rare diseases, it is challenging 
to carry out a well powered RCT due to small popula-
tions. In this situation, the EMA/CHMP guideline [5] on 
the conduct of clinical trials in small populations states, 
that in the background of small and very small popula-
tions, less conventional approaches may be acceptable if 
the interpretability of study results can be improved. A 
guidance document from the FDA [7] also indicates that

" . . .  a hybrid approach of using external control 
data to add to a concurrent randomized control 
arm in a clinical trial may sometimes be useful."

Combining data from an RCT with historical controls 
may favor sample size reduction and allocation of more 
patients to the experimental group by implementing 
unbalanced allocation. A central point of discussion is 
the similarity of the estimated treatment effect estimated 
with or without historical controls. Consequently, there 
exists an interest in the development of methods to 
combine historical controls with randomized controls. 
A major concern is that the treatment effect estimate 
may be biased when borrowing historical controls [2]. 
To control for potential bias, it is required that the his-
torical controls are sufficiently similar to the randomized 
controls. Different ways to use the historical control data 
have been suggested with a strongly increased interest in 
the last decades. Pocock [21] discussed the idea early on 
and pointed out that the use of historical instead of ran-
domized controls allows one to assign all future patients 
to the newly supposed superior treatment. However, this 
comes with the risk of introducing biases. Many differ-
ent approaches have been proposed, including Bayesian 
methods like Power Priors, modified Power Priors [3, 
11, 13], probability weighted Power Prios [1], commen-
surate priors [11, 12], as well as meta-analytic predic-
tive approaches [10, 26] like the random-effects model 
[19]. Pocock’s bias model [21] is also based on a Bayes-
ian approach. The Power Prior [6] approach can also be 
used to determine the sample size needed in the new trial 
and to estimate the impact of the historical controls on 
the power of a clinical trial [4]. In Bayesian power prior 
methods, the similarity of the controls is taken into 
account by quantifying a parameter for heterogeneity, 
thereby performing dynamic borrowing [9, 20]. Further-
more, the available Bayesian methods have been com-
pared concerning bias, precision, power and type I error 
rate [29].

Approaches based on Frequentist methods are however 
sparse. Viele et  al. [30] introduced different methods to 
borrow information from historical data, ranging from 
naive pooling of historical and current controls to com-
plete separate analyses, ignoring the historical controls, 

as well as intermediate approaches as the test-then-pool 
approach. The goal of all these methods is to increase the 
power of the randomized clinical trial, without increasing 
the sample size [30]. Controversial discussions on the use 
of historical controls are still ongoing. Kopp-Schneider 
[16] pointed out that the historical control data may not 
be viewed as a random sample and thus power and type I 
error restrictions have to be investigated on the uniform 
most powerful test.

For rare diseases, where the population size is limited 
and large RCTs are not feasible, early decision for bor-
rowing is needed. In this light, we consider a stepwise 
adaptive approach for the inclusion of historical controls. 
In the first step, a small randomized trial is performed 
whose sample size is chosen under the assumption that 
the historical controls can be included in the analysis. If 
this is not possible, because the historical and current 
controls differ substantially, the second step is conducted, 
continuing randomization to increase the sample size to 
deliver the requested level of evidence. To summarize, we 
design a clinical trial with a mid-inspection of whether 
the historical controls are sufficiently similar to the ran-
domized controls. With this paper we propose the Fill-it-
up-design, evaluate the properties to combine historical 
data with new randomized data and develop recommen-
dations on the use of this design.

The paper aims to provide clear conditions for the 
application of the Fill-it-up-design while adhering to 
predefined type I error and type II error probabilities. 
Therefore the paper is structured as follows. In  the sec-
tion entitled “Statistical model”  we describe the Fill-
it-up-design. In the section entitled  “Evaluation of the 
Fill-it-up-design”  sample size calculations of and rela-
tions between the individual tests and derivations of the 
type I and type II error probabilities are presented. In the 
section entitled  “Comparison with Bayesian approach”, 
we present a comparison of the preceding investigations 
with the Bayesian MAP approach followed by an illus-
tration of a clinical trial conducted with external data 
using the Fill-it-up-design in the context of an exemplary 
study on Friedreich’s ataxia in  the section entitled “The 
Fill-it-up-design in practice”. Finally, in the “Recommen-
dations” section we give recommendations regarding the 
inclusion of historical registry data. A discussion is given 
in the “Conclusion” section.

Statistical model
In the following, we consider a randomized single-center 
clinical trial with a two-arm parallel group design with-
out adaptation of the randomization procedure. The aim 
is to investigate whether the experimental treatment E is 
superior to the control treatment C concerning a contin-
uous normal endpoint. To determine whether pooling is 
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reasonable, an interim inspection compares the response 
data of historical and randomized control patients. Fig-
ure 1 displays the procedure of the Fill-it-up-design.

Statistical model ‑ notations of the Fill‑it‑up‑design
The responses of the experimental treatment E and the 
control treatment C, respectively, in a two arm, paral-
lel group clinical trial are measured with the continu-
ous normally distributed endpoint variable yji, 1 ≤ i ≤ nj 
with j ∈ {E,C}. A third group of patients, denoted as 
the historical control group (H) is supplemented to the 
randomized trial, which consists of nH patients from an 
“external database”. We consider this as a random sam-
ple from a control data population. This group provides 
data of a continuous normally distributed endpoint vari-
able yHi, 1 ≤ i ≤ nH , for the response and is supposed to 
be comparable to the nC control patients. Comparability 
will be specified below. The expected responses under E, 
C and H are denoted by µE , µC and µH respectively. For 
simplicity, we assume that the variances of the responses 
are σ 2

E = σ 2
C = σ 2

H = 1. The expected responses are esti-
mated by the corresponding sample means ȳE , ȳC and ȳH . 
In the second step of the trial, the randomization process 
is continued, if comparability of µC and µH could not be 
established in an equivalence pre-test (Ept). Then, fur-
ther n′E and n′C patients are enrolled in the trial provid-
ing estimated responses ȳ′E and ȳ′C of the NE = nE + n′E 
and NC = nC + n′C observations. We assume that 

the sample means are unbiased estimates, meaning 
E(ȳ′E) = E(ȳE) = µE and E(ȳ′C) = E(ȳC) = µC.

Statistical model ‑ test statistics of the Fill‑it‑up‑design
According to Fig. 1 the two step Fill-it-up-design involves 
three tests. First, an equivalence pre-test to establish the 
comparability of the randomized control group and the 
historical control group using nC + nH observations. 
If the historical control group is found to be compara-
ble, the control data is pooled to test the superiority of 
the experimental group E versus the combined control 
group based on nE and nC + nH patients. If the histori-
cal control group is not found to be comparable with the 
randomized controls, recruitment of the randomized 
part of the study is continued with n′C and n′E patients 
and the test on the superiority of E versus C is based 
on NE = nE + n′E and NC = nC + n′C patients. Hereby, 
the power of the pooled superiority test ( S1 ) as well as 
the superiority test with continued recruitment ( S2 ) is 
assumed to be (1− β) to detect the assumed effect size δ.

