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Abstract 
Genotyping single nucleotide polymorphisms (SNPs) is fundamental to disease research, as 
researchers seek to establish links between genetic variation and disease. Although significant 
advances in genome technology have been made with the development of bead-based SNP 
genotyping and Genome Studio software, some SNPs still fail to be genotyped, resulting in "no-
calls" that impede downstream analyses. To recover these genotypes, we introduce Cluster 
Buster, a genotyping neural network and visual inspection system designed to improve the 
quality of neurodegenerative disease (NDD) research. Concordance analysis with whole genome 
sequencing (WGS) and imputed genotypes validated the reliability of predicted genotypes, with 
dozens of high-performing SNPs across LRRK2, APOE, and GBA loci achieving at least 90% 
concordance per SNP location. Further analysis of concordance between Genome Studio 
genotypes and imputed and WGS genotypes revealed discrepancies between the genotyping 
technologies, highlighting the need for selective application of Cluster Buster on SNP locations 
based on concordance rates. Cluster Buster's implementation significantly reduces manual labor 
for recovering no-call SNPs, refining genotype quality for the Global Parkinson’s Genetics 
Program (GP2). This system facilitates better imputation and GWAS outcomes, ultimately 
contributing to a deeper understanding of genetic factors in NDDs.  
 
Introduction 
In the last twenty years, genome-wide association studies (GWAS) have become the key to 
uncovering the statistical relationships between genetic variations and disease. They focus on 
single nucleotide polymorphisms (SNPs), which are variations in the genome capable of altering 
gene function and affecting disease heritability (Shastry, 2009). To power these studies, micro-
array based technologies are widely used for genotyping SNPs. The NeuroBooster array is a 
genotyping platform focusing on SNPs associated with NDDs (Sara Bandres Ciga, 2023). These 
SNPs are often genotyped with Illumina’s bead-based SNP genotyping technology and 
GenomeStudio software. For some samples, specific SNPs fail to be genotyped by this algorithm 
and become “no-calls.” This missing data hampers genotype imputation, which relies on accurate 
genotype information to predict variants with linkage disequilibrium. This is critical for 
identifying genetic risk factors for disease. Consequently, this diminishes the quality of 
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downstream analyses like GWAs that require high-resolution genetic data. Previously, these 
SNPs with missing genotypes had to be manually corrected by visual inspection, a laborious, 
time-intensive process (Sara Bandres Ciga, 2023). 
 
Contributing accurately genotyped samples to the NeuroBooster array or other related 
technologies will help to improve genotype imputation quality in disease-related loci and, 
therefore, improve the power of GWAS studies on these SNPs. There is a need for a genotyping 
algorithm that can be used broadly on data submitted to the Global Parkinson’s Genetics 
Program (GP2) and other genetic cohort studies to greatly increase call rate for this purpose. To 
address this need, we introduce Cluster Buster, a genotyping neural network and visual 
inspection system that provides an efficient pipeline for genotyping missing variants. Here, we 
showcase the use of Cluster Buster in four NDD-related genes:  APOE, GBA, LRRK2, and 
SNCA. This system vastly reduces the typical manual labor required to recover no-call SNPs in 
dozens of locations.  
 
Methods 
Data Collection and Preprocessing 
GP2 Dataset. Each sample processed by GP2 was genotyped by the Illumina NeuroBooster 
Array SNP genotyping platform (Sara Bandres-Ciga, 2023). Primary sample identifiers, SNP 
genotypes, and metrics are collected and stored in parquet files. To minimize bias and ensure the 
representation of rare variants, 44 samples were randomly selected per the eleven available 
ancestries (Afro-Caribbean, African, Ashkenazi, Admixed American, Complex Admixture 
History, Central Asian, East Asian, European, Finish, Middle East, South Asian) (Dan Vitale, 
2024). SNPs were selected to include those within APOE, GBA, LRRK2, and SNCA, for a total of 
1,064 SNPs across 484 individuals directly genotyped on the NeuroBooster array. 
Data Preprocessing. SNPs without a genotype cluster quality score from Illumina (GenTrain 
Score), a normalized intensity value (R), the ratio of allelic intensities (Theta), or genotype were 
filtered (Illumina, 2010). The genotype (GT) and single nucleotide polymorphism identifying 
string (snpID) were each converted from nominal into numerical categorical variables. Samples 
with an originally predicted genotype of “NC” (no-call) were separated and saved elsewhere 
(15,692 total SNPs). The remaining data were randomly divided into training (90%; 442,240 
total SNPs), validation (5%; 24,570 total SNPs), and testing datasets (5%; 24,570 total SNPs). 
 
