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Cardiovascular diseases are a prominent cause of mortality, emphasizing the need for early prevention 
and diagnosis. Utilizing artificial intelligence (AI) models, heart sound analysis emerges as a noninvasive 
and universally applicable approach for assessing cardiovascular health conditions. However, real-world 
medical data are dispersed across medical institutions, forming “data islands” due to data sharing 
limitations for security reasons. To this end, federated learning (FL) has been extensively employed in 
the medical field, which can effectively model across multiple institutions. Additionally, conventional 
supervised classification methods require fully labeled data classes, e.g., binary classification requires 
labeling of positive and negative samples. Nevertheless, the process of labeling healthcare data is time-
consuming and labor-intensive, leading to the possibility of mislabeling negative samples. In this study, 
we validate an FL framework with a naive positive-unlabeled (PU) learning strategy. Semisupervised FL 
model can directly learn from a limited set of positive samples and an extensive pool of unlabeled samples. 
Our emphasis is on vertical-FL to enhance collaboration across institutions with different medical record 
feature spaces. Additionally, our contribution extends to feature importance analysis, where we explore 
6 methods and provide practical recommendations for detecting abnormal heart sounds. The study 
demonstrated an impressive accuracy of 84%, comparable to outcomes in supervised learning, thereby 
advancing the application of FL in abnormal heart sound detection.

Introduction

Cardiovascular diseases (CVDs) are the leading cause of death 
worldwide, surpassing other causes in annual fatalities [1,2]. 
The importance of early diagnosis and preventive measures in 
cardiovascular healthcare cannot be overstressed. Due to its 
universal and noninvasive nature, heart sound analysis offers 
a promising avenue in medical care for assessing an individual’s 
cardiovascular status. Leveraging machine learning models for 
abnormal heart sound detection in digital healthcare provides 
a practical approach for early diagnosis and effective prevention 
of CVDs [3–6].

However, the issues of privacy protection and data silos seri­
ously impede the exploration of medical data and the applica­
tion of medical artificial intelligence (AI) models [7]. First, 
variations exist among medical institutions. Some institutions 
have limited resources and records that hinder effective medi­
cal machine learning modeling. Second, pertinent laws and 
regulations, including the Health Insurance Portability and 
Accountability Act (HIPAA) [8], restrict data exchange between 

medical institutions for security and privacy protection. Conse­
quently, healthcare data become fragmented and scattered 
across medical institutions, causing the phenomenon of “data 
islands.”

Federated learning (FL) is a distributed machine learning 
paradigm that enables collaborative modeling among partici­
pants without sharing their private data [9–11]. It serves as a 
viable method to address the “data island” issue in the medical 
field through collaborative modeling across multiple centers. 
Consequently, it provides a certain degree of protection for data 
security and patient privacy. Our studies are based on SecureBoost 
[12], a federated ensemble learning framework embedded in 
FATE. [FATE (Federated AI Technology Enabler [13]) supports 
the FL architecture, as well as the secure computation and 
development of various machine learning algorithms; https://
github.com/FederatedAI/FATE.] In this study, we practically 
applied the vertical-SecureBoost (Vertically Federated XGBoost) 
model on a multi-institutional heart sound database. [XGBoost 
(eXtreme Gradient Boosting [14]) provides an optimized dis­
tributed gradient boosting tree-based ensemble model designed 
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to be highly efficient, flexible, and portable; https://xgboost.
readthedocs.io.] We propose corresponding federated optimi­
zation strategies for the requirements of real-world healthcare 
scenarios with label scarcity.

In real-life medical scenarios, we consider 3 key issues: (a) 
Accurately labeling all heart sound records is resource-intensive, 
leading to only a fraction of the dataset being labeled [15–17]. 
Semisupervised FL is considered suitable, involving a few “posi­
tive” labeled samples and a large volume of “unlabeled” samples, 
which may contain both positive and negative samples. (b) The 
widely studied horizontal-FL, also known as sample-partitioned 
FL [18], requires data from institutions to have the same feature 
space and different sample spaces. Horizontal-FL is devised to 
facilitate collaboration among medical institutions with varied 
patient populations, given the inability to share data across 
institutions. Therefore, horizontal-FL data partitioning is rec­
ommended when developing models with limited sample size 
variability of FL participants. However, in real medical sce­
narios, the same patient may receive treatment at different 
hospitals, allowing for the use of records from multiple sources 
in diagnosis. Consequently, multiple healthcare institutions 
may serve the same patient population. Vertical-FL, akin to 
feature-partitioned FL [19], has recently garnered attention 
from researchers in cases where medical institutions participat­
ing in FL share the same user community but have different 
medical record feature spaces. This study centers on vertical-FL, 
aiming to model collaboration across multiple institutions 
with distinct medical record spaces to provide comprehen­
sive insights into the same patient population. (c) Leveraging 
the high-dimensional features extracted from heart sound 
records, it is necessary to select an effective feature importance 
analysis scheme to retain the most influential feature set [20]. 
This enhances the efficiency of FL modeling and is anticipated 
to sustain comparable performance while achieving a reduction 
in feature dimensionality. Therefore, the contributions of our 
work can be summarized as follows:

• Our study uniquely shifts from traditional data-centric 
centralized learning to embrace the FL paradigm in the analy­
sis of the PhysioNet/CinC heart sound database. (Classification 
of Normal/Abnormal Heart Sound Recordings [21,22]: the 
PhysioNet/Computing in Cardiology Challenge; https://physi­
onet.org/content/challenge-2016/1.0.0.) We adopt a vertical 
data partitioning approach and leverage the vertical-SecureBoost 
FL framework for multi-medical center collaboration modeling 
to address data islands and privacy concerns in healthcare.

• To meet the demands of real medical scenarios, we pro­
mote an FL framework with a naive positive-unlabeled (PU) 
semisupervised learning strategy. In specific medical contexts, 
semisupervised FL emphasizes the integration of positive and 
unlabeled training strategies. The approach achieves a remark­
able 84% accuracy, comparable to the outcomes of supervised 
learning, representing an important exploration of FL in the 
realm of abnormal heart sound detection.

• In our study practice, we explore 6 distinct methods for 
feature importance analysis. Utilizing the ensemble learning 
paradigm based on XGBoost, we compare 5 methods, namely, 
“gain, total_gain, cover, total_cover, weight,” with the SHAP 
method. [SHAP (SHapley Additive exPlanations [23]) is a 
game-theoretic method to explain the output of machine learn­
ing models. The method is used to determine the importance 
of an individual by calculating the contribution of that indi­
vidual in the cooperation; https://shap.readthedocs.io.] Based 

on comparative experiments, we provide practical recommen­
dations for feature selection in the context of abnormal heart 
sound detection.

The rest of the paper is organized as follows: The “Related 
Works” section introduces the related work. The “Materials and 
Methods” section describes data preprocessing methods, exper­
imental design, and evaluation metrics. The “Experiment and 
Results” section presents our comparative experiments and 
results. The “Discussion” section provides a detailed discussion. 
Finally, we conclude the paper in the “Conclusion” section. 

Related works
In the realm of healthcare, FL has emerged as a pivotal research 
area, addressing the challenges associated with collaborative 
modeling across diverse medical institutions. Recent studies 
emphasize its application in multicenter settings, enabling model 
training without raw data exchange, thus preserving privacy 
and adhering to data security regulations. Researchers have 
investigated federated approaches for tasks such as predic­
tive modeling, disease diagnosis, and personalized treatment 
recommendations. Examples of noteworthy work include the 
following:

• Privacy-preserving patient data sharing: Pioneering stud­
ies have focused on preserving patient privacy while enabling 
collaborative model training [24,25]. Techniques such as feder­
ated averaging and secure aggregation have been employed to 
facilitate model updates without raw data sharing. This ensures 
that FL complies with data protection regulations such as 
HIPAA.