Equivalence test
After enrollment of the nE + nC patients in the rand-
omized part of the first step, a pre-test (Ept) to show 
equivalence with the equivalence margin � of the 
expected response of the two control groups will be 
conducted. Let αEpt denote the respective significance 
level of the pre-test and z1−αEpt denote the 1− αEpt
-quantile of the standard normal distribution. The 

Fig. 1 Flow chart of the procedure of the Fill‑it‑up‑design
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corresponding hypothesis HEpt
0 : |µC − µH | ≥ � ver-

sus HEpt
1 : |µC − µH | < � is tested using

or using the two one-sided shifted test statistics [27]. 
Note that var(ȳH − ȳC) = 1/nH + 1/nC as there are nH 
and nC observations in the groups.

Superiority test with historical controls
If the equivalence pre-test rejects HEpt

0  , the compa-
rability of the randomized and historical controls is 
established. In this case, the superiority of the response 
data of the nE patients of the experimental group will 
be compared to the pooled nC + nH  control data. This 
is done by testing the superiority of E versus C+H with 
the hypothesis HS1

0 : µE − [ωµH + (1− ω)µC ] ≤ 0 ver-
sus HS1

1 : µE − [ωµH + (1− ω)µC ] > 0 at the signifi-
cance level αS1 . Note, given µH = µC this results in the 
original superiority hypothesis of E versus C. But given 
|µH − µC | < � from the equivalence test this refers to 
non-inferiority between the groups E and C. To test 
H

S1
0  versus HS1

1  , we propose to use the weighted test 
statistic

where ω ∈ [0, 1] indicates the weight of the historical 
control data in the estimate of the treatment effect. Note, 
the variance of the sample estimate

is minimized for ω∗ = nH/(nH + nC) (see Appendix 
A equation (A1)), which corresponds to a simple pool-
ing of historical and concurrent controls with respect 
to their sample size. We will use the optimal weight 
ω∗ in the following considerations, which results in 
var(ω · ȳH + (1− ω) · ȳC) = 1

nH+nC
 as well as

for the superiority test ( S1 ). As nH/(nH + nC) · ȳH+

nC/(nH + nC) · ȳC is just the overall mean of the 
responses of the historical and randomized controls, the 
test statistic Z∗

S1
 is the usual z-test for comparing two 

means.

(1)ZEpt =
|ȳC − ȳH | −�
√

1
nC

+ 1
nH

< −z
1−

αEpt
2

, with� > 0

(2)ZS1 =
ȳE −

(
ω · ȳH + (1− ω) · ȳC

)

√
1
nE

+ ω2

nH
+ (1−ω)2

nC

var(ω · ȳH + (1− ω) · ȳC) =
ω2

nH
+

(1− ω)2

nC

Z∗
S1

=
ȳE −

(
nH

nH+nC
· ȳH + nC

nH+nC
· ȳC

)

√
1
nE

+ 1
nH+nC

Superiority test without historical controls
If the equivalence pre-test does not reject HEpt

0  , the com-
parability of the control groups is not established. Then, 
additional n′E and n′C patients are recruited in the treat-
ment and control groups respectively. This leads to the 
final superiority test ( S2 ) which is based on the pooled 
data of NE = nE + n′E patients randomly allocated to 
the experimental treatment compared to NC = nC + n′C 
patients randomly allocated to the control treatment. 
Then the superiority hypothesis HS2

0 : µE − µC ≤ 0 ver-
sus HS2

1 : µE − µC > 0 is tested at the significance level 
αS2 using the test statistic

Let ϕαEpt
Ept ,ϕ

αS1
S1

 and ϕ
αS2
S2

 denote the respective decision 
functions of the z-tests (1), (2) and (3) taking the value 1 
for the rejection of the respective null hypothesis and 0 
otherwise. Altogether the decision function of the multi-
ple test of the hypotheses of the superiority tests ( S1 ) and 
( S2 ) of the Fill-it-up-design can be written as

In particular, the appropriate choice for the significance 
levels αS1 , αS2 and αEpt of the three tests to control the 
family wise error rate will be discussed below.

Evaluation of the Fill‑it‑up‑design
Below we investigate: 

1. How to split the sample size of the randomized trial 
into the two steps of the Fill-it-up-design?

2. What are the possible choices for the equivalence 
margin � and how are the tests related?

3. How can the type 1 error rate for the Fill-it-up-
design be controlled? Here we determine significance 
levels for the tests ( S1 ), ( S2 ) and (Ept) such that the 
whole procedure controls the type I error rate at 0.05.

4. What is the power of the Fill-it-up-design compared 
to a single step trial showing the same effect with a 
comparable level of evidence using only ( S2)?

Allocation of sample sizes between the stages 
of the Fill‑it‑up‑design
With regard to the sample size determination, a major 
question would be to decide, about the fraction γ of 
patients allocated in the first step. Of course, one would 
require that either the test ( S1 ) or the test ( S2 ) should 
have a specific power to detect the treatment effect 

(3)ZS2 =
ȳ′E − ȳ′C
1

nE+n′E
+ 1

nC+n′C

.

ψFIU = max

(

ϕ
αEpt
Ept ϕ

αS1
S1

, (1− ϕ
αEpt
Ept )ϕ

αS2
S2

)

.
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of δ . To be more specific, denote NE = nE + n′E and 
NC = nC + n′C and γNE = nE , γNC = nC . The superior-
ity test ( S1 ) is conducted with the sample sizes nC and nE 
in the randomized first step and a sample of the size nH 
historical controls fulfilling

to achieve a power of 1− βS1 of the superior-
ity test ( S1 ) not accounting for the pre-test. As 
NE + NC = nE + n′E + n′C + nC is planned in advance, 
for the test ( S2 ) to test the hypothesis HS2

0 : µE − µC ≤ 0 
versus H̃S2

1 : µE − µC = δ > 0 the sample size can be 
determined by [15]

to achieve a power of 1− βS2 of the superiority test ( S2 ) 
ignoring the equivalence pre-test. Substitution for δ from 
(4) in (5) results in

a quadratic equation in γ with the solutions:

In applications, one might favor the special setting of 
equal type I error αS1 = αS2 and type II error βS1 = βS2 
probabilities, which result in

as well as balanced sample sizes NE = NC = N  so that 
the expression simplifies to

which is the only positive solution for γ . It should be 
noted that γ decreases with increasing nH with a maxi-
mal value of γ = 1 in case nH is zero. Further with 
N 2 + n2H ≥ n2H it results that γ ≥ 1/2. So at least 50% of 
the total sample size is necessary in the first step rand-
omized trial. Choices of γ are described in  the sections 

(4)

1

δ2

(

z1−αS1
+ z1−βS1

)2

=
nE · (nH + nC )

nE + nH + nC
=

γNE · (nH + γNC )

γ (NE + NC )+ nH
,

(5)
NE · NC

NE + NC
=

1

δ2

(

z1−αS2
+ z1−βS2

)2

,

NE + NC

NE · NC
·
γNE · (nH + γNC )

γ (NE + NC )+ nH
=

(

z1−αS1
+ z1−βS1

z1−αS2
+ z1−βS2

)2

,

γ = 1

2



− nH

NC
+

�

z1−αS1
+ z1−βS1

z1−αS2
+ z1−βS2

�2

±

�
�
�
�
�




nH

NC
−

�

z1−αS1
+ z1−βS1

z1−αS2
+ z1−βS2

�2




2

+ 4nH

NE + NC
·
�

z1−αS1
+ z1−βS1

z1−αS2
+ z1−βS2

�2






.

z1−αS1
+ z1−βS1

z1−αS2
+ z1−βS2

= 1

(6)γ =
1

2N

(

N − nH +
√

N 2 + n2H

)

,

entitled “Power of the Fill-it-up-design” and “The Fill-it-
up-design in practice”.

