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Abstract 

Efficient algorithms are needed to segment vasculature in new three-dimensional (3D) medical 

imaging datasets at scale for a wide range of research and clinical applications. Manual 

segmentation of vessels in images is time-consuming and expensive. Computational approaches 

are more scalable but have limitations in accuracy. We organized a global machine learning 

competition, engaging 1,401 participants, to help develop new deep learning methods for 3D blood 

vessel segmentation. This paper presents a detailed analysis of the top-performing solutions using 

manually curated 3D Hierarchical Phase-Contrast Tomography datasets of the human kidney, 

focusing on the segmentation accuracy and morphological analysis, thereby establishing a 

benchmark for future studies in blood vessel segmentation within phase-contrast tomography 

imaging. 

Introduction 

Because blood vasculature extends to all organs of the body, identifying vessels in medical images 

(“vessel segmentation”) is an important part of image processing in applications ranging from basic 

science research to clinical care. 

 

As the vascular network is an inherently 3D and multi-scale spanning structure, imaging techniques 

that do not require physical subsampling to achieve high-resolution images across multiple scales 

are the ideal tool for vascular analysis1; Hierarchical Phase-Contrast Tomography (HiP-CT) is such 

a technique2. Leveraging the European Synchrotron Radiation Facility’s (ESRF) Extremely Brilliant 

Source (EBS), the world’s first high-energy fourth generation synchrotron source, HiP-CT enables 

imaging of intact human organs at unprecedented scale and resolution. HiP-CT can be used to 

map and quantify the arterial vascular network of an intact human kidney down to the arteriolar 

level3. However, the creation of 3D models from HiP-CT data using traditional manual 

segmentation techniques is very time-consuming and labor-intensive. This labor-cost barrier 

impedes the broader utilization of 3D data to answer questions proposed by the biomedical 

community, including understanding exosome transport. 

 

Considering such aims and challenges, a global citizen science competition was organized on 

Google’s machine learning (ML) platform, Kaggle, to develop open-source machine learning 

solutions capable of automatically segmenting large datasets to generate 3D models of the blood 

vasculature of the human kidney. The Kaggle platform has been previously leveraged to 

collaboratively develop machine learning solutions for complex biomedical tasks thereby advancing 

the field4–7. The competition presented in this paper focuses on 3D data, challenging teams to 

develop solutions to accurately segment blood vessels in HiP-CT images to create high quality 3D 

models of the vessels from organs such as the kidney. Such segmented 3D models can be used to 

obtain additional information such as length, diameter, branching angles, tortuosity, inter-vessel 

distance, etc. 

 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.25.609595doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.25.609595
http://creativecommons.org/licenses/by/4.0/


 

The two sponsors of this competition are the NIH Common Fund’s Human BioMolecular Atlas 

Program (HuBMAP) and Cellular Senescence Network (SenNet) Program. Both provide examples 

of how researchers can benefit from improved methods of vessel segmentation and served as 

motivation for the competition: 

1. HuBMAP is constructing a map of all the cells in the healthy adult human body. It envisions 

blood vasculature pathways serving as landmarks to describe the location of cells in organs 

and tissue8–10. In this “Vasculature Common Coordinate Framework” (VCCF)11, accurate 

vessel segmentation is essential to define these landmarks. As part of this work, HuBMAP 

has published an initial database of more than 900 blood vessels based on literature review 

and domain expert curation12. However, this needs to be linked to experimental data for 

validation and to extend it to microvasculature, where there are many gaps in existing 

knowledge. 

2. SenNet studies senescent cells of the human body—in health and in disease—across the 

lifespan13,14. A key challenge is understanding the secretome, i.e., the set of proteins these 

cells secrete into the extracellular space and/or the bloodstream. Exosomes—a 

subcategory of secretomes—are membrane-bound extracellular vesicles used to transport 

diverse cargo to neighboring cells and to other organs. However, understanding the 

generation, transportation, and ingestion of exosomes requires data on the human blood 

vasculature—the main exosome transport system. By analyzing this complex highway of 

blood flow which includes determining the pathway, throughput/vessel size, and 3D 

orientation in space of the blood vasculature, we aim to contribute to the understanding of 

exosome diffusion via the bloodstream, how exosomes can play roles in organ-to-organ 

communication, and where exosomes might aggregate due to branching or tortuosity of the 

vessels—analogous to river sediments.15–17 

 

This paper presents the competition setup, the curated HiP-CT 3D datasets, the competition 

metric, and the top-5 winning solutions. Additionally, to enable a holistic evaluation of ML model 

performance, three additional analyses are provided: quantitative (based on additional metrics), 

qualitative (based on visual analysis of predictions), and morphological (based on vasculature 

morphology features). Due to the novelty of HiP-CT data and lack of gold standard segmentations 

for vasculature in such data, the paper presents a benchmark dataset, performance metrics, and 

benchmark scores for future research in the domain, which can accelerate the augmentation of our 

knowledge of the blood vasculature system in support of answering key questions posed by the 

research community. 

Results 

Competition design 

The “SenNet + HOA: Hacking the Human Vasculature in 3D” competition—running from November 

7, 2023 through January 30, 2024—aimed to develop machine learning solutions for segmentation 

of blood vasculature in 3D HiP-CT scans of the human kidney. The imaging datasets were 

collected as part of the Human Organ Atlas effort (https://human-organ-atlas.esrf.eu). Vessel 
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segmentation is a challenging task for various reasons: it is an imbalanced class problem (where 

prediction targets are disproportionately lower in volume compared to non-target background), 

there is a very low tolerance for error since small losses in segmentation connectivity can lead to 

large variations in simulated function18, there can be collapse or infilling of vessels during 

preparation which makes them challenging to segment19, there is wide image variability due to 

natural human anatomical variation and due to the nature of imaging post-mortem organs, and 

there exist relatively small training datasets due to the novelty of the HiP-CT imaging technique. 

These issues were documented in previous work by the authors19 which also showcased the 

performance of a baseline NN-Unet20 model on HiP-CT data. A key challenge for participants was 

to develop solutions that can handle large 3D datasets and that generalize to different datasets 

containing variability in resolutions, image intensities, and donors. 

 

The HiP-CT datasets used in the competition were sourced from the kidneys of five adult donors. 

Table 1 provides an overview of the donor demographics, image and scanning metadata and gold 

standard label metadata associated with each dataset (Full scanning and donor medical metadata 

can be found at https://human-organ-atlas.esrf.eu, DOI and link for each dataset are provided in 

Supplementary Table 1). Figure 1 gives an overview of the competition data and setup. The five 

3D image volumes were split into training and test datasets. The training dataset contained four 

image volumes, including three whole kidney (~50µm/voxel) datasets and one high resolution 

hierarchical Volume-of-Interest (VOI) dataset. Two of these whole kidney datasets contained a mix 

of sparse labels as well as dense labels (see Methods). The test set was further divided into a 

public test set and a private test set. The public test set contained one partial kidney volume with 

50.28 µm/voxel data (1,013 slices). The private test set contained one partial kidney volume with 

63.08 µm/voxel data (501 image slices), see Methods for details. It should be noted that the public 

test dataset was very similar to the training dataset e.g. the same donor as kidney 1 (but left rather 

than right kidney) and collected on the same beamline BM05. By comparison the private test data 

was from a different donor and collected with the same technique but on a different beamline, 

BM18. This choice of test data was made to reflect the real challenges faced by our research 

teams e.g., to create models from limited training datasets such that the models generalize 

effectively to new donors and are robust to some changes in the imaging setup. In total, 

approximately 600 human hours were spent in segmentation and verification of the gold standard 

labels for the competition dataset, underscoring the time and resource consuming nature of the 

segmentation problem and the need for automated methods for the task.  

 

The challenges associated with the creation of high quality gold standard labels for training ML 

models is well known21. However, with new modalities such as HiP-CT, this poses a particular 

challenge as there is no large pool of potential expert curators who are familiar with the data type 

and the particular artifacts that can be present. In order to acknowledge the challenge with creating 

this gold standard, we chose to create a labeling protocol involving three independent curators (see 

Methods for details). Using this protocol, we were able to provide both dense labeling (i.e., where 

the third curator found 100% of vessels were labeled), and to provide sparse labeling with an 

estimate of the sparsity. This allowed some teams, e.g., Team 3, to use the sparse labels 

effectively as training data within a pseudo-labeling context. This was critical in the competition 
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design as it is relatively fast for an experienced curator to sparsely label an image volume but 

highly time consuming to label it densely.  