Development of Genotyping Neural Network 
Neural Network Architecture and Training. R values, Theta values, and snpIDs were selected 
as features for the neural network. The neural network was constructed with Tensorflow (version 
2.16.1, Martín Abadi, 2015). Using the training dataset, the snpID variable was fed into an 
embedding layer that transforms the categorical variable into an information-dense vector 
(embedding size of 50) and then concatenated with the R and Theta numerical features. The 
concatenated features were fed into a dense layer with ReLu activation, followed by another 
dense layer with softmax activation. The targets were the one-hot encoded genotype calls from 
Illumina. Layer dimensions and hyperparameters were optimized using KerasTuner (version 
1.4.6; O'Malley, 2015). The grid search tested layer sizes from 32 to 160 with a step size of 32. 
A callback (Keras EarlyStopping) was implemented with patience of 5 epochs with attention to 
validation loss. The Keras CategoricalFocalCrossentropy loss function and Adam optimizer 
function were used. 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.23.609429doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609429


4 

 
The final neural network architecture consisted of an input layer, an embedding layer for the 
snpID variable with an embedding size of 50 that was then flattened, a concatenation layer to 
concatenate the embedding output and the numerical features together, followed by a dense layer 
with 64 units, then a dense layer with 160 units, then a final output layer with 3 units (Figure 
1B). This model was then trained with the training set for eleven epochs and a learning rate of 
0.0001. The final accuracy on the training set was 0.9001 with a. loss of 2.3221E-5 and the final 
accuracy on the validation set was 0.9799 with a loss of 1.9199E-4. Predictions on the test set of 
SNPs and the set of SNPs with previous no-calls were then rendered with the trained genotyping 
neural network.  
 
Comparison of Predicted Genotypes to Imputed Genotypes 
Samples from GP2 release 6 with imputation calls from the TOPMed server (Das et al., 2016) 
hosted on Biowulf were stored in PLINK2 format (pgen, psam, and pvar files) for each ancestry 
available (version v2.00a5.10LM, Shaun Purcell, Christopher Chang). Data was extracted for 
SNPs within the chromosome base pair ranges for each gene locus and extracted into PLINK2 
.raw files. Samples were then matched on their GP2SampleID and matched per SNP on the 
matching chromosome, base position, reference allele, and alternate allele. 
 
Comparison of Predicted Genotypes to WGS Genotypes 
Samples from GP2 release 6 were sequenced and called with DeepVariant-GLnexus (Hampton 
Leonard et al., 2024). These samples with whole genome sequence genotype calls hosted on 
Terra were stored in PLINK2 format (pgen, psam, and pvar files) for each ancestry available. 
Extraction and matching were done the same as for imputed genotypes described previously. 
Data was extracted for SNPs within the chromosome, base pair ranges for each gene locus and 
extracted into PLINK2 .raw files (version v2.00a5.10LM, Shaun Purcell, Christopher Chang). 
Samples were then matched with predicted genotypes by matching chromosomes, base position, 
reference allele, and alternate allele. 
 
Results 
Genotyping with the Neural Network 
After training the genotyping neural network (Figure 1A and 1B), the neural network was 
applied to the hold-out set of SNPs to evaluate its performance on unseen SNPs using Illumina 
probe measurements R and Theta and a categorical variable representing snpID as inputs per 
SNP. The neural network genotyped the SNPs in this set with an accuracy of 99.9% (Figure 1C). 
Then, the genotyping neural network was applied to all SNPs in GP2 release 7 samples with 
valid (not no-call) genotypes rendered with the Illumina Gencall algorithm (the software used to 
genotype within GenomeStudio). For 36,592 samples at 1,064 different SNP locations for 
37,196,336 SNPs,  the neural network predicted genotypes that matched the Gencall genotypes at 
99.9% (Figure 1D). The genotyping neural network was then applied to all SNPs across GP2 
release 7 samples with no-calls to recover their genotypes (1,129,556 SNPs). 
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Figure 1: Cluster Buster Workflow and Performance. A) Flow of data through Cluster Buster. SNP metrics files 
from all available ancestries in GP2 are split into valid gencall (AA, AB, BB genotype) SNPs and no-call (NC 
genotype) SNPs. Valid genotypes are split 80-10-10 for training, validating, and testing the neural network. The 
trained neural network is applied to no-call SNPs. The predicted genotypes are compared to imputed and WGS 
genotypes and visually inspected with an online app. B) The structure of the neural network, including its inputs 
and outputs. C) Confusion matrix of neural network predicted genotypes versus gencall genotypes on the hold-out 
test set. D) Confusion matrix of neural network predicted genotypes versus gencall genotypes on the entirety of 
non-GDPR release7 samples from GP2. 

