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Introduction
Diversity of  histopathological features in tumor tissue is one of  the hallmarks of  glioblastoma (GBM) (1). 
This aggressive brain tumor is characterized by the presence of  pseudopalisading necrotic regions inter-
mixed with microvascular proliferation areas in a single biopsy of  the tumor (1). GBM remains one of  
the biggest challenges in medical oncology, as virtually all tumors relapse despite intensive treatment with 
surgery, chemotherapy, and radiation. The lack of  treatments based on molecular targets is largely due to 
extreme intratumor heterogeneity of  GBM, reflected at all levels, from histology to single-cell transcriptom-
ic, epigenetic, and genetic heterogeneity (2). Given that the main histological features co-occurring in GBM 
constitute opposing microenvironments, hypoxic perinecrotic areas and highly vascularized oxygen-rich 
niches, it is likely that they contribute to the selection of  distinct traits in tumor cells. Thus, studying the 
role of  the tumor microenvironment (TME) in shaping diverse landscapes composed of  genetically distinct 
subpopulations of  cells is key to understanding the dynamics of  GBM evolution.

Single-cell transcriptomics enabled the characterization of  distinct GBM cell types coexisting in each 
tumor. The most widely adopted classification of  GBM cellular heterogeneity links specific copy number 
changes to cellular states mirroring normal early brain development (2). Amplifications of  EGFR, CDK4, 
and PDGFRA are associated with astrocyte-like (AC-like), neural progenitor cell–like (NPC-like), and 
oligodendrocytic precursor cell–like (OPC-like) states, respectively. Recent advances in spatial profiling 
facilitated the investigation of  the architecture of  GBM tissues and allowed for the identification of  sev-
eral patterns of  spatial organization in these tumors (3, 4). However, the link between genetically defined 

Tumor evolution is driven by genetic variation; however, it is the tumor microenvironment 
(TME) that provides the selective pressure contributing to evolution in cancer. Despite high 
histopathological heterogeneity within glioblastoma (GBM), the most aggressive brain tumor, 
the interactions between the genetically distinct GBM cells and the surrounding TME are not fully 
understood. To address this, we analyzed matched primary and recurrent GBM archival tumor 
tissues with imaging-based techniques aimed to simultaneously evaluate tumor tissues for the 
presence of hypoxic, angiogenic, and inflammatory niches, extracellular matrix (ECM) organization, 
TERT promoter mutational status, and several oncogenic amplifications on the same slide and 
location. We found that the relationships between genetic and TME diversity are different in 
primary and matched recurrent tumors. Interestingly, the texture of the ECM, identified by label-
free reflectance imaging, was predictive of single-cell genetic traits present in the tissue. Moreover, 
reflectance of ECM revealed structured organization of the perivascular niche in recurrent GBM, 
enriched in immunosuppressive macrophages. Single-cell spatial transcriptomics further confirmed 
the presence of the niche-specific macrophage populations and identified interactions between 
endothelial cells, perivascular fibroblasts, and immunosuppressive macrophages. Our results 
underscore the importance of GBM tissue organization in tumor evolution and highlight genetic and 
spatial dependencies.
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subpopulations and their microenvironment and changes in these relationships that may drive recurrence 
remain to be further investigated.

In this study, we explore the spatial relationships between genetic heterogeneity and diversity of  the 
TME at the single-cell level in a cohort of  matched primary and recurrent human GBM tissues. Our mul-
tiplexed confocal imaging–based approach identified links between the texture of  extracellular matrix 
(ECM) components, genetically distinct subpopulations of  GBM cells, and cells of  the TME. Moreover, 
we also discovered a differential ECM organization in perivascular niches in recurrent GBM, enriched in 
immunosuppressive macrophages possessing unique transcriptional features. The specific localization of  
these immunosuppressive cells could provide a novel axis for alleviating immune inhibition contributing to 
poor survival in GBM patients.

Results
Multiplexed imaging uncovers correlations between genotype and TME. In our previous study, we showed that 
the single-cell mosaicism of  genetic amplifications in GBM correlates with immune infiltration (5). To test 
whether we could identify features of  the TME that drive the selection of  specific amplifications, we con-
ducted a multiplexed imaging study on formalin-fixed, paraffin-embedded (FFPE) samples from a cohort 
of  9 matched primary and recurrent GBM cases (Figure 1A and Supplemental Table 1; supplemental mate-
rial available online with this article; https://doi.org/10.1172/jci.insight.179853DS1). The imaging was 
performed in 2 consecutive rounds on the same tissue, using modified CyCIF and STAR-FISH protocols 
(5–7) (see Methods for details). First-round imaging was aimed to acquire information about the TME state 
by assessing the presence of  blood vessels (CD31), active infiltrating immune cells (CD45RO), and hypoxia 
(HIF1α) (Figure 1B). The next layer of  imaging was focused on genetic features, including amplifications 
of  EGFR, CDK4, and PDGFRA, and hotspot mutation in the TERT promoter (TERTp) (Figure 1C). The 
3 amplifications were previously associated with distinct transcriptional states in GBM, namely NPC-like 
state with CDK4 amplification, AC-like state with EGFR amplification, and OPC-like state with PDGFRA 
amplification (2). Nuclear staining channels from the first and second rounds of  imaging were overlaid 
to ensure no loss of  cells occurred (loss of  a single cell occurred in 9 imaged regions and between 2 and 
6 cells in 3 imaged regions; total count of  lost cells was 22 out of  20,205; Supplemental Figure 1). Image 
segmentation and quantification of  both the nuclear and TME-related staining allowed us to classify each 
nucleus as belonging to a tumor cell with or without one or a combination of  the 3 amplifications, a tumor 
cell with TERTp mutation, an immune cell, or an endothelial cell (EC) (Figure 1, B–E, and Supplemental 
Table 2). GBM cells can mimic ECs and pericytes (8, 9). Indeed, we identified 958 cells characterized by 
tumor-specific genetic markers and expressing the EC/pericyte marker CD31. The hypoxia marker, nuclear 
HIF1α, can be expressed both by tumor cells and immune cells in the TME and our analysis identifies both 
populations. Of  note, cells harboring normal CDK4, EGFR, and PDGFRA copy number, no mutation, and 
no immune or endothelial markers, which may represent normal cells such as oligodendrocytes, neurons, 
or astrocytes, as well as tumor cells negative for our tumor markers, were excluded from quantitative analy-
ses and only considered in spatial analyses for accurate measurement of  regional cell density.