 

In addition, a high-resolution VOI was provided, which is a subset of the lower resolution whole 

kidney training dataset that can be rigidly registered to the whole kidney dataset to provide more 

accurate labels for smaller vessels. Previously, we have shown how these higher resolution VOIs 

can be used to validate manual segmentation in the lower resolution dataset3. Interestingly, none of 

the teams attempted to utilize or extend this multi-resolution approach to improve the segmentation 

of small vessels, although teams that used this dataset as additional training data, such as Team 1, 

found a greater proportion of the smaller vessels. 

 

In addition to the competition data, participants were allowed to use publicly available external 

datasets. Some teams used other HiP-CT datasets (gold standard labels absent) available via the 

Human Organ Atlas data portal (https://human-organ-atlas.esrf.eu) to help improve the 

performance of their solutions. All inference code was submitted via the Kaggle submission portal 

and was run on the public and private test sets within the Kaggle infrastructure, leading to team 

rankings on the public and private leaderboards (LB), respectively (see Methods). Throughout the 

competition, the private LB scores and rankings are not visible to the participants which forces 

them to use the public LB scores and rankings as a validation dataset for their experiments. The 

test datasets are not visible to the participants but they are provided 3 z-slices each from both test 

sets as examples. They are also provided the voxel resolution for both test sets. 

 

Table 1. Competition dataset details, including metadata and donor demographics. While a 

Dataset 4 (without gold standard labels) was originally planned for inclusion in the competition 

dataset, it was removed before competition launch. 

 

Kaggle 

Donor 

ID 

Donor ID Segmentation labels Voxel 

size 

(µm) 

Image z-

slices 

Dataset 

usage 

Beamline Sex Age 

1 LADAF 2021-

17-Right-

Kidney 

Whole kidney densely 

labeled 

50 2,279 

 

 

Training BM05 M 63 

1 LADAF 2021-

17-Right-

Kidney 

Whole VOI densely 

labeled 

5.2 1,397 Training BM05 M 63 

2 S-20-28-

Kidney 

Whole kidney 

sparsely labeled (65% 

of vessels) 

50 2,217 Training BM05 M 84 
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3 LADAF-2020-

27-Kidney-2 

Whole kidney part 

densely, remainder 

sparsely labeled, 

(85% of vessels) 

50.16 501 dense 

1,035 

sparse 

Training BM05 F 94 

5 LADAF-2021-

17-Left-

Kidney 

Partial whole kidney 

densely labeled 

50.28 1,012 Public test BM05 M 63 

6 LADAF-2022-

13-Bottom-

Kidney 

Partial whole kidney 

densely labeled 

63.08 501 Private 

test 

BM18 M 85 

 

Algorithm performance was judged based on the Normalized Surface Dice (NSD) metric as 

previously proposed by the Google Deepmind team22,23, with tolerance threshold set to 0 (see 

Methods). At the end of the competition, the top-5 teams on the final private leaderboard won the 

performance prizes and the associated prize money (see Methods).  
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Figure 1. An overview of the competition setup and process, including 3D renderings of the gold 

standard labels and representative 2D slices for all data in the competition. 

 

The competition observed participation by 1,401 individual members divided across 1,149 teams 

from 78 countries. There were 204 members that participated for the first time in a Kaggle 

competition, five of which were in the top-100 on the final private leaderboard. There were 32,391 

unique code submissions, 500 public notebooks created, 756 discussion comments, and 200 

discussion forum topics. There was also a separate Discord server created for the competition 

where teams engaged in more informal discussions throughout the competition, although this was 

not monitored by the hosts/authors. Figure 2a graphs the changes in the leaderboard scores, 

forum activity, and number of participants during the three-month period of the competition. Figure 

2b shows the number of submissions versus the highest private score for all teams. 
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Figure 2. a. Number of teams and messages, and leaderboard high scores per day over 

competition period. b. Number of submissions vs. highest private leaderboard score for each of the 

1,149 teams as a heatscatter. c. Scores for competition metric and additional metrics for top-5 

teams on both test sets. ASSD is normalized between 0-1 for visualization (lower is better).  
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Overview of winning solutions 

In this competition, in general, teams employed a variety of techniques to tackle the challenge, 

including customized U-Net architectures, different data augmentation techniques, and complex 

loss functions. Notably, methods integrating data augmentation and self-training paradigms 

emerged as effective solutions to address challenges related to the small dataset. Teams utilized 

pseudo-labelling techniques, either refining pseudo labels from sparse to dense iteratively, or 

creating labels for external datasets. Additionally, post-processing steps such as to eliminate 

disconnected vessels also helped improve solutions. 

 

The competition highlighted that the U-Net architecture24 remains a strong base model for medical 

image segmentation. All of the top five teams used variants of U-Net—2D, 2.5D, or 3D—with 

different backbones, customizing the models to enhance performance while keeping the U-shaped 

structure unchanged. Among the advanced backbones, MaxViT-Large-51225 stood out for its ability 

to handle large input sizes (like 512x512 pixels), making it suitable for high-resolution HiP-CT 

images. By leveraging the dual capabilities of Convolutional Neural Networks26 (CNN) and 

Transformers27, MaxViT-Large-512 enhanced U-Net's ability to accurately segment complex 

anatomical structures. Additionally, ensembling different U-Net architectures was popular in the 

competition, with three out of the top-5 winning teams utilizing ensemble models. Individual models 

might overfit to specific patterns in the training data; ensembling reduces the risk of overfitting by 

averaging out biases from individual models, resulting in better generalization on unseen data. 

Additionally, by combining the strengths of different models, an ensemble provides more robust 

predictions, effectively handling anomalies and noise in the data. Larger sliding-window size 

generally had better performance as it was able to remove more artifacts at the window boundary 

introduced by sliding-window inference. 

 

Team 1 developed a tailored 2.5D U-Net24 with ConvNeXt-tiny28 as the encoder, using a 

combination of loss functions to directly optimize for NSD. Team 2 utilized a 3D U-Net29, focusing 

on improving generalization through extensive data augmentation and morphological post-

processing. Team 3 combined multiple U-Net-based architectures with CNN and Transformer 

models, refining sparse labels with dense ones for better segmentation performance. Team 4 

combined 2D and 3D models, leveraging test-time augmentation (TTA) and pseudo-labeling to 

enhance accuracy. Finally, Team 5 ensembled three 2D U-Net models, integrating pseudo-labeling 

and boundary loss to sharpen boundary predictions. Through innovative data preprocessing, 

careful model selection and hyperparameter choice, and effective post-processing, these teams 

achieved high accuracy, securing top-five positions in the competition. 

 

Furthermore, there were some key implementation details in the solutions proposed by the top-5 

teams that highlighted differences in their approaches. Team 1: Defining a custom Marching Cube 

Loss function, adding an extra stem block to the model to leverage high resolution information, 

using 3D rotations, and generating more data by slicing along different axes. Team 2: Generating 

more data using 3D affine transformations on training sets, and removing distantly placed 

disconnected chunks to reduce false positives. Team 3: Refining pseudo labels from sparse to 

dense iteratively, emulating test set magnification, and intensity augmentation. Team 4: Percentile 
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normalization of training data, pseudo labels on external data, Boundary Difference over Union loss 

for both 2D and 3D models, and sliding window inference. Team 5: Creating soft-labels with 

pseudo labels on external data, combined with composite loss with more weight to the boundaries 

of masks, and 3D interpolation to account for the different resolutions. 

 

As discussed earlier, vessel segmentation is generally a difficult image processing challenge, due 

to the multi-scale nature and small structure of vessels. With HiP-CT data of human organs, 

several additional challenges are present, all of which are compounded by a low tolerance for 

connectivity error in the final segmentations19. Most of the teams attempted to overcome the issue 

of a small training dataset by employing different augmentation techniques and pseudo-labeling 

approaches. For example, Teams 1 and 2 significantly enhanced their scores with the use of 3D 

rotational augmentation. After implementing this technique, Team 1’s private score increased from 

0.682 to 0.835. Team-3’s strategy of iterative pseudo-labeling enabled training of models on an 

expanded dataset, securing it the third rank in the competition. 

 

To tackle the issue of unbalanced classes, some teams introduced various boundary losses, which 

take the form of a distance metric based on contours rather than regions. This approach helped 

mitigate the challenges associated with highly unbalanced datasets by focusing on integrals over 

the interfaces between regions, rather than unbalanced integrals over the regions themselves. For 

instance, Team 1 experienced a notable improvement after integrating a combination of focal, dice, 

and boundary losses with a custom loss function (see Supplementary Note 1), elevating its 

private score from 0.534 to 0.682. Meanwhile, Team 4’s use of BoundaryDOULoss30 (see 

Supplementary Note 4) boosted its public LB score by 1.5% and its private LB score by 5%. To 

address the connectivity issue, Team 2 effectively used a post-processing step to enhance 

connectivity and eliminate false positives, by removing small unconnected segments with depth-

first search. In order to mitigate the effect of variability of the imaging data, Team 3 emulated a test 

set magnification to have matching resolutions. Detailed technical information for each winning 

team’s solution, including information for some other teams, is provided in Supplementary Notes 

1-6.  