• Decentralized disease prediction models: Some researchers 
have applied FL to construct disease prediction models using 
data across multiple healthcare institutions [26–28]. This approach 
allows each institution to contribute to the model without shar­
ing patient-specific information, enabling the development of 
robust and generalizable models.

• Real-world federated systems: Emerging research involves 
the implementation of FL systems in real-world healthcare set­
tings [29–31]. These systems consider challenges like data het­
erogeneity, communication efficiency, and model convergence 
across multiple institutions.

A practical concern often overlooked in healthcare is the 
limited availability of labeled data. We study the real-world 
setting of FL medical applications, where assuming fully 
labeled data in each FL client is less practical. Two related 
areas include federated unsupervised representation learning 
and federated semisupervised learning. In scenarios with 
limited labeled data, semisupervised FL becomes crucial 
[15–17]. This paradigm involves training models using a 
combination of labeled and unlabeled data, making it par­
ticularly relevant for medical applications with limited anno­
tated datasets. In terms of semisupervised FL, some studies 
explore cross-institutional transfer learning strategies to trans­
fer knowledge between institutions with varying degrees of 
labeled data [32]. Therefore, models can leverage labeled data 
from one institution to enhance the performance on different 
institution datasets, contributing to better generalization. 
Additionally, some studies incorporate active learning tech­
niques within FL frameworks to intelligently select and query 
instances for annotation [33]. This ensures efficient utiliza­
tion of labeling resources and enhances model performance 
in scenarios with limited labeled samples. There are few FL 
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studies directly addressing federated PU learning. Study [34] 
proposes a novel framework called Federated Learning with 
Positive and Unlabeled Data (FedPU). FedPU considers that 
each client can label only a limited amount of data for some 
classes. The work [35] introduces the FedMatch algorithm, 
a state-of-the-art federated semisupervised model based on 
consistency regularization training. FedMatch addresses sce­
narios where clients have both labeled and unlabeled data. 
We study the problem of learning from positive and unla­
beled (PU) data in the federated setting. In contrast to the 
previous scenario, we focus on situations where some clients 
exclusively have positive and unlabeled samples, while others 
have only unlabeled samples.

To sum up, FL in healthcare is developing rapidly, with a 
focus on preserving privacy and addressing data distribution 
challenges. The incorporation of semisupervised learning tech­
niques further extends the applicability of federated approaches, 
especially in scenarios with imbalanced or limited labeled data. 
These developments set the stage for tackling complex tasks 
like abnormal heart sound detection across multiple federated 
care institutions.

Materials and Methods

Dataset description and preprocessing
In this work, heart sound data are obtained from the PhysioNet/
CinC [21,22] challenge, a high-quality, authentic public data­
base. As shown in Table 1, it comprises 6 sub-databases, each 
independently gathered by diverse institutions in clinical and 
nonclinical environments. Samples labeled as “normal” origi­
nate from healthy subjects, whereas “abnormal” samples are 
derived from patients with various conditions like heart valve 
disease and coronary artery disease. We use openSMILE [36,37], 
a widely used open-source toolkit for audio-signal processing, 
to extract features. openSMILE provides features commonly 
used in traditional acoustic signal processing methods, includ­
ing mel frequency cepstrum coefficients (MFCCs), physio­
logical acoustic features, and energy spectrum features. Initially, 
it extracts low-level descriptor (LLD) features from the 
audio signal and then re-extracts statistical features from 
these frame-based LLD features. We use the ComParE [38] 

feature set in openSMILE, extracting a total of 6,373 dimen­
sional features, which include 65 acoustic LLD features and 
their associated statistical features. The data preprocessing pro­
cedure is summarized in Fig. 1, and the specific steps are out­
lined below.

Step 1: Due to the original databases collected by each insti­
tution, multiple sets of heart sound records may have been 
obtained from the same subjects. To ensure subject indepen­
dence, the experiment combined the data from 5 medical insti­
tutions (Dataset{b − f}) as the training set, while the database 
Dataseta was designated separately as the public test set. Addi­
tionally, we implemented a downsampling strategy using the 
RandomUnderSampler function in Python to address the data 
imbalance problem. After balancing the samples, there are 665 
positive samples and 665 negative samples. The training set to 
test set ratio is approximately 7:3. The validation set is derived 
from the officially provided “validation” dataset, comprising 
150 positive and 150 negative samples, each.

Step 2: Further selecting the subset of features that have the 
most impact on the model benefits resource-constrained feder­
ated clients, as it is expected to improve model performance 
while reducing feature dimensionality. As the FL model in 
this paper is a novel privacy-preserving gradient tree boost­
ing framework, it conducts FL by constructing boosting trees 
across multiple federated parties. Using the 6,373-dimensional 
ComParE feature set, we apply 5 tree-based feature importance 
analysis methods: gain, total_gain, cover, total_cover, and weight, 
along with a SHAP-based method to assess their individual 
contributions to the model. Subsequently, the selected 165 fea­
tures will be used in the hyperparameter experiments of this 
study.

Step 3: Since accurate labels exist for all samples in the data­
set, to assess the effectiveness of the semisupervised FL algo­
rithm, we introduce the assumption that labels for some samples 
are absent. Following the PU scenario, we designate all nega­
tive samples as unlabeled, while also masking a portion of 
the positive samples as unlabeled. This approach, inspired 
by a previous study [39], involves randomly selecting 20% of 
the positive data as labeled positive examples, treating the 
rest of the data as unlabeled examples. The mask strategy is 
visually depicted in Fig. 4A, where the unmasked part represents 

Table 1. Summary of the sub-databases used in the PhysioNet/CinC Challenge

Sub-set/source Recordings # Raw recordings # Recording length (s)

Abnormal/proportion (%) Normal/proportion (%) Min Median Max

Dataseta (MIT) 409 292 67.5 117 28.4 9.3 35.6 36.5

Datasetb (AAD) 490 104 14.9 386 60.2 5.3 8 8

Datasetc (AUTH) 31 24 64.5 7 22.6 9.6 44.4 122.0

Datasetd (UHA) 55 28 47.3 27 47.3 6.6 12.3 48.5

Datasete (DLUT) 2,141 183 7.1 1,958 86.7 8.1 21.1 101.7

Datasetf (SUA) 114 34 27.2 80 68.4 29.4 31.7 59.6

Validation 300 150 50.0 150 50.0 5.3 21.1 122.0

Total/average 3,240 665 18.1 2,575 73.0 5.3 20.8 122.0

MIT, Massachusetts Institute of Technology; AAD, Aalborg University; AUTH, Aristotle University of Thessaloniki; UHA, University of Haute Alsace; DLUT, 
Dalian University of Technology; SUA, Shiraz University
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positive samples, and the masked part is unlabeled. This 
masking strategy is applied to both the training and testing 
datasets.