First, we searched for changes in the frequencies of  genotypes and phenotypes between matched primary 
and recurrent cases (Figure 2, A and B, and Supplemental Table 3). The frequency of  cells with CDK4 ampli-
fication and cells with TERTp mutation was higher in recurrent samples (Figure 2, C and D; for CDK4 com-
parisons; 2-tailed paired Wilcoxon’s ranked test, P = 0.03; for TERTp mutant comparisons: 2-tailed paired 
Wilcoxon’s ranked test, P = 0.04). Among the phenotypes we identified, hypoxic EC mimicry was more prev-
alent in recurrent samples (Figure 2E; 2-tailed paired Wilcoxon’s ranked test, P = 0.02). To account for overall 
diversity of  each imaged field of  view, we calculated the Shannon index of  diversity (see Methods), capturing 
the evenness of  distribution of  cells among the different genotypes or phenotypes in each tumor (Supplemen-
tal Figure 2). These indices were significantly different between primary and recurrent samples, when ampli-
fication or TERTp mutation status was taken into consideration (2-tailed paired Wilcoxon’s ranked test, P = 
0.0023 and P value = 0.0025, respectively). Thus, the distribution of  cells harboring TERTp mutation within 
each tumor is more heterogeneous than the variation in hypoxia, vasculature, or immune infiltration.

Next, we calculated Pearson’s correlation between the frequencies of  cells with distinct genotypes and 
phenotypes (Figure 2F). The most notable difference between primary and recurrent tumor samples was 
the association between hypoxic tumor cells adopting an EC phenotype (hypoxic EC mimicry) and a gen-
otype consisting of  all 3 amplifications co-occurring in the same cell. This correlation was significant, but 
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weak in primary tumor samples, with r = 0.3 and P = 0.041, and strengthening in recurrence, with r = 0.73 
and P = 0.9 × 10–8, suggesting that co-amplification of  EGFR, CDK4, and PDGFRA may allow more tumor 
cells to adopt this hypoxia-driven perivascular phenotype.

Previously, we showed that the relative frequency of  co-amplification of  EGFR and CDK4 at the sin-
gle-cell level is linked with an immunosuppressive microenvironment in GBM (5). To test whether this 
association holds in recurrent tumors, we calculated the odds ratio (OR) for co-amplification of  EGFR and 
CDK4 for each tumor. The classification of  our tumors into ORhigh and ORlow revealed a significant differ-
ence in overall immune infiltration only in primary tumors, but not in the recurrent samples (Supplemental 
Figure 3). Thus, it is likely that these genetic drivers are more important in the early steps of  establishing the 
immunosuppressive microenvironment.

To better understand the relationships between the genotypic and phenotypic diversity in our cohort, 
we next performed clustering analysis based on the frequencies of  all cell types identified in each imaged 
region of  interest. Clustering of  individual images based on TERTp mutation frequencies revealed 4 classes 
of  tumor areas. Similarly, amplification-based genotype clustering revealed 4 clusters of  tumor areas, while 
phenotype frequencies divided the imaged tumor regions into 6 clusters (Figure 3, A and B). Most notable 
were the phenotype cluster 3, characterized by high frequency of  immune cells, and cluster 4, with highest 
abundance of  hypoxic cells (Supplemental Figure 4). Phenotype clusters 0 and 1 are both composed of  
intermediate frequencies of  immune cells and ECs, but differ in overall cellularity (Supplemental Figure 4A). 
Interestingly, in addition to the highly hypoxic cluster 4, it was the more complex phenotypes of  clusters 0 
and 1 that were significantly associated with particular genotypes (Figure 3C). Tumor regions in phenotype 
cluster 0 are largely classified as genotype cluster 0 and mutation cluster 1, indicating a low frequency of  all 