Quantitative analysis of solutions 

The top-winning team, Team 1, reached a NSD score of 0.774 on the final private LB and also 

ranked first on the public LB with a score of 0.898, followed by 0.755 for Team 2, 0.727 for Team 3, 

0.712 for Team 4, and 0.691 for Team 5. The top-5 teams made a total of 784 out of 32,391 

submissions (2.42% of total submissions). Supplementary Table 2 lists public and private LB 

scores for all five winning teams, including the baseline NN-Unet model’s performance, and a brief 

summary of their solutions. 

 

In comparing team rankings across public and private LBs, Team 1’s solution proved to be the 

most stable as it ranked at the top on both LBs. Team 4 and Team 5 were fairly stable: Team 4 

rising by one place and Team 5 rising by five places on the private LB compared to the public LB. 

Solution by Team 2 was the most unstable, jumping 1,022 places on the private LB, while Team 3 
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jumped by 568 places. Team 2’s solution was highly overfitted to the private test set, and scored 

0.04 NSD score on the public LB. 

 

Additionally, authors previously identified certain key metrics for the vessel segmentation problem 

after reviewing the existing literature19. These additional metrics—Dice Similarity Coefficient (Dice), 

Centerline Dice (clDice), NSD (tolerance=1), and Average Symmetric Surface Distance (ASSD)—

are computed for the predictions of the top-5 winning teams (see Methods for details on the 

metrics). All computed metrics for both test sets are provided in the Supplementary Table 3 and 

visualized in Figure 2c. The difference between the NSD scores at tolerance 0 and tolerance 1 are 

larger for the private test set than for the public test set across all teams. For the private test set, 

Team 1 scores higher than the other 4 teams across all additional metrics, except in the case of 

clDice where Team 2 performs slightly better. While the performance of Team 3 is comparable to 

other teams on the private test set, it performs worse on the public test set across multiple metrics, 

thereby highlighting the low generalizability of solutions by Team 2 and Team 3. 

 

A fundamental challenge in organizing such competitions that need to be scored based on a single 

metric is that changing the metric can change the outcome of leaderboards as well as the ability of 

the created solutions31,32. In light of this, it is valuable to see the correlation between public and 

private LB rankings as well as the effect of rankings based on different metrics. Subsequently, 

Kendall's Tau33 (KT, see statistical analysis in Methods) is computed and a value of 0.0253 (p-

value=0.795) is found for rankings of private and public LB (top-50 teams). This highlights a high 

shake-up in rankings on both LBs, showing that, in general, solutions by top-50 participants had 

low generalizability. To check rank stability based on different metrics, KT is computed for all 

additional metrics with respect to the original competition metric. The KT for top-50 teams on the 

private test set based on NSD (tolerance=0) and clDice is 0.502 (p-value=2.6839e-07), KT for NSD 

at tolerance 0 vs. 1 is 0.472 (p-value=1.2773e-06), KT for NSD (tolerance=0) and Dice is 0.387 (p-

value=7.0881e-05), and KT for NSD (tolerance=0) and ASSD is 0.3877 (p-value=7.0881e-05). 

Supplementary table 3 shows all metric scores for top-50 teams for both test sets.  

Qualitative analysis of winning solutions 

Due to the low generalizability of solutions by Team 2 and Team 3, the qualitative and 

morphological analysis focuses on Teams 1,4 and 5. Figure 3 shows a Maximum Intensity 

Projection (MIP) for the gold standard labels for the private test set and the predicted labels from 

Teams 1,4, and 5. Similar figures for Team 2 and Team 3 are presented in Supplementary Figure 

1. Visual analysis across the three teams (Team 1, 4, and 5), shows a high degree of missing 

vessel connectivity, particularly for the small vessels which can be seen in the insets in Figure 3 

(green arrows). This unconnected vessel morphology is particularly evident at the outer edge of the 

kidney where the majority of vessels are thinner and the variations between the teams are more 

visually pronounced. Interestingly, Team 4’s solution appears to have the least number of small 

unconnected components, favoring larger vessel detection, whereas Team 5’s solution detects 

parts of the small vessels but they are highly disconnected. Team 5 also finds a large number of 

small unconnected components outside the boundary of the kidney itself (red inset in Figure 3). 

This is a feature which Team 4 were able to remove in post processing though a simple but 
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effective masking of the kidney outer edge, a strategy which dramatically reduces the number of 

false positive pixels. Team 1’s solution visually shows better connection of the small vessels in 

comparison to Team 5’s potentially due to the extra stem in their model designed to capture these 

smaller vessels. Additionally, Team 1’s solution appears to detect tubular structures that are not in 

the gold standard (orange arrowhead in Figure 3). Several of these structures, when compared 

back to the raw data, appear to be correctly identified vessels that were not found by the manual 

segmentation process. This highlights that manual segmentation of data, even when performed by 

multiple curators, can only ever be considered as a gold standard (with some degree of such 

acceptable data noise) rather than a complete ground truth. Finally, all teams appear to predict 

vessels that are thinner than the gold standard labels. 
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Figure 3. Maximum Intensity Projections (MIP) for the labels (private test set) for gold standard, 

Team 1 predictions, Team 4 predictions, and Team 5 predictions, with two insets per team in the 

yellow and red squares, respectively. Green arrows show the same location in each prediction 

highlighting the missing and unconnected vessels in Teams 1,4 and 5. The orange arrow in the 

gold standard and Team 1 show an instance of a vessel predicted by Team 1’s model that is not in 

the gold standard but is, in fact, in the raw data.  
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As the test datasets—both public and private—were only portions of the whole intact kidneys, we 

computed inference for each team’s model on the remaining parts of the private test set (kidney 6) 

(Figure 4a) and the public test set (kidney 5) (Supplementary Figure 4).The outputs in Figure 4a 

serve to further demonstrate the differences, particularly in the ability to capture larger vessels 

between these models and their generalizability. Team 1’s solution, which appeared to find many of 

the smaller vessels in test data, evidently misses large portions of the larger vessels in the whole 

private test data (kidney 6), and to a lesser extent in the public test data (Kidney 5). The larger 

vessels are evidently more fully captured by Teams 3-5 in both the public and private test datasets. 

The lack of generalizability in Team 2 is highly apparent when comparing the outputs for kidney 5 

(Supplementary Figure 4) and kidney 6 (Figure 4a). 

 

Figure 4. a. Visualization of the 3D output for inference of each team on the whole intact kidney 

datasets for the private test data (Kidney 6). Gold standard (red) shows the part of the whole 

kidney that was fully labeled and was part of the original competition dataset. b. Visualization of the 

skeleton forms of the vessel network for the gold standard and teams 1, 4 and 5 for the Private test 

data (Kidney 6). In each case, each vessel segment is rendered with the mean radius. In the first 
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row the vessels are colored according to each segment's mean radius. In the second row each 

unconnected subgraph is in a different color. 

Morphological analysis of segmentations 

While the quantitative segmentation metrics and qualitative inspection of the voxelized output 

provides an insight into the performance of different solutions, a comparative morphological 

approach that aligns with the eventual intended use of the segmentations is highly relevant to 

assessing model biases and outputs. Given that our ultimate aim is to use the vascular 

segmentations to 1) model exosome transport, 2) extract vessel morphology metrics to create a 

VCCF; the segmented vascular networks will be skeletonized. Skeletonization reduces the 3D 

voxel representation to a skeleton representation described by segments and nodes—with each 

segment defined by start and end nodes—and having a length, radius, and connectivity to other 

segments (see Methods for further details). Here, we skeletonize each of the predicted 

segmentation outputs to investigate how the differences in segmentation from the various models 

lead to variation in the extracted vascular network geometry. 

 

Figure 4b shows the spatial variations in the mean radius and subgraphs (unconnected portions of 

the network) between model outputs. While the number of subgraphs varies between teams, 

Teams 1,4, and 5 find the same larger vessel trees. Variations are mostly restricted to the smaller 

disconnected vessels at the kidney periphery which was also noted in the qualitative analysis. 

Similarly, while the spatial distribution of radii is similar, the absolute values vary between each 

solution and the gold standard. Supplementary Figure 2 shows the same visualizations for Team 

2 and Team 3. Supplementary Figure 3 shows the skeleton forms of the vessel networks for all 

teams on public test data. 

 

Figure 5 highlights these morphological differences between the skeletonized networks geometry 

for the private test data (similar plots for public test data are provided in Supplementary Figure 4). 