Consequently, we note that for the Fill-it-up-design, the 
total sample size is NFIU = NE + NC if the null hypoth-
esis of the pre-test is not rejected and the historical con-
trols are rejected. In the situation that the null hypothesis 
of the pre-test can be rejected, the resulting sample size 
is γNFIU for the newly recruited patients in addition to 
the nH historical controls. The maximum sample size of 
newly recruited patients of the design can therefore be 
characterized as NFIU.

Relation between equivalence test and superiority test
To elaborate on the relation between the equivalence 
margin � and the effect size δ we consider the case where 
the data of the historical controls are used in the efficacy 
evaluation using the superiority test ( S1 ). The evaluation 
of efficacy from the randomized data only i.e. applica-
tion of superiority test ( S2 ), seems to be unrelated to the 
equivalence margin �.

When applying the superiority test ( S1 ), the weighted 
effect size taking δ = µE − µC can be rewritten as t = µE−
(ω∗ · µH + (1− ω∗) · µC) = µE − µC + ω∗(µC − µH ) =
δ + ω∗(µC − µH ) . For simplicity, assume that larger 

expected responses are associated with an improved 
response to treatment and that the randomized control 
group shows a smaller or equal effect than the experi-
mental group µE ≥ µC . Depending on the expected dif-
ference between the historical control group and the 
randomized control group we consider two cases.

Firstly we assume that the expected response of the 
historical control group is larger than the correspond-
ing response of the randomized control group, i.e. 
µC − µH = −�∗ ≤ 0 . In this case, the weighted effect 
size  t  is smaller than the effect size δ = µE − µC , i.e. 
t = δ − ω∗�∗ ≤ δ. In this case, the response under con-
trol is overestimated, which plays against the target to 
establish a positive treatment effect using the histori-
cal controls, because a potential treatment difference 
δ between (pooled) control and experimental group is 
likely to be overlooked. So one might favor only a small 
equivalence margin � to preserve as much as possible 



Page 6 of 16Wied et al. BMC Medical Research Methodology          (2024) 24:197 

from the true treatment effect δ . However, a small � 
might result in a lack of power for the equivalence test.

Second, consider the case µC − µH = �∗ ≥ 0 such 
that the expected response of the historical control group 
is smaller than the corresponding response of the rand-
omized control group. This leads to t = δ + ω∗�∗ ≥ δ . 
Thus, the expected response of the combined control 
group is reduced by the historical controls, increasing 
the treatment effect to be detected for the experimental 
group. In this case, the response under control is under-
estimated, which is a rather liberal situation. This should 
be avoided, as the superiority test ( S1 ) is powered for a 
smaller effect resulting in the risk of an uncontrolled 
erroneous decision for a positive treatment effect even 
if the actual treatment effect is 0. To control this situa-
tion, the equivalence margin � has to be small enough, 
to reflect the maximal tolerated deviation (inferiority of 
expected response of the historical from the randomized 
control group) on the one hand but also has to be care-
fully chosen to maintain the expected treatment differ-
ence δ between control and experimental group.

Furthermore � < δ should be applied as the upper 
limit of the equivalence margin � to ensure that the con-
trol groups do not differ by more than the treatment 
effect for which the study is powered. Additionally, as 
stated earlier [27] there exists a lower limit for the equiv-
alence margin regarding the rejection region of the two 
one sided tests. If 

√
1
nH

+ 1
nC

> �
z1−αEpt

 applies, the null 

hypothesis of the equivalence pre-test will never be 
rejected. To summarize the choice for � is in any case 
restricted to

In summary, the equivalence pre-test does not only 
protect against a potentially enlarged treatment differ-
ence between pooled control groups and the experi-
mental group but also against the case that the potential 
treatment effect between randomized control and experi-
mental groups is reduced.

Type I error probability of the Fill‑it‑up‑design
Next, the overall test size α is evaluated including the lev-
els of the individual tests αEpt ,αS1 and αS2 . To determine 
the joint distributions we observe from (1), (2) and (3) by 
direct calculation that the expectation of ZEpt results in 
µEpt := (|µC − µH | −�)/

√
1
nH

+ 1
nC

 with correspond-
ing variance σEpt := Var(ZEpt) = 1.

The expectations for the two superiority test statistics 
ZS1 and ZS2 yield µS1

:= (µE − [ω∗ · µH + (1− ω∗) · µC ])

(7)

√

1

nH
+ 1

nC
· z1−αEpt ≤ � < δ.

/

√
1
nE

+
1

nC+nH
 and µS2 := (µE − µC )/

√
1

nE+n′E
+ 1

nC+n′C
 . 

The corresponding variance of ZS1 is

In the special case where ω = ω∗ = nH/(nH + nC) 
we obtain σS1∗ := Var(Z∗

S1
) = 1 . Similarly, we obtain 

σS2 := Var(ZS2) = 1. It should be noted that with 
ω = ω∗ , ZS1 is uncorrelated to ZEpt (see Appedix A equa-
tion (A2)). On the other hand, ZS2 and ZEpt are correlated 
(see Appendix A equation (A3)). From this expression, it 
follows that, as the sample size of the historical control 
increases and the allocation to groups C and E is bal-
anced (i.e., nE + n′E = nC + n′C ), the covariance between 
the test statistic ZS2 and ZEpt approaches 0.5. This occurs 
if an equal number of patients are allocated to the con-
trol group C in both steps of the trial (i.e., nC = n′C ). The 
covariance is at most 1/

√
2 when n′C becomes very small. 

If, however n′C becomes large, Cov(ZS2 ,ZEpt) decreases to 
zero and the tests become uncorrelated.