Figure 1. Immunogenotyping of primary and recurrent archival GBM samples. (A) Study outline. (B) Top panels: Representative images of immunofluo-
rescent staining for markers of hypoxia (HIF1α), endothelial cells (CD31), and immune cells (CD45RO). Bottom panels: Image segmentation. (C) Top panels: 
Representative FISH images for CDK4, EGFR, and PDGFRA and STAR-FISH for TERT promoter (TERTp) mutation, respectively. Bottom panels: Image seg-
mentation. Scale bars: 40 μm (B and C). (D) Left panels: Quantification of cell frequency based on phenotypes (top) and genotypes (bottom) in representa-
tive images in B and C. Right panels: Spatial distribution of cells classified into distinct phenotypes and genotypes corresponding to the genotype panels 
on the left. (E) Top panel: Quantification of cell frequency based on TERTp mutation status in representative images in B and C. Bottom panel: Spatial 
distribution of cells classified into TERTp WT and MUT.
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measured amplifications and depletion of  TERTp-mutant cells despite overall high cellularity of  these tis-
sues (Figure 3, B and C, and Supplemental Figure 4, A–C). Tumor regions in phenotype cluster 1 are mainly 
comprised of  genotype cluster 1 and mutation cluster 2, indicating an intermediate level of  singly amplified 
EGFR and CDK4 cells, with a slightly higher frequency of  TERTp-mutant cells compared with phenotype 
cluster 0 (Figure 3, B and C, and Supplemental Figure 4, A–C). Given the high cellularity of  phenotype 
cluster 0, it is plausible that the majority of  these tumor regions are enriched in cancer cells harboring genetic 

Figure 2. Differential cell frequencies and correlations 
between genotypes and phenotypes in primary and 
recurrent tumors. (A) Frequency of cells with distinct 
genotypes in primary and recurrent GBM for each of 5 
imaged tumor regions per case (n = 9 matched cases). 
(B) Frequency of cells with distinct phenotypes in 
primary and recurrent GBM for each of 5 imaged tumor 
regions per case (n = 9 matched cases). (C) Frequency of 
cells with CDK4 amplification in matched primary and 
recurrent samples. Data points represent case average 
frequency after ROUT outlier removal. Dotted line: 
matched primary and recurrent cases. Violin plot shows 
mean and quartiles. P value of 2-tailed paired Wilcox-
on’s ranked test is shown. (D) Frequency of cells with 
TERT promoter (TERTp) mutation in matched primary 
and recurrent samples. Data points represent case aver-
age frequency after ROUT outlier removal. Dotted line: 
matched primary and recurrent cases. Violin plot shows 
mean and quartiles. P value of 2-tailed paired Wilcox-
on’s ranked test is shown. (E) Frequency of cells with 
TERTp mutation in matched primary and recurrent sam-
ples. Data points represent case average frequency after 
ROUT outlier removal. Dotted line: matched primary and 
recurrent cases. Violin plot shows mean and quartiles. P 
value of 2-tailed paired Wilcoxon’s ranked test is shown. 
(F) Pearson’s correlation between the frequencies of 
cells with distinct genotypes and phenotypes.
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changes not captured by our probes. Cells with EGFR-only amplification were depleted from regions rich in 
hypoxic cells, which was not observed for EGFR/CDK4 co-amplified cells (Figure 3, D and E). This is in line 
with the previously reported angiogenic role of  amplified EGFR signaling (10).

Figure 3. Genotype- and phenotype-based clustering of tumor microenvironments in primary and recurrent GBM. (A) Tumor region clustering based on cel-
lular phenotypes, genotypes, and TERT promoter–mutant (TERTp-mutant) cells. Each point represents a tumor region. Numbers represent cluster identifier. 
(B) Connections between classification based on TERTp mutation, genotype, or phenotype clustering in primary and recurrent GBM. The width of each connec-
tion represents the number of tumor regions classified. (C) Contingency between the phenotypes and genotypes. Fisher’s exact test P values are: Cluster 0, P 
< 0.0001; Cluster 1, P < 0.0001; Cluster 4, P = 0.009. The color scale represents number of tumor regions classified. (D) Frequency of cells with EGFR ampli-
fication (left) and CDK4/EGFR co-amplification (right) across phenotype clusters. (E) Frequency of hypoxic (left) and immune cells (right) across phenotype 
clusters. The box-and-whisker plots in all bar graphs show the mean (midline) and 25th–75th (box) and 5th–95th (whiskers) percentiles. (F) Spatial distribution 
of cells with different genotypes and phenotypes. Columns in the heatmap represent spatial clusters determined based on XY coordinates of the cells.
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We also noted that the connections between genotype- and phenotype-based classifications change 
between primary and recurrent tumors (Figure 3B). In recurrent tumors, genotype cluster 3 environments, 
with high frequencies of  both EGFR-only amplified and EGFR/CDK4 co-amplified cells, lose their con-
nection with hypoxic (phenotype cluster 4) and tumor-cell-rich nonvascularized immunodepleted environ-
ments (phenotype cluster 5). We instead observed a transition of  genotype cluster 3 environments to tumor-
cell-rich neighborhoods, with increased frequency of  EC mimicry and intermediate levels of  hypoxia and 
immune infiltration (phenotype cluster 2). Genotype cluster 2, rich in CDK4-amplified cells, associated with 
hypoxic and immune-rich environments in primary tumors switched to a tumor-enriched environment in 
recurrent tumors. These frequency-based analyses confirm that genomic amplification may constrict the 
evolvability of  GBM cells and may impact the adaptation of  the TME upon recurrence.