For all teams, the number of subgraphs is higher than the gold standard, which indicates many 

short unconnected segments that form the partial path of the vessels (Figure 5a). The shorter 

mean length of segments (Figure 5c) also supports this conclusion as does the proportions of 

terminal nodes compared to branched nodes which is higher than the gold standard for all teams 

other than Team 2. The mean radius (Figure 5b) has large variability highlighting the challenge of 

accurately determining vessel thickness. In all cases, the mean radius is lower than in the gold 

standard which appeared to be the case in the qualitative analysis. The thinner vessels are also 

reflected by the much higher NSD score where there is a 1-voxel tolerance (see Figure 2). For 

tortuosity and branching angle, values closer to the gold standard and baseline models indicate 

better modeling of natural vessel shapes. As tortuosity is associated with length, it is interesting to 

note that while Team 4 has a lower vessel length than Teams 3 and 5, it has a higher tortuosity, 

indicating that many short but highly curved vessels are present in this case. 

 

Team 1 has the highest number of segments, proportion of terminal nodes to branched nodes, and 

number of subgraphs, indicating the identification of many vessels but with a highly fragmented 

segmentation. Team 1 also has the second lowest mean radius indicating there is either an under 
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segmentation of the vessel lumen or an increase in small vessels that may not be present in the 

gold standard. 

  

Team 2 has the smallest number of subgraphs (247) comparable to that of the gold standard (199). 

It also has the most similar number of segments and proportion of terminal-to-branched nodes 

compared to the gold standard. This indicates better continuity in vessel segmentation, which can 

be attributed to the solution’s post-processing steps, and is also reflected in the team’s relatively 

higher clDice score. Team 2’s lower radius and length might also suggest under-segmentation or 

more conservative thresholding.   

  

Team 3 serves as the midpoint of the teams having the third highest number of subgraphs behind 

Team 1 and Team 5, with a similar proportion of terminal-to-branched nodes as Team 5. By 

comparison to Team 5, Team 3 has a lower mean radius and length suggesting a more 

conservative thresholding strategy leading to a thinner radius and slightly better predictions for 

smaller unconnected vessels. 

  

Team 4’s lower vessel length coupled with the relatively higher mean radius, lower number of 

subgraphs, and lower proportion of terminal-to-branched nodes, indicates a model which is more 

targeted to the larger well-connected structures in the network rather than the smaller peripheral 

vessels, and reflects the masking of small false positive structures in the background outside the 

kidney. 

  

Team 5 has the largest average radius and length, the third highest number of subgraphs, and the 

second highest proportion of terminal-to-branched nodes. This implies that while the vessel 

thickness may have been more accurately predicted (from radius and length), many small 

unconnected structures were still identified leading to the high subgraphs and high proportion of 

terminal nodes. The team’s lower position on the LB suggests these small unconnected structures 

were not smaller unconnected vessel fragments but likely came from noise predicted outside the 

kidney, as seen in Figure 3 and Figure 4.   
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Figure 5. a. Bar chart showing the number of subgraphs, nodes, segments, terminal nodes, and 

branched nodes for all team solutions as well as the baseline model predictions and gold standard 

(GS) labels for private test data. b-e. Plots showing the radius, length, tortuosity of segments, and 

the branching angle between segments; mean and 95% Confidence Interval (CI) are shown for all 

metrics. 
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Discussion  

Vasculature segmentation is a highly complex and challenging task in medical image segmentation 

due to the low proportion of vessel voxels, complex structure, and variable nature of human 

vasculature across different individuals. Citizen science enables experts and hobbyists alike from 

industry, academia, and government globally to engage in open and collaborative experimentation 

and development of solutions. Furthermore, all data and code are openly shared, serving as a 

benchmark for future algorithm performance evaluations and comparisons for HiP-CT data. 

 

In this competition, participants employed various techniques to tackle the kidney vessel 

segmentation task. Notably, methods integrating data augmentation and self-training paradigms 

emerged as effective solutions to address challenges related to the small dataset. In addition to 

utilizing data augmentation, normalization and pseudo labeling techniques, implementing 

postprocessing steps to eliminate disconnected vessels proved essential for developing 

generalized solutions. Furthermore, some teams mitigated the challenges associated with highly 

unbalanced datasets by using custom loss functions, such as marching cube loss. The competition 

further highlights that the U-Net architecture24 remains a strong base model for medical image 

segmentation since all of the top five teams used variants of U-Net, customizing the ML models to 

enhance performance.  

 

While this competition has generated interesting solutions for a fairly new imaging modality, several 

known limitations persist: (1) the models were trained on a relatively small dataset, which increases 

the risk of overfitting; (2) segmenting both the very fine and the large the microvascular network  

accurately still remains a challenge; (3) the competition might rely on specific evaluation metrics 

that do not fully capture the clinical relevance or quality of the segmentation, potentially overlooking 

important aspects of model performance in real-world applications; and (4) some models are 

computationally expensive and might be impractical or inefficient for deployment at scale. 

 

Linking qualitative and quantitative interpretation of the teams’ outputs enables a more 

comprehensive understanding of ML model outputs and biases. It also allows assessment of the 

solutions in ways which are highly relevant for the potential downstream uses of such data. Based 

on the morphological analysis, a key challenge most teams faced was the high number of 

unconnected components and lower proportion of branched-to-terminal nodes compared to the 

gold standard. This has important implications particularly for modeling of blood flow or exosomes 

transport, as every terminal node requires a prescribed boundary condition, introducing a high 

dependence of model output onto the assigned boundary condition rather than the connectivity of 

the network as previously shown18. Simple post-processing strategies which remove unconnected 

components, such as that applied by Team 2, or more sophisticated approaches which seek to join 

fragmented vessel sections would be an important next step in utilizing the output of these models. 

 

In future, the authors would like to further generalize the winning solution and train on other 3D 

HiP-CT datasets to explore the vasculature trees, exosome flow patterns, and morphological 

differences in organs other than the kidney. 
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Methods 

Kaggle platform 

The private leaderboard for identifying the five prize winners was finalized on February 8, 2024. 

The prize winners were awarded cash prizes (US$25,000 for first place; US$20,000 for second 

place; US$15,000 for third place; US$5,000 for fourth place; US$5,000 for fifth place). The teams 

submitted their inference code, after training their ML models, on the Submission portal. The 

submitted code was then run over the public test set to rank the teams on the public leaderboard. 

The teams typically use this score to validate their models. With each submission, the code is also 

run on the private test set for preliminary rankings on the private leaderboard (not visible to teams). 

Teams can make an unlimited number of submissions before the competition deadline but are 

limited to five submissions per day. On competition end, the teams can choose up to two solutions 

to submit as their final submissions, which are then scored on the private test set to rank the teams 

on the final private leaderboard. All scoring is done using the normalized surface dice as the 

evaluation metric and the top-5 teams on the final private leaderboard are selected as winners. 

Hierarchical Phase-Contrast Tomography data acquisition 

HiP-CT is a propagation phase-contrast local tomography technique, as described by Walsh et al.2 

Data acquisition follows the sample preparation and scanning protocols outlined in prior work2,34. 

Briefly, organs are fixed, partially dehydrated, and stabilized for tomographic scanning using an 

agar-ethanol mixture. HiP-CT scans are performed on one of two beamlines, BM05 or BM18 at the 

European Synchrotron Radiation Facility (ESRF). The scans are conducted hierarchically; the 

entire organ is first scanned at ca. 25 µm per voxel, followed by local tomography at specified 

locations within the intact organ at ca. 6.5 µm per voxel and ca. 1.3-2.5 µm per voxel. 

Tomography scans are reconstructed into image volumes using a filtered back projection algorithm 

as detailed in prior work34. The final volumes consist of isotropic 3D image datasets, where higher 

resolution volumes of interest are registered within the larger organ volume using a rigid 

transformation. The contrast within these images arises from interference patterns caused by 

refraction of X-rays as they pass through the samples. Refraction is caused by physical density 

differences within the sample, and thus the modality particularly highlights edges between tissues 

with different densities. 

Gold Standard Label Acquisition. Five human kidneys were used to create the competition 

dataset. Three kidneys (Kidney 1, Kidney 2, and Kidney 3) were used for the training set. Two 

kidneys (Kidney 5 and Kidney 6) were used for the test set—Kidney 5 as the public test set and 

Kidney 6 as the private test set. Except Kidney 2, all were collected from donors who had 

consented to body donation to the Laboratoire d’Anatomie des Alpes Françaises prior to death. 

Kidney 2 was obtained after a clinical autopsy at the Hannover Institute of Pathology at 

Medizinische Hochschule, Hannover (Ethics vote no. 9621 BO K 2021). The transportation and 

imaging protocols received approval from the French Health Ministry. The basic scan parameters 
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and demographic information of subjects can be found in Supplementary Table 1. 

