Skip to main content
. 2002 May 1;30(9):2076–2082. doi: 10.1093/nar/30.9.2076

Table 2. Variations in (C+G)% and ρ(CG) statistics among differing RNA classes.

RNA Species (C+G)% ρ(CG)
tRNAs (cytoplasmic) M.jannaschii 66.2 0.72
  Plasmodium 25.6 0.88
  C.elegans 58.8 0.92
  H.sapiens 58.0 1.00
rRNAs M.jannaschii 63.8 0.87
  Plasmodium 36.0 0.98
  C.elegans 48.0 1.04
  H.sapiens 60.3 1.03
SRP RNAs M.jannaschii 65.7 0.66
  C.elegans 56.8 1.07
  H.sapiens 58.3 0.48
Small nuclear RNAs C.elegans 43.1 1.01
  H.sapiens 44.3 0.90
sno- and sno-like RNAs M.jannaschii 48.7 0.83
  H.sapiens 44.2 0.38
Riboregulator RNAs H.sapiens 47.6 0.33
  All eukaryotes 44.4 0.46
Pseudoknot RNAs All bacteria 52.0 0.86
  All viruses 51.8 0.98

This table shows some of the variations in (C+G)% and ρ(CG) values among different classes of RNAs for M.jannaschii, Plasmodium (multiple species combined because of limited data), C.elegans and H.sapiens. For the riboregulator and pseudoknot databases, which contain limited or no data for these species, RNA sequence data from other groups of organisms are shown. The base-composition variations shown in the table indicate which ncRNA types are more likely to be detected by a RNA gene-finder based on (C+G)% and ρ(CG). For example, one notes that (C+G)% is only 48.7% in M.jannaschii snoRNAs and 43.1% in C.elegans snRNAs. Consequently these RNAs would be more difficult to detect using a (C+G)% detector than the more G+C rich tRNAs, rRNAs and SRP RNAs.