Since intercellular interactions depend on cellular proximity to their neighbors, we next performed clus-
tering analysis considering the spatial localization of  the cells analyzed in this study. We built a distance 
matrix and neighborhood feature vectors based on the Euclidian distances from each cell to its nearest neigh-
bors for each tumor region analyzed in our study. Comparison of  proximity-based clustering shows that 
spatial arrangement preferences for immune cells and vascular cells are comparable between primary and 
recurrent tumors (Figure 3F). However, CDK4 single-amplified cells have more genetically diverse neighbors in 
recurrent tumors than in primary tumors. Given that hypoxia is reported as contributing to the processes of EC 
mimicry and vasculogenic transformation, it was interesting to observe hypoxic EC-mimicking cells that were 
less abundant in primary tumors overall, possessing a higher diversity of neighbors in this setting. In recurrent 
tumors, hypoxic EC-mimicking cells increase in number but are primarily in proximity to other tumor cells 
and especially those with TERTp mutation. Hypoxia levels increasing over the course of  disease may lead to 
an increased adaptation of  malignant cells by adopting the EC phenotype. Initial stochasticity of  this process 
could result in a more dispersed spatial arrangement of  the EC-mimicking cells within the TME.

In summary, our results demonstrate that a significant shift in cellular composition from primary to 
recurrent GBM is reflected in single-cell genetic heterogeneity, but is also linked to tumor cells’ ability 
to adopt an EC/pericyte-like phenotype. This cellular adaptation is associated with local hypoxia and 

Figure 4. Reflectance imag-
ing–based patterns of tissue 
organization predictive of 
cellular composition of the 
tumor. (A) Representative 
images of reflectance micros-
copy–based extracellular 
matrix textures: string-like, 
spotty, and mossy. Scale bars: 
40 μm. (B) Representative 
images of mixed reflectance 
textures and their manual 
annotation. SL, string-like 
texture; SP, spotty texture; 
MO, mossy texture. Scale 
bars: 40 μm. (C) Influence of 
cell type on reflectance niche. 
Mean non-zero influences 
estimated from correctly clas-
sified quadrats (quadrat width 
and height = 199), weighted 
by the frequency at which 
each feature had a non-zero 
influence per class. Error bars 
indicate the 95% confidence 
intervals. n reps = 100, mean 
correctly classified quadrats 
per rep = 690.49, median ROC-
AUC = 0.784.
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Figure 5. Spatial profiling of perivascular regions in primary and recurrent GBM. (A) Representative images highlighting selected vascular regions of recur-
rent GBM samples. Reflectance imaging showing hyperintense signal around vessel lumen (left) and immunostaining for CD163 and CD8α of peripheral cells 
(right). Scale bars: 40 μm. (B) Trichrome staining of perivascular collagen in recurrent GBM of adjacent section of the tumor region imaged in panel A. Scale 
bar: 40 μm. (C) Quantification of collagen rim around blood vessels in FOVs containing vasculature for primary and recurrent samples. Color scale represents 
number of cases. (D) Semisupervised clustering generated from normalized gene expression of 52,588 cells (4 GBM tumors). (E) Top differentially expressed 
markers of cellular groups. Columns represent cell types and rows represent genes. Scaled expression data represented as z scores. (F) UMAP plot grouped by 
tissue of origin. Primary (top) or recurrent (bottom) tissues. (G) Cell type composition of primary and recurrent samples. (H) Representative images of linked 
IHC (top), cell type spatial plots (middle), and niche spatial plots (bottom) in primary and recurrent samples. IHC images represent matched tissue sample 
locations to spatial plots at serial section not more than 12 μm away. Scale bars: 120 μm. (I) Distribution of percentage of cell types present within TME niches. 
Yellow cells indicate highly represented outliers computed at α = 0.001 before normalization. (J) Niche composition of primary and recurrent tumor.
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co-occurrence of  all 3 oncogenic amplifications driving the distinct cellular states in GBM (2). It is plau-
sible that the high level of  aneuploidy does not allow these cells to thrive in a heterogeneous tumor, but 
provides a selective advantage under the pressure of  chemotherapy and radiation.

Texture of  ECM revealed by reflectance imaging associated with genetic diversity. The differential composition 
of  the ECM, with elevated levels of  collagens, laminins, and hyaluronan, is another factor contributing to 
local microenvironment heterogeneity within GBM tissue (11). To image ECM structures without the need 
to add additional fluorophores to our staining panel, we took advantage of  the differential refractive index 
of  ECM components, which results in the scattering of  light off  the ECM structures generating a label-free 
contrast image by reflectance confocal microscopy (RCM) (12). Thus, we included RCM imaging to visual-
ize the organization of  the ECM in the first round of  our imaging protocol. Across 90 imaged tumor areas, 
we identified 3 classes of  ECM texture: “string-like,” “spotty,” and “mossy” (Figure 4A), with a majority of  
the fields of  view (FOVs) containing a mixed texture (Figure 4B and Supplemental Table 3).