 

The segmentation of the five kidneys was conducted using Amira Version 2021.1. Initially, the raw 

image data underwent average binning, either x2 or x4. In x2 binning, the resolution was reduced 

from approximately 25µm to 50µm voxel size. In x4 binning, the resolution was reduced from 

15.8µm to 63.1µm voxel size. 

A 3D median filter was then applied using Amira-Avizo v2021.1 with 3 iterations and a 26 voxel 

neighborhood. To enhance the appearance of vessels, background detection correction was 

performed (Amira v2021.1; default settings). The segmentation process involved semi-manual 

techniques using Amira v2021.1's magic wand tool, an interactive 3D region-growing tool. Curators 

selected a seed voxel within a vessel slice and refined parameters such as intensity threshold, 

contrast threshold, and hard-drawn limits to determine the stopping criteria for the 3D region 

growing. In cases where vessels were infilled with blood or largely collapsed, a manual voxel 

paintbrush tool was used to correct or fill the vessel in every slice. Further details and 

supplementary video of the semi-automated segmentation protocol is outlined in prior work3. 

 

To ensure segmentation quality and provide error estimates on the gold standard, an expert 

segmentation validation process was implemented. An initial curator applied the above procedure 

on a dataset using three orthogonal views. An independent curator re-labeled the data adding to 

the labels of the initial curator, again using the three orthogonal planes. A third curator (referred to 

as proof-reader) was presented with 5-7 randomized 2D sections of the data in any one of the 

three orthogonal planes. They counted the number of vessel cross-sections in the slice. They 

recorded the number of true positive and false negative vessel cross-sections that were 

segmented. Note that a true positive means that the curators 1 and 2 have visually correctly 

labeled the vessel but does not assess the quality of the segmentation on a pixel-by-pixel basis. 

This ratio of true positive and false negative is used as the estimate for the number of vessels 

correctly segmented. The proof-reader then returns the data to the two curators, with the estimated 

segmentation proportion for each 2D area. The curators 1 and 2 then focus on 3D segmentation in 

areas where the proof-reading has highlighted the lowest vessel segmentation proportion. The 

process repeats iteratively until the proof-reader does not find any false negatives3. Note that false 

positives are not considered in the labeling/proofreading process as these are easily detected 

owing to their lack of connectivity to the main vessel tree. All data is made publicly available, see 

Data Availability. 

Evaluation metrics 

The submitted solutions were ranked in the competition using Normalized Surface Dice (NSD) with 

tolerance (t) set to 0. NSD determines what fraction of segmentation boundary is predicted 

correctly. A boundary element is considered correctly predicted if the closest distance to the 

reference boundary is smaller than or equal to the specified threshold (tolerance). The tolerance 

determines the acceptable amount of deviation in pixels. The value of NSD lies between 0 and 1. 

The specific implementation22,23 proposed by Google Deepmind is used in the competition with an 

optimized version available as a notebook on the Kaggle platform at 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.25.609595doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.25.609595
http://creativecommons.org/licenses/by/4.0/


 

https://www.kaggle.com/code/metric/surface-dice-metric. To further evaluate the winning solutions 

and their performance post competition, four auxiliary metrics were chosen based on prior work by 

the authors19: Dice Similarity Coefficient (Dice)35,36, Centerline Dice (clDice)37,38, Average 

Symmetric Surface Distance (ASSD)22,39, and NSD (with tolerance=1). ASSD was computed using 

the MONAI library40,41 v1.3.0. 

Morphological analysis code 

Vasculature in segmentation masks is reduced to spatial graph representations of the network 

through skeletonization. The resulting spatial graph describes the vessel network in terms of four 

entities: nodes, points, segments, and sub-segments. A segment is defined as being between a 

start node i and end node j; which correspond to either a branching point leading into another 

segment branch or a terminal end where no further branches were detectable. Nodes have an ID 

and a 3D spatial position (x, y, z). Between the start node i and terminal node j of each segment lie 

sub-segments with points, marking the start and end of each sub-segment able to capture the 

curvature of the segment. Each sub-segment has an associated radius 𝑅s and length 𝐿s. 

To create a spatial graph from a segmented image, we utilize an implementation of the parallelized 

version of the distanced ordered medial thinning algorithm18,42 in Amira v2021.2 termed the 

“Autoskeleton” plugin. The radius of each subsegment is estimated using 1/5th of the maximum 

Chamfer distance and the parameters applied are smooth = 0.5, attach_to_data = 0.25, and 

iterations = 10. We extract morphological parameters from the spatial graph following the 

definitions from prior work18. See Code Availability. 

Participation analysis 

At the conclusion of the competition, participation metadata becomes publicly available on Meta 

Kaggle43—Kaggle’s public data on competitions, users, submission scores and kernels. This data 

is used to understand how the competition unfolded over its 3-month period. Analysis is 

implemented using standard python packages for data science such as Pandas, NumPy, 

Matplotlib, and Seaborn; creating all visualizations in Jupyter Notebooks, see Code availability. 

Statistical analysis 

Kendall’s Tau31–33 (also called Kendall’s Rank Correlation) is used to quantify the agreement 

between two rankings and is independent of the number of entities ranked. Tau values closer to 1 

mean a strong positive correlation between the two rankings—value of 1 means perfect 

alignment—whereas values closer to -1 mean a strong disagreement. A p-value associated with 

the tau value indicates the statistical significance of the correlation; lower p-values (closer to 0) 

indicate higher significance of the relationship between the two rankings such that it is unlikely to 

occur by chance. Kendall’s tau is computed using the implementation in the Python Scipy44 library. 
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Data Availability 

All training datasets are available on the competition website 

(https://www.kaggle.com/competitions/blood-vessel-segmentation/data). Additionally, complete 

competition dataset (including training datasets and test datasets), whole kidney datasets for test 

sets, team predictions, and trained model weights have been compiled into a single publicly 

available repository. The repository is made available as a Google Drive folder currently 

(https://drive.google.com/drive/folders/14hdA0JEuzdmBmLNik21WYLCmEtr6vSwv?usp=sharing), 

but the same will be submitted as a Zenodo Dataset before final publication. The raw imaging 

datasets are also available, and can be visualized, on the Human Organ Atlas data portal at 

https://human-organ-atlas.esrf.eu. The DOIs to individual datasets are available in the 

supplementary information table 1.  
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Code Availability 

All code for analysis and the winning solutions is publicly available on GitHub 

(https://github.com/cns-iu/hra-sennet-hoa-kaggle-2024). The code for morphological analysis is 

available on GitHub (https://github.com/HiPCTProject/Kaggle_skeleton_analyses). 
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Supplementary Notes 

Supplementary Note 1: Team 1 solution details 

Summary: Team 1 proposed a customized U-Net1 based architecture model using a lightweight 

encoder named ConvNeXt-tiny2 with additional stem blocks3 to improve the feature extraction. A 

data augmentation technique, including random 3d slice rotation, was acquired to tackle the 

challenges related to the data. To make sure that the proposed model is optimized well, they 

trained the model with an ensemble loss combining focal loss4, dice loss5, boundary loss6 and a 

customized marching cube loss. The main goal of marching cube loss is to directly optimize the 

surface dice. The data were processed across three axes with large inference size and test time 

augmentation for inference. 

 

Data Preparation: They trained the proposed model using all available data, including high-

resolution and sparsely labeled data. Then, all slices were randomly resized to size 1536*1536. To 

increase the size of the training data, they sliced the whole volume along different axes and views. 

Heavy data augmentation, including flipping, scaling, adding noise, and intensity modifications, was 

utilized. Moreover, they randomly rotated the sampled slice in 3D space as online data 

augmentation. 

 

Model: The general architecture of the model includes a 2.5D U-Net1 based architecture stacking 3 

consecutive slices on channel dimension as input for the model to leverage 3D information. The 

encoder part of the model includes the ConvNeXt-tiny model2 combined with an extra stem block3 

to extract high-resolution features. The decoder part of the model is a standard U-Net decoder. For 

the loss function, this team utilized a combination of four losses including focal loss4, dice loss5, 

boundary loss6, and a newly proposed customized Marching Cube loss. 

 

Inspired by surface dice computation, the customized Marching Cube loss replaces the surface 

area expectation with the ground truth surface area. Therefore, the Marching Cube Loss (MCL) can 

be calculated as follows: 

𝑀𝐶𝐿 =  1 −
2 ∑𝑖  𝑝𝑖𝑦𝑖𝑤𝑖

∑𝑖  𝑝𝑖𝑤𝑖  +  ∑𝑖  𝑦𝑖𝑤𝑖

 

 

In practice, the surface area weight has minimal influence on the final performance of the 

mentioned loss. So, the loss mentioned above only considers the surface cubes (ground truth 

foreground and background cube’s surface areas are zero). Therefore, ignoring the surface area 

weight, this team used the mean of foreground, background and surface dice losses as the 

customized Marching Cube loss, which can be seen below. 