Formulas (8) and Appendix A equations (A2) and (A3) 
can be used to calculate the type I error probabilities 
from the respective joint distributions. The overall type I 
error probability of the procedure should satisfy

and can be obtained by

For this purpose, the combinations of the pre-test and 
the superiority tests (S1) and (S2) are summarised. Supe-
riority test (S1) is performed if the null hypothesis of the 
pre-test is rejected ( ϕαEpt

Ept = 1 ), so that the expected value 
is determined via the product of the decision functions 
ϕ
αEpt
Ept  and ϕ

αS1
S1

 . If the null hypothesis of the pre-test is 
not rejected ( ϕαEpt

Ept = 0 ), the superiority test (S2) is per-
formed so that the expected value is determined via the 
product of 1− ϕ

αEpt
Ept  and ϕ

αS2
S2

 . The formulas for the cal-
culation of αEpt,S1 and αEptc ,S2 using normal densities can 
be found in Appendix B. As discussed in Viele et al. [30] 
relaxing the significance level of the equivalence pre-test 
(Ept), would decrease the average sample size of the ran-
domized trial while using the historical controls. Similar 
to him we therefore consider αEpt ∈ {0.01, 0.05, 0.1, 0.2} 
and calculate equation (9) using Appendix B equations 
(B1) and (B2) numerically for various settings to obtain 
the maximum type I error probability. All computations 

(8)

σS1 := Var(ZS1 ) =
(

1

nE
+ 1

nC + nH

)−1(
1

nE
+ ω2

nH
+ (1− ω)2

nC

)

= nE(nC + nH )

nC + nH + nE
· nC

nH + ωnEnC + (1− ω)2nEnH

nEnHnC
.

E(ψFIU ) ≤ α

(9)

E(ψFIU ) = E
(

ϕ
αEpt
Ept ϕ

αS1
S1

)

︸ ︷︷ ︸
:=αEpt,S1

+E
((

1− ϕ
αEpt
Ept

)

ϕ
αS2
S2

)

︸ ︷︷ ︸
:=αEptc ,S2

.
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are conducted with R (R Core Team, 2018) [22], ver-
sion 4.1.2 for Windows (64 bit). The calculation of the 
integrals for the multivariable normal distribution dis-
played in Appendix B equations (B1) and (B2) was cal-
culated numerically using the R package “mvtnorm”. For 
this purpose, the expected response of the control group 
was fixed at 0 and the expected response of the histori-
cal control group was varied between -2.5 and 0 accord-
ing to the null hypothesis HEpt

0  to illustrate the difference 
of the control groups ȳH − ȳC . The expected response 
of the experimental group was chosen as a function of 
the expected response of the historical control group 
such that the difference ȳE − (ωȳH + (1− ω)ȳC) of 
{−0.2,−0.15,−0.1,−0.05, 0} is investigated according 
to the null hypothesis HS1

0  . Figure  2 illustrates the fam-
ily wise error rate depending on the underlying difference 
between the expected response of the historical and cur-
rent controls ( ̄yH − ȳC , difference (Ept)) as well as under-
lying weighted treatment effect of the superiority test 
( ̄yE − (ωȳH + (1− ω)ȳC) , difference ( S1 )) for the four 
different choices of the significance level of the equiva-
lence pre-test. Figure 2 shows that under the respective 
null hypotheses HEpt

0  and HS1
0  (i.e. lines left to the dashed 

vertical line), the family wise error rate is maximized for 
larger differences between the expected response of his-
torical and current controls (difference (Ept)) together 
with a weighted treatment effect (difference ( S1 )) of zero. 
Under the respective null hypotheses HEpt

0  and HS1
0  the 

maximum family wise error rate is kept at 5% . According 
to equation (7) for the calculation of the family wise error 
rate considering a medium effect size, the equivalence 
margin � was set to 0.44. Similar results are obtained 
for the settings for small ( δ = 0.2 , � = 0.19 ) in Appen-
dix C figure C1 and large ( δ = 0.8 , � = 0.70 ) in figure C2 

respectively. We also obtain the same results for other 
choices of the margin. In these cases, there is a shift in 
the curves, whereby the minimum is always achieved 
when the difference of the equivalence pre-tests (differ-
ence (Ept)) corresponds to the equivalence margin. The 
family wise error rate also maximizes in these cases, the 
further the difference of the equivalence pre-tests devi-
ates from the selected margin. Figure  3 displays a spe-
cial case in which both the expected responses of the 
control group µH and that of the experimental group 
µE are set equal to 0. The difference between historical 
and randomized controls is indicated on the x axis. The 
various lines reflect the approximation of the integrals 
from equation  (9) depending on the different settings 
for a small, medium and large treatment effect δ . For this 
investigation we used the same choices for the equiva-
lence margin as before, i.e. � = 0.19 for a small, � = 0.44 
for a medium and � = 0.7 for a large treatment effect.

Power of the Fill‑it‑up‑design
Next, the power of the procedure to detect a treatment 
effect of δ = µE − µC is evaluated. Recall that the sta-
tistical test ( S2 ) is planned with a power of 1− βS2 and 
similarly the test S1 should show a power of at least 
1− βS1 = 1− βS2.

It is worth noting that an anticipated effect of δ for 
the difference in means together with an confirmed 
equivalence between historical and randomized con-
trols |µH − µC | ≤ � results in the expected weighted 
treatment difference of µE − (ω∗ · µH + (1− ω∗) · µC)

= µE − µC − ω∗(µH − µC) > δ − nH
nH+nC

�. This expres-
sion almost vanishes with small nC if � is in the same 
magnitude as δ , i.e. the anticipated effect δ is over-
looked. From the power perspective, this means, that 

Fig. 2 Family wise error rate testing simultaneously superiority tests ( S1 ) and ( S2 ) for different scenarios of the Fill‑it‑up‑design depending 
on the choice of the significance level of the equivalence pre‑test. A medium effect size δ = 0.5 with nH = 500 historical controls 
and an equivalence margin of � = 0.44 is examined
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for δ < nH
nH+nC

� most of the trials will continue to the 
whole sample size and with δ > nH

nH+nC
� some trials 

use historical control data. Similar to equation (9) for 
the overall power of the Fill-it-up-design (1− βFIU ) of 
the test assuming the effect of δ = µE − µC using the 
anticipated decision rule it holds

Here βEpt,S1 is the type II error probability for detect-
ing equivalence in the pre-test without proving the dif-
ference in the superiority test (S1) and βEptc ,S2 is the type 
II error probability for not detecting equivalence in the 
equivalence pre-test and not proving the difference. The 
formulas for the calculation of βEpt,S1 and βEptc ,S2 using 
normal densities can be found in Appendix D. The equa-
tions show, that one has to pay a price for the extension 
implemented in the Fill-it-up-design compared to a 

(10)1− βFIU = 1−
(
βEpt,S1 + βEptc ,S2

)
.

single trial using only the ( S2 ) test. If both type II error 
probabilities βEpt,S1 and βEptc ,S2 could be set up to 0.2, 
then the overall power does not exceed 0.6. One may 
ask for a combination of the type II error probabilities 
βEpt,S1 and βEptc ,S2 so that the overall power 1− βFIU is 
about 0.8. We evaluate this and compare the total sam-
ple size of the Fill-it-up-design NFIU = NE + NC as well 
as the reduced sample size γNFIU and the average sample 
size AVN = γNFIU + (1− αEpt)(NFIU − γNFIU ) with a 
sample size of a corresponding one step design using the 
( S2 ) test only. The calculation of the overall power of the 
design in equation (10) was implemented using the inte-
grals of multivariable normal distributions of Appendix 
D equations (D1) and (D2) and was calculated numeri-
cally using the R package “mvtnorm”. Table  1 shows 
possible choices of the power of the superiority tests 
(S1) and (S2) in column “ 1− βS1 = 1− βS2 ” to keep the 
overall power of the Fill-it-up-design at a minimum of 