Step 4: Following the completion of step 3, we vertically 
partition the preprocessed dataset, gearing up for the vertical-
SecureBoost model with PU learning. In vertical-FL, datasets 
across institutions share the same sample space but exhibit dif­
ferent feature spaces. To adhere to this condition, vertical 
partitioning in this study involves vertically dividing the data­
set. Let us consider a dataset D = (X, Y) consisting of a feature 
set X and a label set Y, partitioned into guest = (X1, Y) and 
host = (X2), where guest represents the federated participant 
with labels, host denotes the unlabeled participant, and X = 
X1 ∪ X2. The classifier’s objective is to label the unlabeled sam­
ples within the masked segment and accurately classify the 
unmasked positive samples.

Experimental design
Vertically federated XGBoost (vertical-SecureBoost)
FL is an emerging machine learning paradigm that leverages 
decentralized data and distributed learning. It offers a novel 
solution for collaborative modeling across multiple healthcare 
institutions. In the traditional horizontal-FL approach, partici­
pating institutions initially train their models using local data. 
Subsequently, they transfer the parameters of these local mod­
els, such as the gradients of neural networks, to a central server 
for aggregation. This process enables the construction of robust 
global models without sharing raw data. Horizontal-FL requires 
alignment of feature spaces among participants, which is an 
ideal scenario. This paper considers medical institutions as 
federated participants and studies the same patient population 
with different medical record feature spaces, which is consis­
tent with the vertical-FL scenario. Vertical FL, also known as 
feature-partitioned FL, is suitable for scenarios where medi­
cal institutions share the same patient population. In other 

words, the data of these institutions have the same sample 
space but different feature spaces.

 In this study, we employ a vertical-FL model named vertical-
SecureBoost for semisupervised FL learning. In the vertical-
SecureBoost setting, only one client has labels, while other 
clients only have features. The client with labels is referred to 
as the guest party, and the others are termed host parties. The 
role of the guest party is analogous to the central server in 
horizontal-FL. In real medical scenarios, some FL participants 
have unlabeled data and only serve as feature providers. In 
response, the semisupervised FL of this paper aims to address 
the problem of missing and unlabeled labels in federated medi­
cal institutions.

The guest party, holding the class labels, is responsible for 
computing gradient values for all samples and transmitting 
them to all host parties. Additionally, the guest party is tasked 
with aggregating feature bins from host parties, decrypting 
gradient histograms, traversing them, and determining the 
optimal split point along with the corresponding feature. For 
host parties, the main function is to compute their own feature 
bins and local gradient histograms based on the encrypted gra­
dient values of all samples transmitted by the guest party. Upon 
receiving the broadcast from the guest party regarding the opti­
mal splitting feature, the host party holding that feature must 
determine the corresponding threshold value. The node-splitting 
mechanism of the tree model in vertical-SecureBoost is illus­
trated in Fig. 2.

PU classification scenario
PU classification is prevalent in real-world applications such as 
healthcare and bioinformatics. The data consist of an incomplete 
set of positive samples and a set of unlabeled samples that may 
be either positive or negative.

Stated formally, let  y∈ {0, 1} be a binary label, x be the fea­
ture matrix, s = 1 if the sample is labeled, and s = 0 if the sample 
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Fig. 1. Illustration of the data preprocessing process.
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is not labeled. If y = 1, then s = 1. But if s = 0, y can be either 
1 or 0. So, we have p(s = 1| x, y = 0) = 0, which means that the 
probability that a negative sample x appears in the labeled set 
is zero.

Theoretical basis of the naive PU training strategy
In this study, we adopt a naive PU training strategy, modeling 
only from positive and unlabeled data. This strategy initially 
treats all unlabeled samples as negative sample and then trains 
the model accordingly. High-scoring initial samples are iden­
tified as positive label, while the rest are labeled negative. 
Subsequently, the second classifier is trained. This process is 
repeated until the unlabeled samples yield the desired result.

The naive PU training strategy has been proved to be reason­
able by the work [39]. It shows that a classifier trained on posi­
tive and unlabeled examples predicts probabilities that differ 
by only a constant factor from the true conditional probabilities 
of being positive. Let f(x) = p(y = 1| x), g(x) = p(s = 1| x). f is a 
traditional probabilistic classifier, while g is a nontraditional 
one. It can be proved that p(y = 1| x) = p(s = 1| x)/c, where c is 
a constant. The proof is that p(s = 1| x) = p(y = 1, s = 1| x) = p(y = 
1| x)p(s = 1| y = 1, x) = p(y = 1| x)p(s = 1| y = 1); according to 

the definition of the PU scenario, p(s = 1| y = 1) is a constant. 
It can be noticed that f is an increasing function of g. This means 
that if the classifier f is only used to rank examples x according 
to the chance that they belong to class y = 1, then classifier g 
can be used directly instead of f, which verifies the rationality 
of the naive PU training strategy. The description of relevant 
variables is shown in Table 2.

Workflow of PU vertical-SecureBoost
PU is applicable to classification tasks in the vertical-FL sce­
nario. The constructed semisupervised FL model can be trained 
using positive samples and unlabeled samples, and the predic­
tion of unlabeled samples is completed based on the trained 
model. As the labels change, the data distribution also under­
goes alterations, requiring the model to rely on the updated 
data for continued training. The iterative process continues for 
multiple rounds until the labels in the dataset converge under 
predefined rules. Due to the absence of overlapping users 
among medical institutions, we merged data from five institu­
tions for building the vertical-FL model. Specifically, the multi-
dimensional table data extracted after merging are partitioned 
into 2 segments based on the feature columns, representing the 

Fig. 2. The splitting mechanism for privacy preservation. Vertical-SecureBoost guarantees the privacy and security in the process when multiple parties jointly build the tree 
model. When the guest party figures out the best split feature, it will notify the party that holds the feature, denoted as host. Then, the host will search for its threshold value, 
split the local model, and get the left children and right children. After splitting the local model, the host will transfer its party id and the sample space in the left children node 
to the guest party, since the sample space in the right children can be inferred from the left children. The guest party then records the party id in the current node and splits 
the local tree model. Then, the guest party will send party id and the sample space in the left children node to the remaining party. In this way, although all the parties share the 
same tree model, the recorded information of each node of each party’s tree model may be different. Each party can only have the authority to see its own data information.
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feature spaces for the federated participants—guest and host, 
respectively. The FL participants, guest and host, meet the 
requirement that the sample space is the same but the feature 
space is different, thus enabling vertical-FL modeling. In this 
study, we designate the medical institution data warehouse as 
the federated client and establish 2 federated parties for vertical-FL 
modeling: the guest party and the host party.

Figure 3 illustrates the workflow of semisupervised vertical-
SecureBoost with a naive PU training strategy, providing addi­
tional details on each component. As the guest participant in 
the FL, the guest holds 2 types of data: positive samples and unla­
beled samples. In the data preprocessing stage, unlabeled samples 
are treated as negative samples, and the process incorporates 
the vertical-SecureBoost FL algorithm. The trained federated 
model is used to predict the unlabeled intersection data of the 
guest participant. Subsequently, these data are sorted based 
on their predicted probabilities, and those exceeding a pre­
defined threshold are selected. Positive labels are then assigned 
to these selected high-probability unlabeled intersection 

data. Figure 4A illustrates the masking strategy used in our 
experiments with the selected dataset. Figure 4B provides a 
simple concrete example to illustrate the training process. 
Algorithm 1 describes the pseudocodes detailing the basic 
principles and workflow of semisupervised vertical-SecureBoost 
with a naive PU training strategy.

Evaluation metrics
The multi-institutional heart sound database reflects imbalances 
in sample size and class distribution across institutions. This 
study uses the following evaluation metrics, in addition to tra­
ditional methods such as accuracy (Acc), to measure model 
performance. Given are C classes, true positives (TP), false nega­
tives (FN), false positives (FP), and true negatives (TN).