𝑀𝐶𝐿 =  1 −  
1

|𝐾|
∑

𝑘𝜖𝐾

2 ∑𝑖  𝑝𝑖
𝑘𝑔𝑖

𝑘

∑𝑖  𝑝𝑖
𝑘   + ∑𝑖  𝑔𝑖

𝑘
                            𝐾

= {𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑, 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑, 𝑠𝑢𝑟𝑓𝑎𝑐𝑒}  
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Training and Inference Details: This team trained the proposed model using a 32 batch size and 

a gradient accumulation process7. AdamW8 with additional WarmUpConsineAnnealing9 was used 

to optimize the model. The model was trained for 30 epochs. 

In the testing process, all the slices were converted and resized to 3072*3072. The torch compile 

algorithm7 was utilized to accelerate the inference process. Moreover, the data were processed 

across three axes with large inference sizes and test time augmentation. 

Supplementary Note 2: Team 2 solution details 

Summary: Team 2 used a customized 3D U-Net10 model for segmenting the kidney vessels. To 

overcome the generalizability problem, data augmentation techniques, including random positions 

and rotations, were used. Eventually, morphological post-processing techniques were used to 

remove small false positives and improve the model performance.  

 

Model: The general architecture of the proposed neural network is based on 3D U-Net10. However, 

to overcome the problem of gradient vanishing, simple convolution layers were replaced by ResNet 

blocks3 in the encoder part of the model. To decrease the computational cost, all traditional up-

convolutional layers have been replaced by up-sampling operations. 

Online data augmentation techniques, specifically affine transformations such as rotation, scaling, 

and shearing, were employed to prevent overfitting. This process yielded a substantial increase in 

the number of patches, reaching over 7k for every epoch. 

 

For the post-processing, the depth-first search algorithm11 was used to identify the unconnected, 

distantly placed chunks and remove them to increase the model's overall performance. 

 

Training and Inference Details: This team trained the proposed model with a batch size of 4 and 

a size of 128*128*32. For optimization, they used Focal loss4 and cosine decay scheduling9. The 

training lasted two weeks, and the maximum number of epochs was 700. 0.25 was used as the 

ultimate threshold for the inference to extract binary masks for vessels. 
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Supplementary Note 3: Team 3 solution details 

Summary: Team 3 employed a multifaceted approach to tackle the competition. They used a two-

step process to refine sparse labels using dense labels from part of the training dataset. Initially, 

they trained two different UNet architectures (maxViT512
12

 and EfficientNetv2
13

) on densely 

labeled images to generate supplemental labels for sparsely labeled ones. These models were 

then further trained using the enhanced datasets, which included both dense and newly generated 

pseudo labels. The team trained three Unet models: EfficientNetv2, SeResNext101
14

, and 

MaxViT512, and one UNet++
15

 using all real labels from all kidneys plus pseudo labels. 

Model: The main model, MaxVit512, represents a sophisticated UNet-based architecture 

combining CNN and Transformer methodologies, tailored specifically for medical image 

segmentation. It utilizes a hybrid multi-axis vision transformer mechanism, where both 

convolutional and self-attention mechanisms are employed at each stage of the decoder. This 

approach significantly enhances the model's ability to distinguish between target objects and the 

background, crucial for effective segmentation. The MaxVit512 architecture, with its strategic use of 

a hybrid decoder, ensures high efficiency in segmentation with a reasonable computational and 

memory footprint. The models typically operate with a batch size of 32, allowing efficient 

processing of large datasets without compromising performance. 

Training and Inference Details: Recognizing the variation in magnification between training and 

test sets (50µm/voxel for training and public test sets, and 63µm/voxel for the private test set), the 

team adjusted their training strategy to simulate the lower resolution of the private test set by 

scaling images down. They applied a ShiftScaleRotate augmentation, which randomly shifts, 

scales, and rotates the images to enhance model robustness to variations in image presentation. 

Training and inference were performed along different axes (x, y, and z) to manage varied 

resolutions and sizes, using solely 2D models. They maintained a consistent model resolution, 

opting for 512px for most tasks but switching to higher resolutions when supported by the dataset 

to minimize potential accuracy loss in smaller resolution data. 

The team trained models on all available data once they observed stable convergence, maximizing 

learning from limited datasets. They used dynamic threshold values to maintain stability in model 

predictions, crucial for consistent segmentation performance. Given the intensity variations across 

different datasets, they implemented heavy intensity augmentation strategies to enhance model 

robustness. For final submissions, the team used both a single model and an ensemble of the four 

models mentioned, with both approaches yielding the same score of 0.727. Their script utilized 

CUDA for GPU acceleration, ensuring quick prediction processing. Through these strategic 

maneuvers, the team effectively managed dataset variabilities and optimized their models for high 

performance. Overall, MaxVit512 scored 0.727, and the ensemble submission also scored 0.727. 
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Supplementary Note 4: Team 4 solution details 

Summary: The fourth team's final model strategy combined 2D and 3D models, utilizing d4 test-

time augmentation (TTA)16 to improve segmentation results. They applied a multi-view TTA 

approach to the 2D models and conducted training using a 2-fold setup, selecting kidney_2 and 

kidney_3_dense as validation sets. They ensembled the models by assigning equal weights to both 

2D and 3D models. Their training datasets included kidney_1_dense, kidney_2, kidney_3_dense, 

kidney_3_sparse, and pseudo labels. The team transitioned from slice-wise normalization to stack-

wise normalization using percentiles to optimize model learning. 

 

Model: The team's main models included EfficientNet family models with a UnetPlusPlus decoder 

and SCSE attention17, integrated from the segmentation_models_pytorch library. EfficientNet-B5 

was particularly effective for feature extraction, capturing complex patterns in images. 

UnetPlusPlus enhanced feature propagation, crucial for accurately delineating boundaries and 

maintaining spatial details during encoding and decoding. Despite testing various architectures, the 

EfficientNet-B5-UNet++ model demonstrated superior performance. Their 3D model was based on 

the NN-Unet architecture but used the DynUnet from the MONAI library, with training over 500 

epochs using SGD and a cosine annealing learning rate schedule. 

 

Training and Inference Details: Training involved a multiview setup, stacking images in tensors 

and slicing along different axes. They employed a weighted sampling approach based on sample 

sparsity, with denser samples given a standard weight and sparser samples adjusted accordingly. 

For example, kidney_1_dense had a weight of 1, while kidney_2 was assigned a weight of 0.65. 

Dynamic augmentations like CutMix18 (applied with a 0.5 probability), shifts, flips, and brightness 

adjustments were crucial for model robustness. The 3D model's augmentation strategy was 

simpler, involving d4 augmentations and random crops, with cropping adjusted to 192x192x192 to 

focus on volumetric capture. 

Pseudo labeling was done using an ensemble of 2D models with data from https://human-organ-

atlas.esrf.eu/, excluding some data to prevent leakage. Post-processing techniques, such as 

multiplying 3D model predictions with 2D model-derived ROI masks, significantly enhanced 

predictions. Ensembling predictions from 2D and 3D models with equal weighting further boosted 

performance. The team found that incorporating BoundaryDOULoss19 early in the competition 

significantly improved model performance, with a +2% increase in cross-validation metrics, +1.5% 

on the public leaderboard, and +5% on the private leaderboard. 

Supplementary Note 5: Team 5 solution details 

Summary: Team 5 solution applied only a 2D segmentation model using HiP-CT slices as inputs. 

The final predictions were given by ensembling three 2D U-Net models trained on xy, yz and xz 

axes, respectively. The team trained the model on kidney_1, then kidney_2 and validated on 

kidney_3. To achieve better results, they applied several technical implementations such as 

pseudo-labeling from additional data, boundary loss and spatial resolution interpolation.  
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Pseudo-labelling: Considering that data is important to train an effective deep neural network, the 

team involved two additional datasets: LADAF-2020-31 kidney20 and LADAF-2020-27 spleen21, 

from the Human Organ Atlas (https://human-organ-atlas.esrf.eu/) into the training. A 4-step training 

scheme, was applied to gradually generate pseudo labels for the new datasets and incorporate 

them into training: 

1) The team trained a base model on kidney_1 and pseudo-labeled, kidney_2; 

2) Kidney_2 was incorporated into the training data together with kidney_1 to re-train the 

model. Then, they used this model to pseudo-labeled the LADAF-2020-31 kidney. 

3) Similarly, they pseudo-labeled LADAF-2020-27 spleen dataset from the model re-trained on 

kidney_1, kidney_2 and LADAF-2020-31 kidney. 

4) Finally, the model was trained on four datasets. 