Fig. 3 Family wise error rate testing simultaneously superiority tests ( S1 ) and ( S2 ) assuming µE = µC = 0 depending on the choice 
of the significance level of the equivalence pre‑test. nH = 500 historical controls were included considering a small effect δ = 0.2 with equivalence 
margin � = 0.19 , medium effect δ = 0.5 with equivalence margin � = 0.44 and large effect δ = 0.8 with equivalence margin � = 0.70

Table 1 Overall power and sample sizes for different scenarios of the Fill‑it‑up‑design depending on the choice of the equivalence 
margin � considering a medium effect size δ = 0.5 including nH = 500 historical controls and significance levels αS1 = αS2 = 0.05

αEpt Two-sided significance level of equivalence pre-test, NFIU Maximum sample size of the Fill-it-up-design, γNFIU Sample size of the first stage of the Fill-it-up-
design, AVN Average sample size, βS1 Type II Error Probability superiority test (S1), βEpt ,S1 Type II Error Probability of equivalence pre-test and superiority test (S1), 
βEptc ,S2 Type II Error Probability of equivalence pre-test and superiority test (S2), 1− βFIU Power of the Fill-it-up-design

αEpt � NFIU γNFIU AVN 1− βS1 = 1− βS2 1− βEpt ,S1 1− βEptc ,S2 1− βFIU

0.01 0.4596 100 54 100 0.80 0.9530 0.8471 0.8001

0.01 0.4798 100 54 100 0.80 0.9871 0.8130 0.8001

0.05 0.3250 102 54 100 0.81 0.9596 0.8403 0.8000

0.05 0.3901 138 74 136 0.90 0.9608 0.8392 0.8000

0.10 0.2303 124 66 120 0.87 0.9637 0.8368 0.8005

0.10 0.3652 124 66 120 0.87 0.8442 0.9558 0.8000

0.20 0.1663 102 54 94 0.81 0.9722 0.8279 0.8001

0.20 0.3331 102 54 94 0.81 0.9403 0.8599 0.8002
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80% depending on the choice of the significance level of 
the equivalence pre-test and the equivalence margin � . 
As Table 1 shows, we can maintain the overall power of 
the Fill-it-up-design at 0.8. For this purpose we need to 
adjust the corresponding type II error probabilities of the 
two superiority tests ( S1 ) and ( S2 ) for the different sce-
narios of significance levels and the equivalence margin. 
With increasing equivalence margin � the type II error 
probabilities βS1 = βS2 have to be chosen smaller result-
ing in larger sample sizes for the two steps of the Fill-it-
up-design. Similar results are obtained for small and large 
treatment effects as displayed in Appendix E Tables E1 
and E2 respectively. Compared to this the one step design 
using the (S2) test only for power 1− βS2 = 0.8 keeping 
the significance level αS2 at 5% requires the sample sizes 
displayed in Table 2 for the considered treatment effects 
δ . Tables 1 and 2 show that if we can show the equivalence 
of the control groups, we can save a certain amount of the 
sample size. For example, we can save 52 subjects for the 
significance level αEpt = 0.05 of the equivalence test with 
a medium treatment effect comparing γNFIU = 60 and 
NFIU = 112 . Compared to the ( S2 ) test alone, we can save 
40 subjects here. However, if we compare the maximum 
sample size of the design NFIU = 112 with NS2 = 100 , it 
becomes clear that we have a premium to pay if the null 
hypothesis of the equivalence pre-test is not rejected. In 
this case, 12 more subjects are needed. For the highest 
significance level of αEpt = 0.2 , 28− 46 subjects can be 
saved, if equivalence can be shown. However, if we are not 
able to prove equivalence, we have to recruit additional 
subjects. In the latter case, the design requires 2− 38 
additional subjects compared to the required sample size 
when using a design with a single superiority test ( S2 in 
our notation) only. We can also observe this from the 
average sample size. It tends to be able to keep up with 
the one step method for the smaller choices of the equiv-
alence margin. We also observe similar effects for small 
and large treatment effects. Here, Appendix E Tables E1 
and E2 present the respective cases in comparison to the 
one step case from Table  2 ignoring the historical con-
trols. Overall, it can be seen that the maximum sample 
size of the Fill-it-up-design is larger than or equal to that 
of the single stage model if the historical controls are not 

taken into account. In particular, the maximum sample 
size increases the more heterogeneous the two control 
groups are. Concerning the proportion of patients who 
are required in the first step of the design, we take a look 
at the value of γ in the present scenarios. If we look at 
the columns NFIU and γNFIU of Table 1, it becomes clear 
that the proportion of patients in step 1 ranges between 
53% and 54% of the total needed sample size of both steps 
in all cases. As mentioned in the section entitled “Alloca-
tion of sample sizes between the stages of the Fill-it-up-
design”, γ is greater than 50% in any case and is therefore 
within a range in which only slightly more than half of 
the patients need to be recruited in the first step. Simi-
lar results can be obtained for small and large treatment 
effects displayed in Appendix E Tables E1 and E2. For 
small treatment effects, the values for γ are in the range 
of 64% to 68% and thus higher than those of the medium 
treatment effect. For large treatment effects, on the other 
hand, lower values are observed, ranging between 51% 
and 55% . It can therefore be concluded that smaller treat-
ment effects lead to a proportionally higher number of 
patients having to be recruited in the first step than in the 
case of larger treatment effects. As a result, fewer patients 
can potentially be saved, especially in these cases.

Comparison with Bayesian approach
As mentioned in the beginning, many Bayesian 
approaches to the use of historical controls have already 
been evaluated. To compare our method with the exist-
ing ones, we consider the meta-analytic predictive pri-
ors approach [19]. As already evaluated, the robust MAP 
priors offer a good method that we would like to use for 
comparison concerning family wise error rate and power 
of the designs. For the comparison of the previous evalu-
ations of the Fill-it-up-design with the MAP approach, 
we use the R package RBesT [31]. We again assume 500 
historical controls and calculate the required number 
of patients for the first step analogously to the Fill-it-
up-design. For the evaluation of the MAP approach, we 
will consider the full data set at the end, which in the 
Fill-it-up-design corresponds to the case in which the 
equivalence test cannot reject the null hypothesis. In the 
following, we will refer to this sample as “full-sample”. In 
addition, we will also calculate the type I error probability 
and power for the case in which no further recruitment 
takes place to ensure the best possible comparability 
of the two methods. This sample will be referred to as 
“sub-sample” in the following. In Bayesian approaches, 
modeling heterogeneity between historical controls is of 
central importance. Since we start from only one histori-
cal study, the choice here needs to be especially careful. 
We address this by comparing three different settings for 
heterogeneity. First, we assume a half normal distribution 