We utilize the unweighted average recall (UAR) and the 
unweighted F1-Score (UF1) to evaluate the performance of 
the diagnostic model. The importance of the UAR metric lies 
in its ability to give equal importance to the performance of 
each class. Therefore, UAR is especially valuable for evaluat­
ing models on datasets where some classes are under-repre­
sented. UAR is calculated as:

and UF1 can be formulated as:

Results

Our main objective is to investigate the hyperparameter con­
figurations of the vertical-SecureBoost model with native PU 
learning. Subsequently, we will conduct comparative experi­
ments to assess model performance using various feature impor­
tance analysis methods, aiming to provide valuable insights into 
abnormal heart sound detection. The experiment includes 
essential parameters within the interactive learning processes 
of both the SecureBoost and PU components, along with the 
selection of 165 features determined by feature importance 
analysis methods.

Model hyperparameter experiment
We explore crucial hyperparameter settings in semisupervised 
FL models through 2 sets of experiments. The first set involves 
configuring the proportion parameter in the PU component 
and determining the number of trees in the SecureBoost com­
ponent. The second set focuses on establishing the optimal 
numbers of SecureBoost and PU components in semisupervised 
FL. The “proportion in PU” refers to the percentage of top 
samples considered as positive when executing the current PU, 
determined based on the sorted scores of samples labeled by 
the preceding SecureBoost classifier.

Relationship between the first PU (PU1) proportion  
and model performance
The PU learning strategy enables the FL model to directly learn 
from a limited set of positive samples and a large pool of 

(1)UARc =

∑C

i=1
Recalli

C

(2)
UF1c =

2 ∗ TPC

2 ∗ TPC + FPC + FNC

Table 2. List of notations used in the semisupervised vertical-
SecureBoost model

List of notations Explanations

P Dataset with positive labels

U Unlabeled dataset

X1 ∈ Rn×a Feature matrix of the labeled dataset for 
the guest party

X2 ∈ Rm×a Feature matrix of the unlabeled dataset  
for the guest party

X3 ∈ R(n+m)×b Feature matrix of the host party

s ∈ {0,1} s = 1 means the sample is labeled, s = 0 
means the sample is unlabeled.

y True labels of the samples

ŷ The predicted label of the sample in the 
previous round

i Sample identification number

j Client identification number

k Feature identification number

q Feature bin identification number

dj Number of features for the jth client

ukq The splitting value of the qth feature bin for 
the kth feature

gi The first-order derivative of the loss 
function with respect to the predicted 
labels of the previous round, denoted as 

gi =
�l
(

yi ŷ
t−1
i

)

�ŷ
t−1
i

hi The second-order derivative of the loss 
function with respect to the predicted 
labels of the previous round, denoted as 

hi =
�2 l

(

yi ŷ
t−1
i

)

�2 ŷ
t−1
i
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unlabeled samples. A control group experiment is conducted 
to analyze the impact of different proportions in PU1 on FL 
global model performance while keeping other settings fixed. 
Since the preprocessed data class is balanced with equal propor­
tion of positive and negative samples, we set the final PU 
(PU2) proportion to 0.5. This helps the model’s predictions for 
the samples converge to an equal distribution of positive and 
negative outcomes. As depicted in Table 3, the model’s perfor­
mance improves with increasing proportions of PU1. However, 
when the proportion exceeds 30%, the model metrics start to 
decline. The model achieves optimal values (Acc: 84.36%, UAR: 
84.33%, UF1: 84.35%) when the proportion in PU1 is 30%.

Another control group experiment involves varying the 
number of tree models in the SecureBoost component. This 
pertains to the impact of the SecureBoost model complexity 
on the performance of the semisupervised FL model. The 
experiment fixed 3 SecureBoost components, each with rel­
evant parameters, and examined the performance variation 
of the FL model with 10, 20, 30, and 40 trees within each 
component. As indicated in Table 4, the semisupervised FL 

Fig. 3. Rough outline of the workflow of semisupervised vertical-SecureBoost. The illustration shows 2 federation participants, a host party and a guest party. In the guest side, 
ID1 represents labeled samples, ID2 represents unlabeled samples. Masked y refers to our treatment of unlabeled samples based on the PU learning strategy. y represents the 
predictions of the samples from the previous round. The host side does not have labels and only provides features. In stage 1, the guest side calculates the first-order derivative 
(gi) and the second-order derivative (hi) of the loss function for each sample ID based on the real or masked labels and the predictions from the previous round, and sends 
this information to the host side. In stage 2, all parties calculate feature bins based on the information from gi and hi, and this relevant information is transmitted to the guest 
side. In stage 3, the guest side aggregates all the feature bin information from the participating parties and iteratively calculates the best split points for the tree. In stage 4, 
the algorithm ranks the samples based on the scoring values obtained using the PU learning strategy.

Table  3. Mean testing performance (in [%]) of 50 repetitions 
of the semisupervised FL model. Exploring the relationship 
between the proportion in the first PU (PU1) and model per-
formance. Fixed parameters: The proportion in the second PU 
(PU2) is 0.5. The number of trees in SecureBoost{1, 2, 3} is 10, 20, 
and 30, respectively, and the depth of the trees is 3.

PU1  
proportion

PU2  
proportion Acc UAR UF1

0.1 0.5 80.601 80.687 80.600

0.2 0.5 81.353 81.411 81.350

0.3 0.5 84.360 84.338 84.351

0.35 0.5 82.105 82.108 82.096

0.4 0.5 82.105 82.136 82.099

0.5 0.5 82.105 82.136 82.099
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True label Masked label

1 1

1 1

1 x

1 x

1 x

0 x

0 x

0 x

0 x

0 x

1: means positive label. 0: means negative label.
x: means masked samples.

According to naive PU training strategy, the
classifier treats all x as 0, then iteratively trains a
model and selects the top few samples with
higher scores as positive samples.

Unmasked 
samples

Masked 
samples The mission of the classifier is to label the

unlabeled samples,  which belong to the masked
part, and classify unmasked positive samples
correctly.

Consider all unlabeled
samples as negative ones

SecureBoost #1

Put into classifier

Sort by
score

Select the top   
30% as positive

SecureBoost #2

Put into classifier

Sort by
score

Select the top 
50% as positive

Acc
UAR
UF1

Iteratively repeat to achieve
better performance

PU #1

PU #2

Sample ID True 
label

Masked 
label

001 1 1

002 1 x

003 1 x

004 0 x

005 0 x

006 0 x

Sample ID True 
label

Masked 
label

001 1 1

002 1 0

003 1 0

004 0 0

005 0 0

006 0 0

Sample ID True 
label

Masked 
label

Score

001 1 1 0.9

002 1 0 0.4

003 1 0 0.6

004 0 0 0.7

005 0 0 0.3

006 0 0 0.1

Sample ID True 
label

Masked label 
(iter_1)

Score

001 1 1 0.95

004 0 0 0.7

003 1 0 0.75

002 1 0 0.6

005 0 0 0.3

006 0 0 0.2

Sample ID True 
label

Masked 
label

Score

001 1 1 0.9

004 0 0 0.7

003 1 0 0.6

002 1 0 0.4

005 0 0 0.3

006 0 0 0.1

Sample ID True 
label

Predicted label
(iter_1)

001 1 1

004 0 1

003 1 0

002 1 0

005 0 0

006 0 0

Sample ID True 
label

Predicted label 
(iter_1)

Score

001 1 1 0.95
003 1 0 0.75
004 0 1 0.7
002 1 0 0.6
005 0 0 0.3
006 0 0 0.2

Sample ID True 
label

Predicted label 
(iter_2)

001 1 1
003 1 1
004 0 1
002 1 0
005 0 0
006 0 0

A

B

Fig. 4. Rough outline of the workflow of semisupervised vertical-SecureBoost. (A) Mask strategy on the dataset. (B) Simple concrete example of the training process.
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model achieved its best performance (Acc: 84.36%, UAR: 84.33%, 
UF1: 84.35%) when SecureBoost1 has 10 trees, SecureBoost2 
has 20 trees, and SecureBoost3 has 30 trees.