 

The 4-step training scheme enabled generating pseudo-labels for the new dataset. However, 

pseudo-labels can introduce training noise with false positives which are difficult to completely 

remove in this scheme without post-processing. To overcome this problem, the team used soft 

labels, the probabilities after sigmoid function, as pseudo-labels instead of hard labels. 

 

Loss: As surface dice is one of the metrics in this competition, evaluating the predicted boundaries 

of the vasculature, the team applied a boundary weighted binary cross-entropy loss as equation: 

𝐿 =  − ∑𝑖=𝑛−1
𝑖=0 (1 + 𝛼𝑏𝑜𝑢𝑛𝑑𝑖)[𝑦𝑖 𝑙𝑜𝑔𝑝(𝑦𝑖) − (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑝(𝑦𝑖))] , 

𝑏𝑜𝑢𝑛𝑑𝑖 = 0 𝑖𝑓 𝑦𝑖 𝑖𝑠 𝑛𝑜𝑡 𝑜𝑛 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦, 1 𝑖𝑓 𝑦𝑖  𝑖𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 

where n is the size of a mini-batch. 𝛼 is a boundary weight and 𝑏𝑜𝑢𝑛𝑑𝑖 is a binary value, indicating 

if the value 𝑦𝑖 is on the boundary. The last term is a typical binary cross-entropy function. The team 

set 𝛼 as 0.9 to roughly double the loss on the boundary pixels. Apart from a boundary weighted 

binary cross-entropy loss, the overall loss function added dice loss5 and focal loss4.  

 

Models: Four different 2D backbone networks: effnet_v2_s, effnet_v2_m, maxvit_base and dpn68 

were ensembled for the final submission. They are implemented by a python package - 

Segmentation Models PyTorch (SMP)22. The input was cropped from xy, xz and yz axes in size of 

5122, followed by pre-processing methods, such as 2D rotation, intensity contrast changes, 

horizontally and vertically flipped. After training, the inference was done with a sliding window 

method with an overlap size of half the input size.  

 

Inference: Team 5 solution highlighted that 3D interpolation to make the voxel sizes of the training 

data and test data the same is important when performing vasculature segmentation inference on 

HiP-CT data. In this competition, the training data of kidney 1 to kidney 3 are ~50 µm/voxel, 

however, the test dataset of kidney 6 is ~63 µm/voxel. Team 5 applied a rescaling operation 

through 3 axes even though training was performed on 2D slices. The rescaling was implemented 

by trilinear interpolation and the rescaled data resulted in better performance.   
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Supplementary Note 6: Useful strategies from other teams 

Pre-processing 

The kidneys were imaged by HiP-CT which requires the X-ray beam and scan setup to be 

independently tuned for every individual sample. Thus, scan parameters and hence the ranges of 

voxel intensities vary often dramatically between samples. This effect introduces weight bias and 

shifts when training deep neural networks. Therefore, several approaches were applied in this 

competition to construct a uniform input intensity space for stable training. Popular pre-processing 

techniques were normalization with global maximum and minimum across three training kidneys 

and intensity augmentation in training and validation. However, for 2D models, normalization of 

individual slices performs better than normalization with global maximum and minimum from 3D 

volume (https://www.kaggle.com/competitions/blood-vessel-segmentation/discussion/469022). 

 

Model Selection 

HiP-CT can image intact human organs, with isotropic voxels enabling clear visualization of 3D 

structures in any orientation. This inherently inspires the application of 3D as well as 2.5D and 2D 

segmentation models. Therefore, many teams explored different models for this task, reporting that 

2D models were more efficient for achieving better results, due to the challenges of setting the 

hyper-parameters for 3D models. Due to limitations in computational resources for many 

competitors, 3D model input patches were smaller (input dimensions = 64 × 64 × 64) and thus 

contained less spatial context, compared to popular input settings of 512 × 512 in 2D and 2.5D 

models. If the input dimension were increased in 3D models, the batch size had to be reduced.  

 

Post-processing  

For HiP-CT scanning, organs are physically stabilized in cylindrical jars using an ethanol–agar or 

formalin-agar gel, so the images also contain the irrelevant background areas of the surrounding 

ethanol and agar. To remove the false positives on those areas, most of the teams created the 

mask for the kidney using different techniques such as Canny filters from OpenCV package and 

intensity thresholding. Since connectivity is one of the important factors for vascular trees and 

models failed in preserving these contextual long dependencies, connected component 3D (cc3d)23 

was popularly used to improve the connectivity of the predictions as a post-processing method.  
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Supplementary Figures 

Supplementary Figure 1. Maximum intensity projections (MIP) for Teams 2 and 3, with two insets 

per team in the yellow and green squares, respectively.  
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Supplementary Figure 2. The figure shows the skeleton forms of the vessel network for Teams 2 

and 3. In each case the vessel network size is proportional to the mean radius in the first row; the 

color shows the mean radius for each case. The second row is colored with each unconnected 

subgraph in a different color. 
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Supplementary Figure 3. Showing the skeleton forms of the vessel network for all teams for the 

public test data. In each case the vessel network size is proportional to the mean radius in the first 

column; the color shows the mean radius for each case. The second column is colored with each 

unconnected subgraph in a different color.   
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Supplementary Figure 4. Visualization of the 3D output for inference of each team on the whole 

intact kidney datasets for the public test data (Kidney 5). Gold standard (red) shows the part of the 

whole kidney that was fully labeled and was part of the original competition dataset. 
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Supplementary Figure 5. a. Bar chart showing the number of subgraphs, nodes, segments, 

terminal nodes, and branched nodes for all team solutions as well as the baseline model 

predictions and gold standard (GS) labels for public test data. b-e. Plots showing the radius, length, 

tortuosity of segments, and the branching angle between segments; mean and 95% Confidence 

Interval (CI) are shown for all metrics.  
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Supplementary Tables 

Supplementary Table 1. Listing of DOI and link for each dataset in the competition data. 

 

Kaggle identifier Donor identifier Dataset name DOI Visualization link 

1 LADAF-2021-17 LADAF-2021-
17_kidney_right_co
mplete-
organ_25.0um_bm
05 

10.15151/ESRF-
DC-1773966439 

https://human-
organ-
atlas.esrf.eu/datase
ts/1773966586  

1 LADAF-2021-17 LADAF-2021-
17_kidney_right_V
OI-
03.1_2.6um_bm05 

TBC link to visualization 

2 S-20-28 S-20-
28_kidney_complet
e-
organ_25.0um_bm
05 

TBC link to visualization 

3 LADAF-2020-27 LADAF-2020-
27_kidney_left_co
mplete-
organ_25.08um_b
m05 

10.15151/ESRF-
DC-572182553 

https://human-
organ-
atlas.esrf.eu/datase
ts/572182201  

5 LADAF-2021-17 LADAF-2021-
17_kidney_left_co
mplete-
organ_25.14um_b
m05 

10.15151/ESRF-
DC-1773965419 
 
 

https://human-
organ-
atlas.esrf.eu/datase
ts/1773965003  

6 LADAF-2022-13 LADAF-2022-
13_kidney_2_comp
lete-
organ_15.77um_b
m18 

TBC TBC 

 

 

Supplementary Table 2. Scores for competition metric for top-5 teams and baseline model, 

including a brief summary. 

 

Team Summary of the model Additional notes Number of entries Public score Private score 

1 Ensemble of two 2.5D 
convnext tiny U-net with 

Data 
augmentation 

278 0.895 0.774 
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3 channels and custom 
loss 

using random 
rotation 

2 3D UNet with binary 
focal loss 

Data 
augmentation 
using random 
rotation and post-
processing to 
remove 
unconnected 
vessels 

33 0.043 0.755 

3 UNet with MaxViT-
Large 512 backbone 

Creating pseudo 
labels from dense 
labels (train on 
kidney 1 and 
kidney 3 (dense 
labels) to 
generate 
supplemental 
labels for kidney 3 
sparse. Repeat 
label generation 
(step 2) for kidney 
2 sparse  

114 0.846 0.727 

4 Ensemble of 2D and 3D 
UNet with d4 TTA using 
boundary DoU loss 

Creating pseudo 
labels (an 
ensemble of 2d 
models trained 
with the same 
setup but without 
CutMix to create 
pseudo labels 
from additional 
data 
50um_LADAF-
2020-31) 

251 0.884 0.712 

5 Ensemble of 3 UNet 
models (effnet_v2_s, 
maxvit_base and 
dpn68) with custom loss 
(CE + Dice + Focal) 

Creating pseudo 
labels (same 
models trained to 
create pseudo 
labels from 
additional data 
from human 
organ atlas - 
LADAF-2020-31 
kidney and 
LADAF-2020-27 
spleen) 

108 0.855 0.691 

Basel
ine 

NN-UNet Model Default 
parameters 

N/A 0.805 0.438 
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Supplementary Table 3. All metric scores for top-50 teams, on both test sets. Team ID is based 

on ranking on the final private leaderboard. Lower is better for ASSD scores. Other metrics are 

bounded between 0 and 1, higher values are better. 