 
Validation of Predicted Genotypes with Imputation and Whole Genome Sequencing 
For samples in which imputation genotype calls and/or whole genome sequencing (WGS) 
genotype calls were available, predicted genotypes were compared to imputed and WGS 
genotypes. This analysis covered 569 SNP locations. Rates of concordance between predicted 
genotypes, imputed genotypes, and WGS were calculated on a per SNP level as a metric of 
predicted genotype reliability and can be found in Supplementary Table 1. For a SNP to be 
considered "high-performing" and used to reliably recover genotypes for GP2, the available 
concordance rates between predicted genotypes and imputed genotypes and predicted genotypes 
and WGS genotypes needed to be 90% or higher. 43 SNP locations in LRRK2, 30 SNP locations 
in APOE, and 28 SNP locations in GBA met this threshold. The recovered genotypes of SNPs in 
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these locations can be included in imputation efforts and future GWAS. SNPs with predicted 
genotypes that matched either imputed or WGS genotypes were used to recalculate the overall 
call rate for the SNP location in GP2, which can be found in Supplementary Table 2. Examples 
of SNPs with high concordance with their predicted genotypes on allele measurement plots are 
shown in Figure 2. When plotting per-SNP measurements for R on the y-axis and Theta on the x-
axis, genotypes generally follow a visual clustering behavior where genotypes homozygous for 
the major and minor allele fall on the left and right sides of the plot, respectfully, and 
heterozygous genotypes appear towards the middle of the plot. SNPs with predicted genotypes 
highly concordant with imputation and WGS genotypes generally followed that visual pattern.  
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Figure 2:  SNPs with High Concordance between Predicted Genotypes and Imputed, WGS genotypes. A) 
Three scatter plots showing imputed, WGS, and Cluster Buster predicted genotypes for a SNP in APOE for 
non-GDPR samples in GP2 release7. A transparent layer of the valid gencall genotypes for the SNP appear 
in the background of the scatter plots. B) Three scatter plots showing imputed, WGS, and Cluster Buster 
predicted genotypes for a SNP in GBA for non-GDPR samples in GP2 release7. A transparent layer of the 
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valid gencall genotypes for the SNP appear in the background of the scatter plots. C) Three scatter plots 
showing imputed, WGS, and Cluster Buster predicted genotypes for a SNP in LRRK2 for non-GDPR 
samples in GP2 release7. A transparent layer of the valid gencall genotypes for the SNP appear in the 
background of the scatter plots. D) Three scatter plots showing imputed, WGS, and Cluster Buster predicted 
genotypes for a SNP in SNCA for non-GDPR samples in GP2 release7. A transparent layer of the valid 
gencall genotypes for the SNP appear in the background of the scatter plots. 