Relationship between the number of PU and model 
performance
Figure 4 illustrates the interactive learning process between the 
SecureBoost and PU components in the FL model based on PU. 
The number of SecureBoost and PU components determines 

the iterations or rounds of the learning process. In the control 
experiment, we varied the number of PUs from 1 to 3, and the 
corresponding number of SecureBoost components from 2 to 
4. As indicated in Table 5, the semisupervised FL model 
achieves its optimal performance with 2 PU components and 
3 SecureBoost components. Experimental results, in conjunc­
tion with tree models, demonstrate that we can achieve higher 
classification performance of the semisupervised FL model 
with relatively lower model complexity.

https://doi.org/10.34133/cbsystems.0152
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Comparative experiment on feature  
selection methods
This study has 2 main objectives for the semisupervised FL 
classification model. First, it should perform well, accurately 
predicting the output of given input features. Second, the 
model should be interpretable, providing an understanding 
of the relationship between input features and output. This is 
crucial when using auxiliary diagnostic models in the sensi­
tive field of healthcare. For instance, in a cardiac auscultation 
model, it is vital to predict the patient’s diagnosis and under­
stand which features contribute to the result.

Feature importance analysis is a widely used method for 
interpreting classification models. It quantifies the individual 
contributions of specific features to a given classifier. Thus, the 
importance of input data features is model-dependent. In this 
study, we compared the effects of various feature importance 
analysis methods on the classification performance of our 
model, utilizing a high-dimensional feature set extracted from 
the original heart sound recordings.

In the vertical-FL framework, each federated participant has 
a distinct feature space. Furthermore, we aim to identify which 
features contribute most to the performance of the semisu­
pervised FL model in this study. Since vertical-SecureBoost 
is implemented based on the XGBoost model, we employed 5 
tree-based feature selection methods: gain, total_gain, cover, 
total_cover, and weight. Additionally, we conducted compara­
tive experiments using the SHAP method. Although they are 
technically related and partially overlap, there is a distinction 
between feature importance and feature selection. The experi­
ments show that these methods consistently filter the same set 
of 165 contributing heart sound features (including LLD 

features and statistical features), with only differences in 
the importance ranking of these features. The table in the 
Appendix presents the computed results (feature coefficients 

Table 5. Mean testing performance (in [%]) of 50 repetitions of the semisupervised FL model. Exploring the impact of the number of 
SecureBoost and PU components on model performance. Fixed parameters: The proportion for PU1 is 0.3, and for PU2, it is 0.5. The number 
of trees in SecureBoost{1, 2, 3} is 10, 20, and 30 respectively, and the depth of the trees is 3.

Number of PU Number of SecureBoost Acc UAR UF1

1 (PU{1}) 2 (SecureBoost{1, 2}) 80.225 80.240 80.216

2 (PU{1, 2}) 3 (SecureBoost{1, 2, 3}) 80.601 80.630 80.594

3 (PU{1, 2, 3}) 4 (SecureBoost{1, 2, 3, 4}) 80.601 80.622 80.590

Table 6. Mean testing performance (in [%]) of 50 repetitions of 
semisupervised and supervised FL models. Performance com-
parison of semisupervised FL models when utilizing different fea-
ture importance analysis methods. Fixed parameters: In semisu-
pervised learning, the proportion for PU1 is 0.3, and for PU2, it is 
0.5. The number of trees in SecureBoost{1, 2, 3} is 10, 20, and 30, 
respectively. In supervised learning, the number of trees is 30 
and the depth of the trees is 3.

Methods Acc UAR UF1

SecureBoost (Supervised) 84.628 84.971 85.107

FedPU [34](SHAP feature set) 75.103 68.330 68.001

FedMatch [35] (SHAP feature 
set)

65.007 65.791 62.205

SecureBoost with naive PU - - -

gain 81.353 81.383 81.347

total_gain 80.977 80.964 80.964

cover 79.473 79.600 79.473

total_cover 81.353 81.383 81.347

weight 80.601 80.743 80.601

SHAP 84.360 84.338 84.351

Table 4. Mean testing performance (in [%]) of 50 repetitions of the semisupervised FL model. Exploring the impact of the number of tree 
models in the SecureBoost component on the performance of semisupervised FL. Fixed parameters: proportion 0.3 in the first PU (PU1), 
proportion 0.5 in the second PU (PU2). The depth of the tree in SecureBoost is 3.

FL components Number of trees Acc UAR UF1

SecureBoost{1, 2, 3} 10, 10, 10 80.977 80.936 80.959

SecureBoost{1, 2, 3} 20, 20, 20 81.353 81.326 81.338

SecureBoost{1, 2, 3} 30, 30, 30 82.105 82.164 82.102

SecureBoost{1, 2, 3} 40, 40, 40 81.062 81.034 81.058

SecureBoost{1, 2, 3} 10, 20, 30 84.360 84.338 84.351
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and importance values) for the 165 features, sorted by feature 
importance from the SHAP method. In the comparative experi­
ments, selecting the top 165 features based on the SHAP method 
yielded optimal model performance (Acc: 84.36%, UAR: 84.33%, 
UF1: 84.35%). The model results for other feature selection 
methods under the same conditions are compared in Table 6. 
Moreover, our optimal model performance closely matches that 
of the supervised SecureBoost model when using 30 trees and 
a tree depth of 3. Comparative experimental demonstrate that 
the semisupervised SecureBoost model efficiently identifies the 
heart sound features that contribute most, particularly when 
employing the SHAP feature importance analysis method. The 
advantage lies in selecting fewer features to achieve superior 
classification performance, providing clear benefits over 
other methods. To further demonstrate the superiority of the 
proposed method, we conduct a comparison with the 
semisupervised FL algorithms. FedPU (https://github.
com/littleSunlxy/FedPU-torch) [34] and FedMatch (https://
github.com/wyjeong/FedMatch) [35], compared with the 
optimization models in this paper, represent the most compa­
rable and state-of-the-art semisupervised FL models. Table 6 
presents the performance comparison among FedPU, 
FedMatch, and the proposed method. Given the limited data 
resources in this study, the proposed method achieves state-
of-the-art performance on the multi-institutional heart 
sound database. This also demonstrates that our method out­
performs other semisupervised FL methods under low-resource 
conditions.

Discussion

We will now discuss 3 aspects: the application of the semisu­
pervised FL model in heart sound classification, the identifica­
tion of the most important features, and whether the crucial 
features vary depending on the technique used.