Table 2 Sample sizes for different scenarios of the superiority 
test ( S2 ) without historical controls considering small, medium 
and large effect sizes δ with a Power of 1− βS2 = 0.8 and for the 
significance level αS2 = 5%

δ NS2

0.2 620

0.5 100

0.8 40
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with an expected value of 0 and variance σh
2

 . As further 
settings, we have chosen truncated normal and truncated 
cauchy distributions with the same expected values and 
variances. Typically, one would estimate the variance 
with σ , but here we would like to use the more conserva-
tive setting σ

2
 . As recommended, we use the robust MAP 

approach described previously [26]. As described by Roy-
choudhury et al. [25] we transfer the previously defined 
frequentist hypotheses of the superiority test S2 into a 
dual-criterion Bayesian design. We assume the following 
decision functions:

This choice implies that the design accounts for both 
statistical significance and clinical relevance. A decision 
value (DV) of δ − 0.2 was chosen, as this corresponds 
to the choice of the treatment effect to be detected of 
0.5. This can also be seen in the power graphs Fig.  4 
and Appendix F figures  F1 and F2. The DV of δ − 0.2 
achieves a power of 50% , which by no means indicates 
underpowering according to Roychoudhury et  al. [25]. 
As can be seen, the desired power of 80% is achieved 
with the expected treatment effect of 0.5. This allows 
the study settings to be comparable between the fre-
quentist Fill-it-up-design and the bayesian robust MAP 
approach. For the evaluation of the MAP approach, 
the same framework conditions were set as previously 
in the Fill-it-up-design. For the displayed evaluations 
we again assumed a medium treatment effect of 0.5 to 
be detected and calculated the underlying sample size 
in the same way as in the Fill-it-up-design, using the 
Eqs. (5) and (6). We have assumed β = 0.2 and α = 0.05 
for this purpose, following the previous sections and 

P
(
yE − yC > 0

)
> 0.95 and P

(
yE − yC > δ − 0.2

)
> 0.5

evaluations. As possible scenarios, reflected by the dif-
ferent lines in Fig.  4, we formed the type I error and 
power among non-informative priors, non-robust pri-
ors and robust priors for the placebo, ie. control group 
based on the prior information of the historical con-
trols. Furthermore, we can see the different courses for 
the full- and sub-sample assumption. Figure  4 shows 
that the type I error of the MAP approach for a nega-
tive difference µE − µC initially complies well with the 
5 % . The closer the difference approaches zero, the lower 
the type I error becomes at first. However, there is an 
increase in the type I error, which reaches its maximum 
when the expected responses of the two newly rand-
omized groups E and C are equal. In this range, a type I 
error inflation to approx. 7.5% is possible. Similar results 
are obtained using the truncated normal distribution in 
Appendix F figure F1 and the truncated cauchy distribu-
tion in Appendix F figure F2. For the truncated cauchy 
distribution, however, a type I error inflation can also 
be observed at approximately µE − µC < −2 . Under all 
three distribution assumptions, it should be noted that 
the choice of the non-informative prior allows compli-
ance with the 5 % in both the full and the sub-sample. 
For the power, we obtain similar results. As expected, 
smaller treatment effects than the planned one are 
detected only with low power speaking of a true value 
of the difference between E and C of below 0.5. How-
ever, the power increases steadily and exceeds the 80% 
threshold for most scenarios when the desired treat-
ment effect is reached. An exception are the designs 
using the non-informative priors in both the sub- and 
full-sample. Overall, under all distribution assumptions 
from Fig.  4 and Appendix F figures  F1 and F2, those 

Fig. 4 Evaluation of type I error and power for MAP approach for full‑sample and sub‑sample using non‑informative, non‑robust and robust priors 
and half normal distribution for heterogeneity
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with the non-robust priors perform worse than the 
robust priors.

The Fill‑it‑up‑design in practice
In this section, we will illustrate how to proceed with the 
Fill-it-up-design and which practical and design impli-
cations are necessary. At first, we focus on the planning 
phase and a simulation study investigating the type I 
error probability in comparison to the MAP approach. 
Subsequently, we describe the final analysis to support 
researchers with its application. We consider the fol-
lowing scenario: Between September 15  in 2010, and 
November 21  in 2013, 605 patients were enrolled in the 
prospective international registry investigating the natu-
ral history of Friedreich’s ataxia [23]. The Scale for the 
Assessment and Rating of Ataxia (SARA) serves as a pri-
mary endpoint variable and was followed up yearly. In a 
fictive clinical trial with a two arm parallel group design, 
a new treatment should be compared to standard of care 
(SOC) with respect to the difference in mean SARA score 
two years after enrollment.

Planning phase
Assume that nH = 500 patients from the registry received 
the definitive SOC, fulfill the same inclusion and exclu-
sion criteria and showing at least a two year follow-up. 
In this scenario, one might think about using the registry 
data of the SOC-patients within the randomized clinical 
trial. For the application of the Fill-it-up-design we use 
the setting for equal type I error probabilities αS1 = αS2 
and balanced sample sizes nE = nC and n′E = n′C to 

establish an effect size δ = 0.275 at the overall power of 
0.8. In Table 3 the design parameters required for the ini-
tial calculation of the required sample size for the Fill-it-
up-design are summarized. Using  equations (5) and (6) 
the Fill-it-up-design would be designed with NFIU = 328 
and γNFIU = 192 resulting in γ = 58.3% . In the further 
planning phase, the type I error probability for the equiv-
alence pre-test is discussed i.e. αEpt ∈ {0.01, 0.05, 0.1, 0.2} 
as well as the choice of expected values in the treatment 
groups.

Simulation study
For the analysis of the type I error probability, a simula-
tion study is carried out for which two different scenarios 
are considered. In Table  4 the choices of further design 
parameters used in the simulation study are summarized.

The first scenario reflects the minimum case. This 
corresponds to the minimum type I error probabilities 
expected from the previous evaluations. This scenario 
thus describes the case in which the two control groups 
differ by exactly the selected margin and the treatment 
difference is −ω� . The second scenario reflects the 
maximum case. This corresponds to the maximum type 
I error probabilities expected from the previous evalu-
ations. This scenario thus describes the case in which 
the two control groups differ substantially more than 
the selected margin and there is no treatment difference 
expected. For both scenarios, the equivalence margin 
was chosen according to (7) and therefore varies for the 
different choices of the significance level αEpt . We inves-
tigated the equivalence margin � = 0.27 for αEpt = 0.01 , 
� = 0.22 for αEpt = 0.05 , � = 0.19 for αEpt = 0.1 and 
lastly � = 0.15 for αEpt = 0.2 . For all simulations set-
tings 50 thousand simulation replications were modeled. 
Since we are concerned with a rather small treatment 
effect, as mentioned above, we can see that the num-
ber of people to be recruited in the first step is slightly 
higher than in the case of larger treatment effects. Aver-
age sample sizes are displayed in Table  5 for different 
scenarios of the significance levels αEpt . Compared to 
this the corresponding standard fixed sample design 
using the superiority test ( S2 ) would involve a sample 
size of 328 with a power of 0.8. All in all, this means that 
with the Fill-it-up-design we could save 136 patients in 