 
Illumina Inc. records a GenTrain Score ranging from 0.00 to 1.00 for each SNP location, which 
statistically represents the degree to which genotypes for that SNP follow an “expected” 
clustering behavior (Illumina Inc, 2005). A higher GenTrain Score indicates that raw data for the 
SNP is more likely to cluster based on genotype. Pairwise Pearson correlation between a SNPs 
given GenTrain score and its overall concordance with imputation revealed only a modest 
positive relationship with a correlation coefficient of r=0.32. There was virtually no correlation 
between the GenTrain score and a SNP concordance rate with WGS (r=0.007 correlation 
coefficient). This suggests that Cluster Buster's performance is largely independent of GenTrain 
Score and is suitable for application to SNPs with lower GenTrain Scores. 
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Figure 3:  SNPs with Low Concordance between Predicted Genotypes and Imputed, WGS genotypes. A) Three 
scatter plots showing imputed, WGS, and Cluster Buster predicted genotypes for a SNP in APOE for non-GDPR 
samples in GP2 release7. A transparent layer of the valid gencall genotypes for the SNP appear in the background 
of the scatter plots. B) Three scatter plots showing imputed, WGS, and Cluster Buster predicted genotypes for a 
SNP in GBA for non-GDPR samples in GP2 release7. A transparent layer of the valid gencall genotypes for the 
SNP appear in the background of the scatter plots. C) Three scatter plots showing imputed, WGS, and Cluster 
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Buster predicted genotypes for a SNP in LRRK2 for non-GDPR samples in GP2 release7. A transparent layer of 
the valid gencall genotypes for the SNP appear in the background of the scatter plots. D) Three scatter plots 
showing imputed, WGS, and Cluster Buster predicted genotypes for a SNP in SNCA for non-GDPR samples in 
GP2 release7. A transparent layer of the valid gencall genotypes for the SNP appear in the background of the 
scatter plots. 

 
Exploring the SNPs with the most discordance between predicted genotypes and WGS and 
imputed genotypes revealed that for specific SNPs, the imputed and WGS genotypes don't 
follow the expected pattern of genotype clustering when plotting allele measurements from 
Illumina raw data. Examples of poorly predicted SNP genotypes and their respective imputed 
and WGS genotypes can be seen in allele measurement plots in Figure 3. The canonical SNPs 
involved in APOE E2 and E4 alleles, rs7412 and rs429358 (Sweigart et al., 2021), had low rates 
of concordance between predicted genotypes and imputed and WGS genotypes for this reason. 
 
Exploration of Gencall Genotypes and Concordance with Imputation and WGS 
Finding SNPs that did not adhere to expected clustering behavior led to an analysis of 
concordance between valid genotypes from GenomeStudio and their imputed and WGS 
genotypes. Rates of concordance per SNP location can be found in Supplementary Table 3. 14 
SNP locations in LRRK2, five SNP locations in SNCA, and three SNP locations in APOE had 
concordance rates below 90% either when comparing Gencall genotypes to WGS genotypes or 
when comparing Gencall genotypes to imputed genotypes. Notably, the SNP associated with the 
APOE E2 and E4 alleles (rs429358)  had a Gencall genotype concordance rate with imputed 
genotypes of 78.9% and a Gencall genotype concordance rate with WGS genotypes of 68.8%. 
The other SNP associated with APOE E2 and E4 (rs7412) had better concordance rates: 90% 
concordance between Gencall and imputed genotypes and 85% concordance between Gencall 
and WGS genotypes. For these SNP locations with low concordance between Gencall genotypes 
and imputed or WGS genotypes, the only reliable way to genotype is to impute with haplotype 
information or use whole-genome sequencing technology.  
 

105 and is also made available for use under a CC0 license. 
(which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 

The copyright holder for this preprintthis version posted August 26, 2024. ; https://doi.org/10.1101/2024.08.23.609429doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.23.609429


11 

 
Figure 4:  SNPs with Low  Concordance between Gencall Genotypes and Imputed, WGS genotypes. A) Three 
scatter plots showing imputed, WGS, and gencall genotypes for a SNP in APOE for non-GDPR samples in GP2 
release7. B) Three scatter plots showing imputed, WGS, and gencall genotypes for a SNP in LRRK2 for non-
GDPR samples in GP2 release7. C) Three scatter plots showing imputed, WGS, and gencall genotypes for a SNP 
in SNCA for non-GDPR samples in GP2 release7. 

 
GP2 monitors SNPs that are unsuitable for genotyping with the Gencall algorithm as part of the 
quality control process. Three SNP locations in APOE, 21 in LRRK2, and two in SNCA were not 
already tracked by GP2 and can be added to the list of SNPs to exclude from Gencall genotyping 
(Figure 4). Separating SNPs by GP2 quality-control status reveals that much of Cluster Buster's 
poor performance on certain SNP locations can be attributed to those SNP locations not being 
reliably genotyped by the array, rendering the raw data used for predicting genotypes to be 
useless at these locations. SNPs on the exclude list exhibited lower concordance rates between 
predicted genotypes and summary concordance (concordance with either imputation or WGS) 
(Figure 5). Mann-Whitney U-tests revealed significant differences in summary concordance rates 
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between included and excluded SNPs across three gene regions: APOE (p = 0.0005), LRRK2 (p 
= 0.001), and SNCA (p = 0.002).  
 