Application of the semisupervised FL model. We study the 
problem of learning from positive and unlabeled (PU) data 
in the federated setting. Specifically, we concentrate on sce­
narios where some clients have only positive and unlabeled 
samples, while others have only unlabeled samples. The 
semisupervised FL model can effectively learn from different 
institutions with a limited pool of positive samples and unla­
beled samples. We validated the effectiveness of this frame­
work on real-world heart sound recordings through a series 
of experiments. Additionally, this framework demonstrates 
the ability to achieve better classification performance with 
relatively low model complexity. When utilizing the SHAP 
feature importance analysis method, all metrics consistently 
reach above 84%. The semisupervised FL model can conduct 
multi-institutional federated modeling without sharing 
local medical institution data. This helps address the issue 
of medical data silos and partially safeguards patient privacy. 
However, it is worth noting that the limited data and the rela­
tively simple PU strategy mean that the performance of the 
FL model in medical diagnosis needs to be improved. To this 
end, we are collaborating with multiple medical institutions 
to build a larger, high-quality multi-institutional heart sound 
database, such as https://www.vob-bit.org, as part of our cur­
rent work. In practical applications, assessing the perfor­
mance of the proposed model necessitates considering the 
diverse environments of each medical institution. Future work 

should explore various factors in practical applications, such 
as the number of federated participants, communication 
costs, data distribution, and FL modeling based on multi­
modal data [40,41].

What features are the most important? To refine effective 
representations of heart sounds from the 6,373 features in the 
ComParE feature set for the model, we employed various fea­
ture importance methods. Consistently, these methods identi­
fied the same 165 features contributing to the model, albeit with 
differences in importance ranking. The key statistical findings 
are as follows: The most influential features encompass 73 
related “udSpec” features, with 57 related to “udSpec_Rfilt” and 
6 related to “udspecRasta.” Additionally, there are 45 features 
associated with “fcc_sma” and 36 features linked to “cm_fftMag,” 
including 30 features tied to “cm_fftMag_spectral” and 5 fea­
tures associated with “cm_RMSenergy.” This implies that dis­
tinct methods can identify the same effective features for the 
same classification model. Furthermore, the features extracted 
from the heart sound data exhibit high correlation, making 
the classification task straightforward. Thus, different fea­
ture importance analysis methods can enable the FL model 
to achieve better classification accuracy.

Do the most important features differ depending on the 
technique? The most important features indeed depend on the 
method used. Our experiments indicate that the SHAP method 
provides better results, as the model’s performance is optimal 
and stable when the first 165 SHAP features are selected. By 
selecting fewer features and achieving optimal performance in 
the analyzed cases, SHAP has a clear advantage over other 
methods. Ultimately, this study provides insights into screening 
one-dimensional acoustic signal features for abnormal heart 
sound examination. It is noteworthy that this framework, 
rooted in traditional machine learning, is designed for process­
ing one-dimensional tabular data rather than phonocardio­
gram (PCG) images. Although model interpretability was not 
the primary focus, the feature importance analysis in this paper 
lays the foundation for future FL research on feature-based 
interpretability.

Conclusion
This study was motivated by 2 primary objectives. First, we 
assessed the classification performance of the semisupervised 
FL model using real-world heart sound recordings. Second, 
we investigated the influence of various feature importance 
methods on the model’s classification performance. Utilizing 
the classical ComParE feature set, we identified 165 features 
contributing to the model. Notably, we observed superior 
performance in heart sound classification with the SHAP-
based method, which selected fewer features in the analyzed 
cases while meeting the model’s performance criteria.

The framework employed a naive PU learning strategy, one 
of the most basic semisupervised learning methods. In future 
work, we will explore more complex PU training strategies to 
enhance the performance of the FL model. Moreover, we intend 
to replicate the proposed analytical scheme on a larger scale, 
particularly aiming to implement the techniques utilized in 
neural network-based FL frameworks. The synergy of advanced 
nonlinear FL models and sophisticated PU learning strategies 
is expected to demonstrate significant potential for extensive 
PCG signals.

https://doi.org/10.34133/cbsystems.0152
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Appendix

Table A1. Based on the ComParE feature set, we present the selected 165 heart sound features and their corresponding computational results

Feature name SHAP value Weight Gain Cover Total gain Total cover

udspecRasta_lengthL1norm_sma_de_stddevRis-
ingSlope numeric

0.1749088 4 59.07317352 1330 236.2926941 5320

fcc_sma[5]_peakMeanRel numeric 0.066608705 2 33.78628922 908 67.57257843 1816

fcc_sma[4]_percentile99.0 numeric 0.027021766 1 9.735995293 1330 9.735995293 1330

cm_fftMag_spectralSkewness_sma_meanFalling-
Slope numeric

0.01917158 1 5.615310669 1330 5.615310669 1330

cm_fftMag_spectralSlope_sma_risetime numeric 0.016092975 1 3.445723057 1330 3.445723057 1330

udSpec_Rfilt_sma_de[22]_quartile3 numeric 0.015471268 2 6.0129776 374 12.0259552 748

cm_fftMag_spectralFlux_sma_de_quartile2 
numeric

0.014841603 1 6.25514555 747 6.25514555 747

udspec_lengthL1norm_sma_de_lpc0 numeric 0.014638417 1 13.98928738 328 13.98928738 328

udSpec_Rfilt_sma[11]_risetime numeric 0.014299023 3 1.715965867 611 5.14789772 1833

udSpec_Rfilt_sma_de[23]_quartile3 numeric 0.014214776 1 9.673725128 679 9.673725128 679

fcc_sma[4]_iqr1-3 numeric 0.013853458 2 7.019974709 430 14.03994942 860

oicingFinalUnclipped_sma_flatness numeric 0.013512484 1 8.57629776 498 8.57629776 498

udSpec_Rfilt_sma[0]_quartile2 numeric 0.013094406 1 2.308807135 1330 2.308807135 1330

oicingFinalUnclipped_sma_lpc0 numeric 0.01280389 1 7.025602341 596 7.025602341 596

cm_fftMag_spectralHarmonicity_sma_percen-
tile1.0 numeric

0.012099205 1 11.92963409 258 11.92963409 258

cm_fftMag_spectralCentroid_sma_skewness 
numeric

0.011240978 2 0.81099081 942 1.621981621 1884

fcc_sma[3]_peakMeanAbs numeric 0.011181817 1 14.97934723 451 14.97934723 451

udSpec_Rfilt_sma_de[13]_stddevRisingSlope 
numeric

0.010769798 1 1.756378412 1330 1.756378412 1330

fcc_sma[3]_iqr2-3 numeric 0.010016562 1 5.267727852 738 5.267727852 738

cm_fftMag_spectralSkewness_sma_de_lpgain 
numeric

0.009126852 1 1.210110903 1330 1.210110903 1330

oicingFinalUnclipped_sma_lpgain numeric 0.007829903 1 2.564095974 611 2.564095974 611

udSpec_Rfilt_sma_de[2]_risetime numeric 0.007798587 1 1.246006727 1330 1.246006727 1330

cm_RMSenergy_sma_peakRangeAbs numeric 0.007496908 1 7.285607815 734 7.285607815 734

cm_fftMag_spectralCentroid_sma_minRangeRel 
numeric

0.007475868 1 0.660296619 1330 0.660296619 1330

cm_fftMag_spectralVariance_sma_flatness 
numeric

0.007420569 1 2.622623205 775 2.622623205 775

fcc_sma[3]_amean numeric 0.006865831 1 3.782421112 393 3.782421112 393

udSpec_Rfilt_sma[2]_linregerrQ numeric 0.006835031 1 0.912325859 1326 0.912325859 1326