Species distribution models (SDMs) are an ecological method to measure how environmental factors 
and species are spatially associated with a niche of  interest and have previously been used to study the TME 
(13). We thus developed a neural network–based SDM to better understand the spatial relationship between 
cellular composition and the local ECM texture. The manual annotation of  ECM texture was used to per-
form quadrat counting on each FOV’s cell segmentation data (see Methods for details). The network was 
then trained to predict a quadrat’s ECM texture given the abundance of  each cell type in that quadrat. After 
training, the relationship between the abundance of  each cell type and the ECM was quantified using the 
Integrated Gradients feature attribution method (14). This approach allows for the exclusion of  incorrectly 
classified quadrats, meaning that the estimates of  the relationship between cell types and the ECM are only 
based on correct classifications. After applying the Integrated Gradients method to 100 trained models, each 
cell type’s average attribution was calculated and multiplied by the frequency with which that cell type had 
an informative attribution (i.e., associated with a correct classification and had non-zero attribution; Sup-
plemental Figure 5). The weighted non-zero attributions for each ECM texture show significantly different 
contributions from different cell types (Figure 4C). String-like texture is strongly associated with the presence 
of  CDK4-amplified cells, EGFR-amplified cells, and TERTp-mutant cells, yet not associated with overall fre-
quency of  tumor cells (all cells with amplifications or mutations). In contrast, spotty ECM texture is linked 
to higher overall frequency of  tumor cells and mildly related to presence of  cells with co-amplified PDG-
FRA/EGFR. These results suggest that cells with PDGFRA/EGFR co-amplification may have distinct micro-
environmental niche preferences compared with cells with other genotypes identified in this study. Thus, 
despite its heterogeneous origin, we show that reflectance can operate as a meaningful tool to classify TMEs.

Reflectance and spatial transcriptomics identify a cluster of  perivascular immunosuppressive macrophages. While 
classifying the reflectance images, we noted that the majority of  the blood vessels in recurrent tumors are 
surrounded by a thick layer of  ECM deposition (Figure 5, A–C). Vascular malformations, including vessel 
hyalinization, are frequent side effects of  radiotherapy (15). Trichrome staining confirmed that these struc-
tures are highly enriched in collagen (Figure 5B). Interestingly, immunofluorescent staining revealed that 
the perivascular collagen rims are densely populated by immune cells, and that a vast majority of  these cells 
are CD163+ (Figure 5A). CD163 is a marker of  immunosuppressive polarization of  tumor-associated mac-
rophages, previously linked to GBM survival (16). The tight localization of  these cells and protein around 
blood vessels possibly impede other immune players like CD8+ cells (Figure 5A) and hematogenous com-
ponents from exiting the vasculature and could also have a supporting function for blood vessel structure.

To test these hypotheses and elucidate the functional role of  the perivascular immunosuppressive mac-
rophages in recurrent GBM, we performed single-cell spatial transcriptomic characterization of  2 matched 
primary and recurrent human GBM samples using the CosMx platform (17). A total of  36 regions of  inter-
est containing blood vessels and surrounding tissue were selected (Supplemental Figure 6). CosMx enabled 
localization of  1,030 transcripts at single-cell resolution by performing multiple cycles of  nucleic acid 
hybridization of  fluorescent molecular barcodes on FFPE tissue. Our analysis was performed on 52,588 
cells, with an average of  106 transcripts detected per cell (Supplemental Tables 4 and 5). Semisupervised 
Leiden clustering of  both primary and recurrent samples identified 10 major cellular clusters, annotated 
based on established markers of  cell type metaprograms (2) (Figure 5, D and E). Recurrent samples were 
enriched in mesenchymal-like tumor cells (“MES”), expressing high levels of  NDRG1 and VEGFA that 
further distinguish them as hypoxic (Figure 5, F and G, and Supplemental Figure 7). We observed these 
MES cells arranging in spatial niches surrounding collagen-rimmed vessels (Figure 5H).
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Of note, 2 different types of  immune cells were associated with the blood vessels in recurrent tumor 
tissue: the perivascular macrophages (“PVM”), expressing CD68, CD14, CD74, and CD163, correspond-
ing with CD163+ immunostaining, and the SPP1-, CCL7-, and CEACAM1-expressing cells (“Immune”) 
— most likely tumor-infiltrating lymphocytes, which would correspond to the spatial positioning of  CD8a+ 
immunostaining (Figure 5, A, E, and H). While PVM cells do not appear to be the major source of  collagen 
in the perivascular spaces (Supplemental Figure 7), they are in closest proximity to the fibroblast-like cell 
type that highly expresses COL1A1, COL3A1, and COL6A3. Notably, this fibroblast-like cell group also 
highly expresses DCN, encoding decorin, an ECM proteoglycan that binds collagen (Figure 5E).

Next, we performed niche analysis combining all the profiled tissue areas. Seven niches were iden-
tified, with variable abundance in primary and recurrent samples (Figure 5, H–J). The most interest-
ing was the organization of  the niches surrounding the blood vessels in recurrent tumors. In these 
areas, niche 1, which is a vascular niche composed of  ECs and fibroblasts, was surrounded by niche 7, 
enriched with immune cells, glial cells, and fibroblasts (Figure 5I). PVM cells of  recurrent tumors were 