Table 3 Choice of design parameters for the Fill-it-up‑design

Parameter Value

nH Sample size of historical 
control group H

500

δ Effect size 0.275

1− βS1 = 1− βS2 Power of ( S1 ) and ( S2) 0.8

αS1 = αS2 Significance Level of ( S1 ) 
and ( S2)

0.05

αEpt Significance Level of (Ept) {0.01, 0.05, 0.1, 0.2}
� Equivalence Margin

[√
1

nH
+ 1

nC
· z1−αEpt , δ

)

Table 4 Choice of design parameters for simulation study

Parameter Scenario I Scenario II

αEpt Significance Level of Equivalence pre‑test (Ept) {0.01, 0.05, 0.1, 0.2}
µC Expected response of control group C 0 0

µE Expected response of experimental group E −ω� 0

µH Expected response of historical control group H −� 3�
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the newly planned study if we can show equivalence. 
This is also reflected in the average sample size, which 
depends mainly on the choice of αEpt . It can be said that 
the smaller αEpt is chosen, the less the average sample 
size can be reduced with the help of the design. How-
ever, on the one hand, the relaxed significance level of 
0.2 may be an interesting choice, but on the other hand, 
it is also the most restrictive setting concerning the 
equivalence margin. Regarding the type I error prob-
abilities between the two designs, it can be stated that 
the MAP approach using the full-sample is superior to 
the family wise error rate of the Fill-it-up-design. Here, 
a smaller type I error probability is achieved in both sce-
narios. However, in this case, the maximum number of 
patients is needed to achieve these results, whereas the 

Fill-it-up-design can potentially save patients. However, 
one has to accept a small inflation of the error compared 
to the MAP approach. Looking at the type I error prob-
ability of the sub-sample in the MAP approach, we see 
that the Fill-it-up-design achieves smaller family wise 
error rates in Scenario I while the values approach each 
other as αEpt increases. In all cases, however, the error 
probability is kept below 5 % . Finally, in Scenario II, we 
see slightly higher type I error inflations in the Fill-it-up-
design, although the MAP approach can keep within the 
5 % bound in both the full- and the sub-sample.

Analysis
We now assume that the Fill-it-up-design is carried out 
as planned in Table 3. In the first step, 96 patients were 
randomized into the control group C  and 96 patients 
in the experimental group E, resulting in γNFIU = 192 . 
Thus, a data set fiudata would be available in which 
the data of the 500 historical controls and the patients 
randomized in groups C and E in the first step are con-
tained. For example, the data set can follow the form 
shown in Table  6. The subsequent R codes refer to a 
data set in this format.

A variable description of this data set is inserted in 
Table 7.

Table 5 Simulation results of the MAP approach and Fill‑it‑up‑design for an effect size of δ = 0.275 when nH = 500 and NFIU = 328 , 
γNFIU = 192 depending on the choice of the significance level of the equivalence pre‑test αEpt and corresponding choices of the 
equivalence margin �

AVN Average sample size, FWER Family wise error rate, TIE Type I error

FIU MAP

Scenario � αEpt AVN FWER TIE (full‑sample) TIE (sub‑sample)

I 0.27 0.01 328 0.0002 0.0002 0.0013

0.22 0.05 322 0.0015 0.0007 0.0029

0.19 0.1 316 0.0033 0.0015 0.0043

0.15 0.2 302 0.0072 0.0039 0.0074

II 0.27 0.01 328 0.0519 0.0461 0.0447

0.22 0.05 322 0.0519 0.0454 0.0439

0.19 0.1 316 0.0519 0.0453 0.0437

0.15 0.2 302 0.0519 0.0447 0.0428

Table 6 Exemplary format of the present data set fiudata 

PatID Group Recruitment Response

1 H historical ...

... ... ... ...

500 H historical ...

501 C initial ...

... ... ... ...

Table 7 Exemplary variable description of the present data set fiudata 

Variable Description Characterisation

PatID Patient ID in the database Number

Group Treatment group H (historical), E (experimental), C 
(control)

recruitment Recruitment status initial (recruited in the first step), fur‑
ther (recruited in the second step), 
historical (recruited historically)

response Response of primary endpoint SARA Score
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Listing 1 shows the parameters required for the following 
calculations. 

Recommendations
As most researchers are sceptic about borrowing external 
information for a randomized clinical trial, some conditions 
might be reasonable before using the Fill-it-up-design. 

To avoid the use of external data biasing the estimate of 
the treatment effect, the data should be comparable to 
the new data, which must be ensured in the identification 
and selection process in addition to the equivalence pre-
test. It is unavoidable to place restrictions on the historical 

data before the current study can be planned. Overall, this 
should be ensured through compliance with inclusion and 
exclusion criteria, verification of the quality of the data and 
the data source, and the planning process. With considera-
tion of the discussion in Kopp-Schneider [16], we propose 
the following framework:

The equivalence test (Ept) is now performed by cal-
culating the test statistic (1) and comparing it with the 
corresponding critical value. The test decision can be 
made in R using the R-code displayed in listing 2. 

If the null hypothesis of the equivalence test is rejected, 
the two control groups are considered comparable and in 
the next step, the final superiority test (S1) is performed 
without further recruitment of patients. This is again 
done by calculating the test statistic from formula 2 and 
the associated critical value, as shown in listing 3.

If the null hypothesis of the equivalence test is not 
rejected, the historical controls are discarded. In addition, 
68 patients are now randomized to each of groups E and C, 
so that the previously calculated sample size of NFIU = 328 
is achieved. The dataset fiudata is thus extended by these 
patients and finally superiority test (S2) is performed. This 
is again done by calculating the test statistic from formula 
3 and the associated critical value, as shown in listing 4.
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According to the underlying question to be answered 
by the analysis, all relevant patient and disease-specific 
variables that need to be collected for the historical con-
trol group H must be documented. Further important 
variables to be collected in the two randomized groups 
E and C have to be identified and also required from the 
historical database. Additionally to the required vari-
able list, essential inclusion and exclusion criteria, again 
with regard to patient and disease-specific fields, need 
to be defined before screening the registry data. When 
these cornerstones have been set appropriate registries 
have to be screened to identify possibly available histori-
cal control data. For this step, we suggest that a similar 
process should be followed as specified for systematical 
reviews and meta-analyses in the PRISMA statement 
[18]. From adequate registry data which fulfills the inclu-
sion and exclusion criteria from a suitable database, the 
random sample of historical controls is composed. In an 
ideal case, this dataset should remain blinded to all inves-
tigators until the equivalence pre-test is performed. Only 
the blinded study committee, which can for example 
be considered as a data safety committee, will take over 
the study planning to show the desired treatment effect 
based on the knowledge of the sample size nH . In prac-
tice, it is important to get as close as possible to this best-
case scenario to ensure the most optimal study planning. 
Both the required sample sizes of the first step of our 
design and the potential sample size of the second step 
are calculated to determine the desired treatment effect. 
All these steps should therefore be completed before 
recruitment and data collection of the new randomized 
part of the study. The specific inclusion and exclusion cri-
teria must therefore be chosen in a way that ensures the 
potential comparability of historical and new data and of 
course the data quality. To this purpose, we would sug-
gest that the six criteria of Pocock [21] are followed to 
ensure the safe use of historical controls: 

(1) The standard treatment has to be precisely defined and 
must be the same treatment for randomized controls.