 
Figure 5:  How SNP Status (Included or Excluded by GP2) Affects Cluster Buster Performance per Gene. Two 
boxplots per gene show how predicted genotypes from Cluster Buster have a higher concordance rate with 
imputed and WGS genotypes if they are SNPs trusted (SNP status - included) by GP2. Performance dips on SNPs 
that are excluded by GP2 during quality control. 

 
Discussion 
By leveraging raw data from Illumina BeadStation technology, the Cluster Buster neural network 
demonstrated exceptional accuracy in genotype predictions for dozens of SNPs across a large 
dataset. This approach not only facilitated the recovery of missing genotypes but also provided a 
new avenue for SNP analysis in regions where more traditional genotyping technologies falter. 
  
For specific SNPs in all four studied gene loci, both imputed and WGS genotypes contradicted 
the expected clustering behavior based on R and Theta probe measurements. The genotypes 
rendered for these SNPs by Illumina Gencall software may not be trustworthy, and therefore, the 
genotyping may be better left to imputation and WGS techniques. Because of this finding, 
determining which SNPs can be genotyped accurately with Cluster Buster requires selectivity 
based on concordance with other genotyping methods.  
 
Analysis of SNPs with low concordance rates between predicted, imputed, and WGS genotypes 
uncovered inconsistencies between genotyping technologies, leading to analysis of the 
concordance rates between previously accepted Gencall genotypes and their respective imputed 
and WGS genotypes. This investigation revealed discrepancies for certain SNPs that point to 
potential instrumentation errors. However, neither imputation nor WGS are foolproof 
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technologies, and it must be noted that concordance rates of genotypes between technologies 
offer only an approximation of the accuracy of the predicted genotype. 
 
In part, GP2's quality control pipeline monitors SNPs that require imputation or WGS to 
genotype rather than Illumina's SNP genotyping platform. This detailed exploration of genotype 
concordance between technologies adds 26 SNP locations to GP2's efforts to improve the overall 
accuracy and reliability of genotyping data for its cohorts. 
 
As part of ongoing research, a method is being developed to flag which SNPs do not exhibit 
genotype clustering behavior according to probe measurements. These SNPs therefore may not 
be appropriate for the application of Cluster Buster. The centroid and width of each genotype 
cluster can be calculated using imputed genotypes and R and Theta values from Illumina for 
each SNP. Then, a SNP may be flagged for non-clustering behavior if genotype clusters are too 
wide, the genotype cluster centroids are too close, or the genotype centroids have very low R-
value coordinates. The specific thresholds for delineating these conditions are currently being 
explored. Developing this method will allow researchers to automatically determine which SNPs 
are inappropriate for Illumina Gencall data analysis software or Cluster Buster without visual 
inspection. 
 
Future research will center on expanding Cluster Buster's capabilities to genotype more SNP 
locations in the NeuroBooster array. This will require training the neural network in a broader 
range of SNPs and acquiring more imputation and WGS genotyping for validation.  
 
Conclusions 
Cluster Buster rapidly recovers SNP genotypes using raw data from cost-effective bead-based 
SNP genotyping technology. The neural network has been carefully trained on ancestrally 
diverse data and variants of all rarities to ensure minimal bias and maximum applicability. 
Currently, the genotyping system verifiably genotypes 43 SNP locations in LRRK2, 30 SNP 
locations in APOE, and 28 SNP locations in GBA at a concordance rate of 90% or better with 
genotypes from TOPMed server and whole genome sequencing. Exploration of concordance 
rates indicated several SNPs that do not exhibit genotype clustering behavior based on probe 
measurements from Illumina GenomeStudio software, suggesting that these particular SNPs are 
better analyzed using whole genome sequencing. Cluster Buster provides a scalable, efficient 
solution for improving genotype data quality in biobank-scale analysis. Genotypes recovered 
with Cluster Buster will improve imputation efforts on diverse populations and increase GWAS 
power in future studies. 
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