Figure 6. Perivascular niche macro-
phage cellular interactions in vessels 
with or without collagen rim. (A) UMAP 
plot highlighting cell type clusters 5, 8, 
9, and 10 (higher resolution clustering 
of previous MAC and PVM cell type 
clusters). (B) Feature plots depicting 
macrophage/monocyte-derived cell 
type gene expression markers enriched 
in the areas of cluster 5, 8, 9, and 10. 
(C) Spatial plots of cell types from 
cluster 5, 8, 9, and 10 in primary and 
recurrent GBM. FOVs chosen possess 
vasculature validated through IHC and 
gene expression. Scale bar: 120 μm. (D) 
Top differentially expressed markers 
between clusters. Columns represent 
cell types and rows are genes. Scaled 
expression data represented as z scores. 
(E) Cell-cell interactions in primary and 
recurrent tumor tissue. Green lines show 
spatial proximity enrichment and red 
lines show depletion between pairs of 
cell types. Proximity enrichment derived 
by calculating the observed over the 
expected frequency of cell-cell proximity 
interactions. The expected frequency is 
the average frequency calculated from 
the spatial network simulations.
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primarily found in this zone. These areas were also encapsulated by niches rich in mesenchymal and 
OPC-like cells (Figure 5H). No such structured organization was observed around vasculature of  pri-
mary tumor samples. Rather, niche 2, which is enriched with a different macrophage cell type (“MAC”) 
was observed to be more localized around vasculature and widely distributed in the TME of  primary 
tumor samples (Figure 5, H–J). Surprisingly, niche 7, associated with perivascular regions in recurrence, 
was only identified in primary tumor areas possessing aggregated blood cells and PVM surrounded by glial 
cells, suggesting ruptured vessels with hemorrhage and glial scarring (18) (Figure 5H).

Since our initial unsupervised analysis identified 4 clusters of  macrophages, 2 of  which seemed to have 
the PVM phenotype, we asked whether this cluster could be further resolved to differentiate true perivascu-
lar macrophages from the ones linked to hemorrhagic areas in the tissue. Indeed, we found that these 4 clus-
ters correspond to 4 spatially distinct locations (Figure 6, A–D; reanalysis of  data presented in Figure 5). 
Cluster 5 macrophages are widely distributed in the tissue (Figure 6C). Clusters 8 and 9 are both associated 
with vasculature, but only cluster 9 cells are found next to vessels with collagenous deposition in recurrent 
samples (Figure 6C). Interestingly, cluster 9 cells express significantly higher levels of  collagen-encoding 
COL1A1 and COL3A1, as well as fibronectin (FN1) and thus may contribute to the thickening of  the peri-
vascular ECM (Figure 6D). Cluster 10 macrophages are predominantly residing within the hemorrhagic 
areas (Figure 6C). The differences in perivascular niche composition between primary and recurrent tumor 
were also evident in cell-cell proximity analysis (Figure 6E). In primary tumor, ECs interact directly with 
fibroblasts and macrophage cluster 8, while in recurrent tumor there is enrichment of  interactions between 
the ECs, fibroblasts, and macrophage clusters 8, 9, and 10. Thus, while transcript-based identification of  
distinct phenotypes of  macrophages might be challenging with non–genome-wide spatial transcriptomics, 
the analysis of  the localization of  suspected cell types yields clear spatial differentiation between primary 
and recurrent GBM.

Discussion
The presence of  genetically distinct clones within different regions of  GBM tumors is evident on multiple 
levels, from bulk analysis of  multiple regions of  the same tumor by sequencing (19, 20) or FISH studies 
(21) to inference of  copy number from single-cell transcriptomics (2). The spatial context of  the TME and 
its relationship with the clonal evolution of  the tumor is still an emerging field. Our study provides direct 
insight into the link between genetic drivers of  specific GBM cell states and microenvironmental factors, 
including hypoxia and immune predation, in matched primary and recurrent samples.

Recently, 2 studies have gleaned into the spatial heterogeneity of  GBM and identified hypoxia as one 
of  the major factors influencing transcriptional cell states within the tumor tissue (3, 4). Spatial gradient of  
hypoxia results in a concentric organization of  cellular states with mesenchymal features surrounded by 
hypoxia-responsive cell states and vasculature. This is similar to our observation of  mesenchymal-like cells in 
the vicinity of  blood vessels in recurrent GBM, although in our data set the niche-organizing factor seems to 
be the underlying vascular structure, presumably with abnormal functionality. Our comparison of  matched 
primary and recurrent GBM revealed an increase in hypoxic EC mimicry in recurrent disease, another vas-
culature-related anomaly driving disease progression. GBM cells’ ability to adopt an EC- and pericyte-like 
phenotype in recurrence has been previously shown both in model systems and in human tumor tissues (22, 
23), and has been linked to radiation-induced vascular differentiation (9). While contradictory observations 
fueled the debate of  the tumor cell-of-origin of  ECs, our study classified EC mimicry based on presence of  
DNA amplification (>6 copies) and CD31 expression. Thus, we confirm that EC mimicry is one of  the key 
phenotypic changes in human recurrent GBM, likely fueled by radiation-induced hypoxia.