(2) The historical control group must have been part 
of a clinical study with the same requirements for 
patient eligibility.

(3) The methods of treatment evaluation have to be the 
same.

(4) Patient characteristics have to be comparable.
(5) The study must have been performed in the same 

organization with the same investigators.
(6) There should be no indications leading one to 

expect a difference.

These criteria are still to be considered as proper restric-
tions nowadays [8]. Although these might be very rigorous 

and restrictive, it makes sense to follow them and only 
deviate from the conditions by giving an adequate reason. 
To increase transparency, we also recommend that it is 
clearly stated in percentages how much of the total infor-
mation comes from the randomized evidence and how 
much from the historical controls.

Conclusion
Discussion
Viele et al. [30] investigated in their “test-then-pool” pro-
cedure a different approach, i.e. to use the historical con-
trols unless the pre-test on the difference of the expected 
response of the randomized and historical controls is 
not rejected, i.e. the test on H0 : |µC − µH | = 0 versus 
H1 : |µC − µH | �= 0 . Note that he recommended a type 
I error probability of α = 0.1 or 0.2 for the pre-test. This 
test is rather an optimistic perspective as the test assumes 
the comparability of the two control groups as long as 
the comparability hypothesis is rejected. Without power 
control, this could not be associated with the equivalence 
test [27]. However, Viele et al. [30] stated that the superi-
ority pre-test could be substituted by an equivalence test. 
But this approach has not yet been evaluated.

The equivalence pre-test incorporated in the Fill-it-
up-design reflects a more sceptical perspective, that the 
comparability of the two control groups has to be proven. 
Moreover, the application of an equivalence test needs the 
specified formulation of an equivalence margin � , which 
quantifies the degree of comparability. Contrary to the 
recommendation of Viele et  al. [30] to perform the pre-
test with a more relaxed significance level, we have found 
that this requires larger sample sizes to maintain the over-
all power at 0.8. We found that the family wise error rate 
is maximized for larger differences between the expected 
response of the historical and current controls and for a 
weighted treatment effect of zero while maintaining it at 
5% under the respective null hypotheses HEpt

0  and HS1
0  . 

Additionally, we conclude, that the choice of equivalence 
margin plays an essential role. As we have examined in 
our calculations, this must not be too small to be able to 
reject the null hypothesis. In contrast, however, it should 
of course not reach the level of the effect size.

Using historical controls only makes sense if we have 
some robust prior belief that it will be very close to 
the current controls. The pre-test cannot replace this 
assumption, it can just serve as a safety net if the assump-
tion of equality of historical and current controls is com-
pletely wrong. We have also seen that the maximum 
sample size of the design is larger than that required for 
the one-step approach without the inclusion of historical 
controls. Further more the sample size increases as the 
heterogeneity between the two control groups, i.e. histor-
ical and concurrent controls, increases. This reflects the 
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premium to be paid for using the design when equiva-
lence cannot be achieved.

Compared to the existing MAP approach, we were able 
to show that the Fill-it-up-design can achieve compara-
ble results in terms of evaluation of type I error proba-
bility and power. In some situations, a slight type I error 
inflation might be considered.

Overall, there is a growing interest in the inclusion of 
historical control data. The inclusion of non current con-
trols allows, on the one hand, more studies to be carried 
out in small population groups if the sample size can be 
reduced. On the other hand, the use of this method can 
also be considered for more complex trials such as plat-
form trials [17]. The Fill-it-up-design should, accord-
ing to our investigations, be considered as a way out in 
exceptional situations where a hybrid design is deemed 
necessary.

Limitations and generalizations
As a distinct limitation of the Fill-it-up-design, it should be 
noted that the combination of the hypotheses of the equiv-
alence test (Ept) and the superiority test with included 
historical controls ( S1 ) leads to a weaker conclusion than 
the superiority test without historical controls ( S2 ) alone. 
This is due to the fact that the intersection hypothesis of 
the first case from (Ept) and ( S1 ) results strictly speaking in 
a non-inferiority conclusion between the groups E and C 
rather than in a superiority conclusion. With the Fill-it-up-
design we are only able to investigate the superiority of the 
experimental group E versus the combined control group 
C+H. However, when historical data is included, there 
remains another side to the story.

The approach can be extended to unbalanced alloca-
tion ratios nE/nC  = 1 . It should be noted that a slight 
imbalance will be observed most often in practice. How-
ever, as with continuous endpoints, a slight imbalance 
will have an ignorable effect on the power of the trial, so 
that the balanced case evaluation gives direction for the 
practice. Further, as the known variance case is rather 
rare in practical situations, it might be sufficient for the 
investigation of large sample properties. In addition, the 
design requires further investigation concerning distribu-
tional assumptions and differences between the groups, 
such as the possibility of differences in variances. Ini-
tially, we focussed on the use of the z-test. However, the 
approach described in the paper can be directly followed 
to derive the properties, when using the corresponding 
t-distribution of the test statistics rather than the normal 
distributions. Moreover, the use of bootstrap techniques 
for resampling could be considered in order to estimate 
the respective statistics more robustly.

A generalization of the Fill-it-up-design would be to 
implement a sample size reassessment step based on the 

already observed randomized data, in the case the null 
hypothesis of the equivalence test could not be rejected, 
meaning that comparability could not be established. 
This potentially reduced the cost of the Fill-it-up-design 
even in the case of ignoring the historical controls. When 
allowing for sample size reassessment the incorporation 
of a futility stop should be taken into account as well. 
This has implications on the whole setting, in particu-
lar the derivation in  the sections entitled “Type I error 
probability of the Fill-it-up-design” and “Power of the 
Fill-it-up-design”.

Furthermore, it should be mentioned that the compa-
rability of the two control groups is of course difficult to 
establish based on the outcome variable only. Therefore, it 
is also necessary to consider the comparability of the pos-
sible baseline characteristics. On the one hand, this issue 
can be considered through the information provided in 
the “Recommendations” section. On the other hand, the 
statistical analysis of data obtained from trials using the 
Fill-it-up-design could also be extended to more complex 
models, to be able to adjust for confounders.

In this paper, the Fill-it-up design was evaluated as a 
test problem. In order to evaluate it in terms of estima-
tion methods, additional operational characteristics such 
as bias and mean squared error need to be addressed.

Further possible extensions of the design are generali-
zations to other endpoints as binary and time to event 
measurements. In addition, one could include not only 
one set of historical controls but consider multiple his-
torical data sets.
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