cm_RMSenergy_sma_flatness numeric 0.006573637 1 6.422821045 749 6.422821045 749

udSpec_Rfilt_sma[5]_quartile3 numeric 0.006294543 1 0.478050798 1321 0.478050798 1321

udSpec_Rfilt_sma[5]_iqr1-2 numeric 0.005954946 1 1.598445177 1111 1.598445177 1111

fcc_sma[12]_iqr2-3 numeric 0.005753407 1 6.725850105 583 6.725850105 583

fcc_sma[13]_lpgain numeric 0.005692956 1 0.502746999 1298 0.502746999 1298

cm_fftMag_fband250-650_sma_de_peakDist-
Stddev numeric

0.005576141 1 0.389642864 1330 0.389642864 1330

udSpec_Rfilt_sma_de[24]_quartile2 numeric 0.005573068 2 1.020026922 1330 2.040053844 2660

udSpec_Rfilt_sma[6]_quartile3 numeric 0.005310398 1 5.443786621 434 5.443786621 434

udspecRasta_lengthL1norm_sma_de_iqr1-2 
numeric

0.005278943 1 1.099442482 1018 1.099442482 1018

(Continued)

https://doi.org/10.34133/cbsystems.0152


Qiu et al. 2024 | https://doi.org/10.34133/cbsystems.0152 13

Feature name SHAP value Weight Gain Cover Total gain Total cover

fcc_sma[5]_lpgain numeric 0.005124319 1 1.139160156 424 1.139160156 424

udSpec_Rfilt_sma_de[13]_meanRisingSlope 
numeric

0.005056385 1 0.394382507 1280 0.394382507 1280

fcc_sma_de[3]_kurtosis numeric 0.004974036 1 2.690096855 819 2.690096855 819

fcc_sma_de[2]_percentile1.0 numeric 0.00495234 1 0.621264398 790 0.621264398 790

cm_fftMag_fband250-650_sma_linregc1 numeric 0.004844865 1 0.281745851 1312 0.281745851 1312

fcc_sma_de[2]_skewness numeric 0.004828318 1 0.945549786 770 0.945549786 770

udspec_lengthL1norm_sma_meanSegLen 
numeric

0.004793007 1 1.342338324 979 1.342338324 979

udSpec_Rfilt_sma[6]_meanSegLen numeric 0.004744658 1 0.997637093 1169 0.997637093 1169

udSpec_Rfilt_sma[0]_risetime numeric 0.004732204 1 3.225561857 74 3.225561857 74

fcc_sma[2]_maxSegLen numeric 0.004728207 1 0.519239247 1327 0.519239247 1327

udSpec_Rfilt_sma_de[14]_stddevRisingSlope 
numeric

0.00470226 1 1.475333691 391 1.475333691 391

fcc_sma_de[2]_quartile2 numeric 0.004379132 1 1.170669794 1303 1.170669794 1303

fcc_sma_de[11]_peakDistStddev numeric 0.004351366 1 0.770152211 1330 0.770152211 1330

fcc_sma_de[9]_peakDistStddev numeric 0.004338105 1 0.388319731 1325 0.388319731 1325

cm_fftMag_spectralVariance_sma_linregc2 
numeric

0.004324389 1 2.174813986 879 2.174813986 879

fcc_sma[1]_quartile1 numeric 0.004088204 2 2.74508667 351.5 5.49017334 703

udSpec_Rfilt_sma[6]_iqr2-3 numeric 0.004022839 1 1.191879869 1294 1.191879869 1294

cm_fftMag_psySharpness_sma_minRangeRel 
numeric

0.003896863 1 0.401606768 1062 0.401606768 1062

udspecRasta_lengthL1norm_sma_meanSegLen 
numeric

0.003853667 1 0.445445478 1295 0.445445478 1295

udSpec_Rfilt_sma_de[3]_leftctime numeric 0.003800792 1 2.882632017 592 2.882632017 592

fcc_sma[10]_peakRangeRel numeric 0.003772016 2 1.125457048 1041.5 2.250914097 2083

fcc_sma_de[5]_lpc1 numeric 0.003659269 1 2.361129761 923 2.361129761 923

cm_fftMag_spectralSkewness_sma_lpc0 
numeric

0.003499466 1 3.718276978 523 3.718276978 523

udSpec_Rfilt_sma_de[12]_stddevFallingSlope 
numeric

0.003484988 1 1.881630421 407 1.881630421 407

fcc_sma[2]_upleveltime50 numeric 0.003321341 1 0.834810019 983 0.834810019 983

cm_fftMag_spectralSlope_sma_de_quartile3 
numeric

0.003269716 1 2.736748695 569 2.736748695 569

fcc_sma_de[4]_pctlrange0-1 numeric 0.003264664 1 1.344154358 555 1.344154358 555

udSpec_Rfilt_sma[10]_meanSegLen numeric 0.003213854 1 0.999613822 1074 0.999613822 1074

cm_fftMag_spectralSkewness_sma_de_flatness 
numeric

0.003093224 1 3.515030384 127 3.515030384 127

cm_fftMag_spectralSkewness_sma_de_percen-
tile99.0 numeric

0.00309266 1 1.360512137 950 1.360512137 950

udSpec_Rfilt_sma[10]_lpc1 numeric 0.003090039 1 0.669033051 888 0.669033051 888

fcc_sma[7]_linregerrQ numeric 0.003059623 1 0.362798691 1302 0.362798691 1302

fcc_sma[13]_iqr2-3 numeric 0.00305221 1 2.921410799 89 2.921410799 89

fcc_sma_de[9]_quartile2 numeric 0.002958984 1 0.74704951 901 0.74704951 901

fcc_sma[8]_range numeric 0.002835295 1 0.767194033 1327 0.767194033 1327

fcc_sma_de[13]_risetime numeric 0.002822805 1 1.911473036 60 1.911473036 60

Table A1.  (Continued)
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cm_fftMag_spectralSlope_sma_linregc1 numeric 0.002801212 1 1.542387009 347 1.542387009 347

udSpec_Rfilt_sma[11]_segLenStddev numeric 0.002742412 1 0.933002472 385 0.933002472 385

fcc_sma_de[7]_pctlrange0-1 numeric 0.002739604 1 1.344755292 506 1.344755292 506

udSpec_Rfilt_sma_de[6]_percentile1.0 numeric 0.002661523 1 1.024646759 1330 1.024646759 1330

udSpec_Rfilt_sma[15]_peakRangeRel numeric 0.001648004 1 0.53542912 263 0.53542912 263

fcc_sma[2]_linregc1 numeric 0.001599217 1 0.394384265 600 0.394384265 600

cm_fftMag_psySharpness_sma_linregc1 numeric 0.001595959 1 0.334819168 1324 0.334819168 1324

udSpec_Rfilt_sma[7]_leftctime numeric 0.001591305 1 1.373440266 44 1.373440266 44

fcc_sma[3]_upleveltime90 numeric 0.001587785 1 2.038755417 760 2.038755417 760

fcc_sma[5]_rqmean numeric 0.001532889 2 0.726613462 1266.5 1.453226924 2533

fcc_sma[10]_skewness numeric 0.001477398 1 0.527558625 324 0.527558625 324

cm_fftMag_spectralKurtosis_sma_de_flatness 
numeric

0.001469919 1 0.467760682 1241 0.467760682 1241

udSpec_Rfilt_sma[25]_upleveltime50 numeric 0.001460258 1 0.302553505 1326 0.302553505 1326