Another finding specific to blood vessels in recurrent tumors in our study, enabled by reflectance imag-
ing, was the identification of  the structured collagen rim surrounding the blood vessels in recurrence. With-
in these structures, we uncovered interactions between immunosuppressive macrophages and fibroblast-like 
cells secreting decorin. Decorin is a small leucine-rich proteoglycan and a transforming growth factor β 
(TGF-β) antagonist, implicated in a variety of  pathophysiological processes, such as collagen fibrillogenesis 
and wound healing (24). It also functions as a tumor suppressor by directly binding to receptor tyrosine 
kinases, including VEGFR2, EGFR, PDGFR, and MET, and triggering catabolic and antiangiogenic pro-
grams in tumor cells (24). In mouse and rat models of  glioma, decorin was shown to inhibit tumor growth 
by regulating the immune response mediated by T cells and microglia (25, 26). M1-polarized macrophage 
autophagy and an increase in M2-polarized macrophage numbers have also been shown as an effect of  
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decorin-mediated Toll-like receptor (TLR) signaling, albeit in the context of  tubular kidney damage (27). 
Thus, decorin could play a key role during instances of  vascular injury and inflammation resulting from 
disruptions in the blood-brain barrier and aberrant angiogenesis in GBM. Secretion of  decorin in response 
to vascular injury by vessel-associated fibroblast-like cells specific to recurrent tumors could be controlling 
the polarization of  macrophages and orchestrating the resolution of  the inflammation at these sites. Peri-
vascular decorin acting on collagen and other components of  ECM may also decrease the local tissue 
stiffness and facilitate extravasation of  the bone marrow–derived macrophages. Modulation of  microen-
vironmental stiffness alone can also affect metabolism, proliferation, and migration of  GBM cells (28). 
It is possible that collagen formation around the ECs is a mechanism to fortify vasculature and resist full-
fledged collapse. The resulting inflammation and fibroses attract injury associated macrophages with M2 
phenotype for wound healing and antiinflammation. The trafficking of  macrophages expressing collagen 
and fibronectin to these perivascular sites would further thicken the vascular barrier and contribute to the 
metabolic zonation of  nearby tumor cells by modifying the gradient of  exposure to oxygen, nutrients, and 
paracrine signals (29). Whether surrounding tumor cells underwent a hypoxic transformation or preferen-
tially sought out these decorin-influenced perivascular spaces has yet to be determined. The positioning of  
“mesenchymal-like” cancer cells at a certain distance from the cells expressing decorin may allow them to 
escape its antiproliferative effects. The prognosis of  “mesenchymal-like” tumors are the worst among all 
GBM transcriptomic subtypes, and these hypoxia/perivascular associations could be exploited to under-
stand their aggressive behavior. Unique sensitivities of  GBM cells within the perivascular niche will be 
an ongoing area of  investigation. Understanding the molecular and cellular responses within this niche is 
crucial for devising targeted therapeutic strategies tailored to the specific challenges posed by the vascular 
abnormalities associated with GBM and its current treatment.

In addition to characterizing unique perivascular niches based on ECM features in recurrent tumors, 
label-free reflectance microscopy also allowed us to correlate the texture of  the ECM with genetic and 
phenotypic traits. Notably, this texture of  the tumor tissue emerged as a potential marker for spatial 
heterogeneity related to clonal selection. The string-like appearance of  the ECM could be attributed 
to the highly reflective myelination of  white matter neuronal axon tracts. Interactions of  GBM cells 
with neurons stimulate proliferation of  cancer cells and provide tracts for their invasion into the brain 
parenchyma (30). Thus, it is likely that neuron- or neuronal axon–rich environments provide yet another 
niche selecting for GBM cells with particular traits. Our results suggest that TERTp-mutant cells and 
EGFR-amplified cells may favor this environment or perhaps contribute to its inception. The physical 
properties of  ECM organization have also been shown to promote a more mesenchymal phenotype of  
GBM cells (31). To unravel the full extent of  the hidden structure within the ECM, future studies should 
include proteomic analyses to provide a more comprehensive understanding of  the molecular composi-
tion of  the ECM and cell types associated with these unique structures. Given that GBM cells are known 
to differentiate into neuronal and neuroglia-like cellular states, a more in-depth proteomic elucidation 
alongside genomic studies could shed light on potential molecular interactions and cellular functions 
crucial for ECM niche establishment.

Comparing matched primary and recurrent GBM characteristics has been historically hampered by 
relatively low rates of  recurrent brain tumor resection. Multicenter consortia-based collaborations enabled 
genomic and transcriptomic studies at a larger scale, uncovering increased clonal diversity (20), higher fre-
quency of  mesenchymal phenotype (32), and highlighting the importance of  reorganization of  TME and 
ECM in recurrent disease (33). Despite the limited number of  cases presented in this study, the in-depth 
analysis of  single-cell spatial heterogeneity points to specific niches and unique cell interactions that can be 
further explored with larger cohorts.

Our study demonstrates that the spatial localization of  macrophages is an important dimension pro-
viding context for identification of  distinct subpopulations of  these cells. Several single-cell studies demon-
strate competition and specialization of  these cell within the brain tumor tissue (34, 35). Moreover, can-
cer-associated fibroblasts have been recently linked to M2 polarization of  macrophages in GBM (36). Our 
results show that this interaction may be unique to perivascular niches and may contribute to increased 
immunosuppression in recurrent GBM. New technologies allowing for whole-transcriptome single-cell 
spatial interrogation in archival tissues will provide a more detailed view of  receptor-ligand pair interac-
tions to directly tie cellular states and functions within distinct niches of  GBM.
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Methods 
Sex as a biological variable
Human tumor samples in this study include both sexes. The details are shown in Supplemental Table 1. 
Due to the limited cohort size, the study was not powered to analyze the effect of  sex.

Human tissue samples
GBM pathology was confirmed for each FFPE block by a board-certified neuropathologist. The cohort was 
comprised of  9 cases of  matched primary and recurrent IDH-WT GBM. Case 10 was added for spatial 
profiling and also consists of  matched primary and recurrent IDH-WT GBM. Clinical details are shown in 
Supplemental Table 1.