 

Team ID Dataset ID NSD (t=0) NSD (t=1) clDice ASSD Dice 

1 kidney_5 0.8951 0.9569 0.833 1.3132 0.9283 

1 kidney_6 0.7741 0.9252 0.7859 0.7877 0.8289 

2 kidney_5 0.0431 0.0855 0.0134 40.5078 0.0119 

2 kidney_6 0.756 0.8479 0.7991 2.7445 0.6758 

3 kidney_5 0.8327 0.8959 0.7493 10.8552 0.8971 

3 kidney_6 0.7279 0.8844 0.7428 1.0919 0.8174 

4 kidney_5 0.8849 0.9423 0.8457 1.8925 0.9296 

4 kidney_6 0.7122 0.8623 0.7342 1.4183 0.8144 

5 kidney_5 0.8855 0.9554 0.8279 1.1549 0.9279 

5 kidney_6 0.6918 0.8612 0.7088 1.5988 0.8041 

6 kidney_5 0.8862 0.9477 0.8411 0.7425 0.9315 

6 kidney_6 0.6819 0.8055 0.6659 1.8331 0.792 

7 kidney_5 0.8594 0.9156 0.7959 6.1061 0.9152 

7 kidney_6 0.6768 0.8492 0.7139 1.4423 0.7802 

8 kidney_5 0.879 0.9431 0.8088 1.4752 0.9275 

8 kidney_6 0.6753 0.8585 0.7015 1.4384 0.778 

9 kidney_5 0.8272 0.8998 0.7227 4.2324 0.9088 

9 kidney_6 0.6651 0.8843 0.7343 1.1351 0.7758 

10 kidney_5 0.8103 0.8795 0.7159 10.2946 0.8912 

10 kidney_6 0.6572 0.8496 0.699 1.4754 0.7781 

11 kidney_5 0.6132 0.7349 0.6529 17.6852 0.649 

11 kidney_6 0.6559 0.7625 0.6824 3.2546 0.6951 

12 kidney_5 0.6362 0.8144 0.5687 7.2457 0.801 

12 kidney_6 0.6488 0.8012 0.6436 3.2204 0.7075 

13 kidney_5 0.8581 0.9165 0.7899 3.1011 0.9138 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.25.609595doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.25.609595
http://creativecommons.org/licenses/by/4.0/


 

13 kidney_6 0.6479 0.8382 0.6593 1.3991 0.7674 

14 kidney_5 0 0  inf 0 

14 kidney_6 0.6462 0.8177 0.6888 2.1497 0.7571 

15 kidney_5 0.8228 0.9023 0.7518 4.6402 0.9011 

15 kidney_6 0.6359 0.8184 0.6718 1.8454 0.7831 

16 kidney_5 0.8887 0.9503 0.8065 1.8009 0.9285 

16 kidney_6 0.6347 0.8635 0.6904 1.2871 0.7635 

17 kidney_5 0.8137 0.8884 0.6991 2.1368 0.9077 

17 kidney_6 0.6345 0.823 0.6739 1.8226 0.7782 

18 kidney_5 0.8368 0.8961 0.7846 7.3325 0.8789 

18 kidney_6 0.6245 0.8353 0.7032 5.0582 0.736 

19 kidney_5 0.8133 0.8869 0.6914 1.3084 0.9074 

19 kidney_6 0.6214 0.7885 0.6391 4.6257 0.724 

20 kidney_5 0.8568 0.9287 0.7776 2.5528 0.9155 

20 kidney_6 0.6167 0.8465 0.7333 1.4698 0.6847 

21 kidney_5 0.8199 0.891 0.7248 7.8449 0.896 

21 kidney_6 0.6141 0.8227 0.6838 2.1755 0.7271 

22 kidney_5 0.8722 0.943 0.802 1.5679 0.921 

22 kidney_6 0.6117 0.8155 0.6539 2.3056 0.7248 

23 kidney_5 0.8507 0.9086 0.7707 1.6365 0.9179 

23 kidney_6 0.6103 0.7729 0.654 3.0569 0.7025 

24 kidney_5 0.8735 0.9414 0.831 2.6179 0.9188 

24 kidney_6 0.6088 0.8202 0.6746 4.1682 0.7267 

25 kidney_5 0 0  inf 0 

25 kidney_6 0.608 0.8119 0.6585 1.9342 0.7667 

26 kidney_5 0.8676 0.9379 0.7936 1.3814 0.9224 

26 kidney_6 0.606 0.7712 0.6188 3.2132 0.7469 

27 kidney_5 0.8652 0.924 0.8019 5.6499 0.9108 

27 kidney_6 0.6035 0.7922 0.6504 2.6637 0.738 
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28 kidney_5 0.8496 0.9096 0.77 5.6527 0.9124 

28 kidney_6 0.602 0.8053 0.6509 3.3284 0.7603 

29 kidney_5 0.8594 0.9187 0.7875 1.2754 0.9178 

29 kidney_6 0.5992 0.7264 0.594 3.1979 0.6882 

30 kidney_5 0.8703 0.9338 0.805 2.6242 0.9242 

30 kidney_6 0.5988 0.7907 0.6391 2.0989 0.7483 

31 kidney_5 0.8301 0.9013 0.7501 2.9544 0.9069 

31 kidney_6 0.5982 0.7992 0.6869 3.4409 0.7232 

32 kidney_5 0.8561 0.9326 0.7795 1.5592 0.9157 

32 kidney_6 0.5968 0.796 0.6446 2.1674 0.7349 

33 kidney_5 0.8432 0.9163 0.7432 3.3218 0.9129 

33 kidney_6 0.5959 0.7973 0.6252 6.5184 0.745 

34 kidney_5 0.8754 0.9397 0.8121 1.9118 0.9235 

34 kidney_6 0.5944 0.8322 0.6843 1.6091 0.7481 

35 kidney_5 0.8503 0.9269 0.764 2.2443 0.9123 

35 kidney_6 0.5943 0.7931 0.6531 3.0259 0.6511 

36 kidney_5 0.8952 0.956 0.8509 0.7754 0.9322 

36 kidney_6 0.5936 0.7696 0.609 2.7045 0.7683 

37 kidney_5 0.6082 0.7485 0.5749 24.0377 0.7656 

37 kidney_6 0.5905 0.7227 0.5769 6.9668 0.7079 

38 kidney_5 0.6804 0.7684 0.6423 19.6523 0.7369 

38 kidney_6 0.5905 0.7317 0.6036 5.5285 0.6497 

39 kidney_5 0 0  inf 0 

39 kidney_6 0.5896 0.8272 0.6714 1.733 0.7546 

40 kidney_5 0.7982 0.8653 0.7004 11.4582 0.8858 

40 kidney_6 0.5875 0.8007 0.639 2.9754 0.7554 

41 kidney_5 0.8348 0.9147 0.7845 4.2633 0.9016 

41 kidney_6 0.587 0.78 0.6293 4.6619 0.7572 

42 kidney_5 0.8811 0.9477 0.815 0.8389 0.9261 
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42 kidney_6 0.5862 0.7822 0.6411 5.1143 0.6628 

43 kidney_5 0.8711 0.9382 0.7985 1.7559 0.9229 

43 kidney_6 0.5848 0.8085 0.6718 2.0455 0.6903 

44 kidney_5 0.8761 0.9428 0.8073 1.9085 0.9241 

44 kidney_6 0.5848 0.8102 0.6644 4.4716 0.6803 

45 kidney_5 0.8941 0.9541 0.8403 0.7352 0.9297 

45 kidney_6 0.584 0.827 0.6803 3.0314 0.6334 

46 kidney_5 0.8065 0.8823 0.6973 2.8374 0.9005 

46 kidney_6 0.5829 0.7626 0.6044 2.5261 0.7397 

47 kidney_5 0.8283 0.9073 0.7383 3.4346 0.905 

47 kidney_6 0.5824 0.7888 0.6594 2.2022 0.7001 

48 kidney_5 0.8741 0.942 0.8172 0.8616 0.9241 

48 kidney_6 0.5809 0.7819 0.6335 7.6572 0.7435 

49 kidney_5 0.7685 0.8545 0.715 12.7754 0.8565 

49 kidney_6 0.5788 0.738 0.6031 3.248 0.7292 

50 kidney_5 0.8364 0.9029 0.7445 3.5469 0.9101 

50 kidney_6 0.5782 0.799 0.6574 2.2052 0.7254 
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