fcc_sma_de[5]_lpc4 numeric 0.001403587 1 0.539424777 1291 0.539424777 1291

udSpec_Rfilt_sma_de[10]_upleveltime90 
numeric

0.001380694 1 1.193989992 23 1.193989992 23

cm_fftMag_spectralRollOff75.0_sma_de_stddev-
FallingSlope numeric

0.001334538 1 0.547998667 798 0.547998667 798

oicingFinalUnclipped_sma_range numeric 0.00132699 1 1.335298538 31 1.335298538 31

udSpec_Rfilt_sma[6]_pctlrange0-1 numeric 0.001314231 1 0.401833385 1185 0.401833385 1185

cm_fftMag_fband250-650_sma_de_range 
numeric

0.001303879 1 0.647293746 507 0.647293746 507

oicingFinalUnclipped_sma_de_quartile3 numeric 0.001280073 1 0.825291157 49 0.825291157 49

udSpec_Rfilt_sma[17]_lpc3 numeric 0.001216713 1 0.705320001 55 0.705320001 55

fcc_sma[6]_qregc1 numeric 0.001205926 1 0.807898402 100 0.807898402 100

cm_fftMag_fband1000-4000_sma_de_minPos 
numeric

0.00111533 1 0.484175861 522 0.484175861 522

udSpec_Rfilt_sma_de[25]_minSegLen numeric 0.001072463 1 1.136362314 33 1.136362314 33

udSpec_Rfilt_sma_de[6]_lpc4 numeric 0.001038906 1 0.51261425 532 0.51261425 532

cm_fftMag_spectralSlope_sma_minPos numeric 0.001018498 1 1.17227602 775 1.17227602 775

udSpec_Rfilt_sma_de[22]_skewness numeric 0.000986683 1 0.63786608 796 0.63786608 796

udspec_lengthL1norm_sma_de_pctlrange0-1 
numeric

0.00096522 1 0.421422035 44 0.421422035 44

udSpec_Rfilt_sma_de[3]_quartile2 numeric 0.000914101 1 0.789074838 27 0.789074838 27

cm_fftMag_fband1000-4000_sma_qregc3 
numeric

0.000913065 1 0.399933308 712 0.399933308 712

udSpec_Rfilt_sma_de[7]_upleveltime75 numeric 0.000890098 1 0.495113492 1330 0.495113492 1330

fcc_sma[12]_stddevFallingSlope numeric 0.000889177 1 0.514449418 41 0.514449418 41

cm_fftMag_spectralFlux_sma_lpc0 numeric 0.000887822 1 0.672494352 83 0.672494352 83

udSpec_Rfilt_sma_de[17]_peakRangeRel 
numeric

0.000886993 1 0.509827614 34 0.509827614 34

udSpec_Rfilt_sma_de[0]_maxPos numeric 0.000876428 1 0.861174822 16 0.861174822 16

cm_RMSenergy_sma_de_stddevFallingSlope 
numeric

0.000875804 1 0.281979769 1330 0.281979769 1330

udSpec_Rfilt_sma[9]_percentile1.0 numeric 0.000866589 1 0.848887801 93 0.848887801 93

cm_fftMag_spectralFlux_sma_lpc4 numeric 0.000853217 1 0.259635895 117 0.259635895 117

(Continued)
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cm_fftMag_spectralFlux_sma_peakMeanRel 
numeric

0.000839713 1 0.686322689 433 0.686322689 433

udSpec_Rfilt_sma_de[4]_quartile2 numeric 0.000838053 1 0.496914715 32 0.496914715 32

cm_fftMag_spectralEntropy_sma_peakDistStd-
dev numeric

0.000832948 1 0.411569834 208 0.411569834 208

udSpec_Rfilt_sma_de[2]_quartile2 numeric 0.000829766 1 0.520026982 24 0.520026982 24

udSpec_Rfilt_sma[12]_upleveltime90 numeric 0.000786718 1 0.829185367 27 0.829185367 27

cm_zcr_sma_de_peakRangeRel numeric 0.00076202 1 0.883337021 1330 0.883337021 1330

udspecRasta_lengthL1norm_sma_quartile1 
numeric

0.000733587 1 0.555594325 16 0.555594325 16

cm_fftMag_spectralSkewness_sma_qregc3 
numeric

0.000690544 1 0.295283973 27 0.295283973 27

udSpec_Rfilt_sma_de[12]_peakRangeRel 
numeric

0.00067913 1 0.487163782 35 0.487163782 35

udSpec_Rfilt_sma[13]_lpgain numeric 0.00065719 1 0.308226794 1295 0.308226794 1295

cm_fftMag_spectralVariance_sma_range 
numeric

0.000638415 1 0.73640269 1119 0.73640269 1119

cm_fftMag_spectralKurtosis_sma_peakMean-
MeanDist numeric

0.000616125 1 0.413334399 1330 0.413334399 1330

udSpec_Rfilt_sma[19]_minPos numeric 0.0005893 1 0.760017276 1330 0.760017276 1330

udspec_lengthL1norm_sma_de_meanRising-
Slope numeric

0.000573997 1 0.358050197 1330 0.358050197 1330

cm_fftMag_spectralKurtosis_sma_linregc1 
numeric

0.00056523 1 0.284590483 1330 0.284590483 1330

udspecRasta_lengthL1norm_sma_de_lpc0 
numeric

0.000546952 1 0.879844904 12 0.879844904 12

fcc_sma[2]_lpc2 numeric 0.000519563 1 0.439446568 23 0.439446568 23

udSpec_Rfilt_sma[0]_maxPos numeric 0.000489432 1 0.514279604 1330 0.514279604 1330

udspec_lengthL1norm_sma_leftctime numeric 0.000487373 1 0.960110188 23 0.960110188 23

udSpec_Rfilt_sma[8]_minRangeRel numeric 0.000476519 1 0.255015016 26 0.255015016 26

cm_RMSenergy_sma_iqr1-2 numeric 0.000443091 1 0.301709265 1330 0.301709265 1330

cm_RMSenergy_sma_upleveltime90 numeric 0.000413161 1 0.188143015 19 0.188143015 19

cm_fftMag_spectralRollOff75.0_sma_uplevel-
time75 numeric

0.000366831 1 0.074845433 31 0.074845433 31

udspecRasta_lengthL1norm_sma_maxPos 
numeric

0.000324066 1 0.175449252 10 0.175449252 10

fcc_sma[6]_minPos numeric 0.000319397 1 0.101224005 18 0.101224005 18

udspec_lengthL1norm_sma_lpc0 numeric 0.000275772 2 0.0727164 6.5 0.1454328 13

udspec_lengthL1norm_sma_percentile99.0 
numeric

0.000275314 1 0.221500084 8 0.221500084 8

udSpec_Rfilt_sma[7]_lpc4 numeric 0.000273154 1 0.122567415 14 0.122567415 14

udSpec_Rfilt_sma[4]_lpc0 numeric 0.000215668 1 0.021040797 14 0.021040797 14

udspec_lengthL1norm_sma_de_risetime numeric 0.000187452 1 0.08378467 9 0.08378467 9

udSpec_Rfilt_sma[16]_percentile1.0 numeric 0.000168175 1 0.068053588 9 0.068053588 9

udspec_lengthL1norm_sma_maxPos numeric 9.77E−05 1 0.018804565 8 0.018804565 8

udspec_lengthL1norm_sma_risetime numeric 8.27E−05 1 0.017634902 8 0.017634902 8

Table A1.  (Continued)
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