IF staining
After deparaffinization and rehydration, slides were subjected to antigen retrieval in citrate buffer (pH 6; 
Dako) for 12 minutes in a steamer. Blocking solution (10% goat serum in PBST) was applied for 30 min-
utes. Incubation with primary antibody in PBS was held overnight at 4°C in a moist chamber. Secondary 
antibody was applied for 1 hour at room temperature. Samples were mounted with Slowfade Glass Mount-
ing Medium with DAPI (Vector Laboratories). The antibodies used are listed in Supplemental Table 6. 
Imaging was performed on an Olympus FV3000 confocal microscope.

FISH and STAR-FISH
Bacterial artificial chromosome clones RP11-339F13 (EGFR gene), RP11-571M6 (CDK4 gene), and RP11-
231C18 (PDGFRA gene), were obtained from BACPAC Genomics and validated by PCR and fluorescence 
in situ hybridization (FISH) on xenografts with known amplification status (5). FISH probes were generat-
ed by nick translation (Abbott Molecular, 07J00-001) using fluorescent dUTPs (Abbott Molecular). STAR-
FISH primers and probes for the TERTp C228T mutation were purchased from IDT and Life Technologies 
(sequences as previously described; ref. 5).

For multiplexed immunofluorescence-FISH (IF-FISH), the FFPE slides were first stained as described 
in IF staining. Imaging with resonant scanner on Olympus FV3000 confocal microscope was used to create 
a map of  the tissue. Five regions of  interest were selected at random in each specimen, with user guidance 
to reject areas with poor tissue quality. High-resolution images of  regions of  interest were then collected 
with HD detectors and the XY image coordinates were saved, to enable automated stage repositioning and 
imaging of  the same area after FISH staining.

Subsequently, the imaged slides were demounted, quenched with 0.005% pepsin in HCl at 37°C, 
washed, and prepared for STAR-FISH, as previously described (5, 7). STAR-FISH allows for in situ point 
mutation detection at the single-cell level. Briefly, permeabilized FFPE slides were subjected to 2 rounds 
of  in situ PCR with point mutation–specific primers. The first round of  PCR amplifies genomic DNA 
region of  interest and the second allows for addition of  unique overhangs to mutation-specific amplicon. 
Next, a fluorescently labeled probe was hybridized to the unique overhangs on the amplicon. The distinct 
spot-like signal of  STAR-FISH was then detected in the nuclei of  the mutant cells within the tissue by 
confocal microscopy.

Post–STAR-FISH images were acquired in Z-stacks (average of  5 slices per image) on an Olympus 
FV3000 confocal microscope, with XY position matching the IF image. The DAPI channel was used to man-
ually correct the localization. All images were acquired in sequential mode to avoid fluorophore cross-talk.

Spatial transcriptomic profiling
Spatial transcriptomic profiling was performed with a CosMx Human Universal Cell Characterization 
RNA Panel (1000-plex) plus 30-plex GBM panel (Nanostring) (17) on 4 FFPE samples: 2 biopsied regions 
from a primary GBM and 2 biopsied regions from a matched recurrent for a total of  36 FOVs (n = 22 across 
2 primary tumor regions and n = 14 across 2 matched recurrent tumor regions). FOVs for transcriptomic 
analysis were selected based on whole-tissue immunofluorescence imaging of  CD163, CD31, GFAP, and 
DAPI and matched with the morphology visualization panel (B2M/CD298, GFAP) on CosMx Spatial 
Molecular Imager (SMI). A total of  52,588 cells were identified, with an average of  111 and 99 transcripts 
per cell in primary and recurrent samples, respectively (Supplemental Tables 4 and 5).
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Quantification and statistical analysis
Statistical details for each experiment can be found in the respective figure legends. A P value of  less than 
0.05 was considered significant.

Power analysis. Power analysis with GPower 3.1.9.4 software (https://www.psychologie.hhu.de/arbeit-
sgruppen/allgemeine-psychologie-und-arbeitspsychologie/gpower) for an a priori sample size utilizing a 
2-tailed t test was performed to calculate the number of  images that should be acquired per slide to compare 
the presence versus absence of  molecular target. Sample size was calculated based on the following study 
parameters: power of  0.8, significance at 0.05, effect size of  0.2. With each image harboring at least 53 cells, 
5 images taken via confocal microscopy adequately power the analysis.

Quality control and single-cell genotype analysis. Image analysis and quantification were performed using a 
custom analytical pipeline developed in CellProfiler (37) version 4.2.5 designed to detect features of  nuclei 
using automatic thresholding, filtering, and segmentation methods (available at GitHub: https://github.
com/mjaniszewska-lab/IF-STAR-FISH).

To ensure only images with preserved of  tissue integrity throughout both rounds of  staining were 
analyzed, a quality control step based on the DAPI channel was used. Post–STAR-FISH DAPI image 
segmentation was used as a mask overlaid on the DAPI image from the first round of  imaging to quantify 
the nuclei that may have been lost in the second round of  staining (Supplemental Figure 1). Only 22 nuclei 
were lost out of  total of  20,205 nuclei detected in the first round of  imaging.

Intranuclear speckle counting from FISH and STAR-FISH was used to identify nuclei with oncogene 
(EGFR, CDK4, PDGFRA) amplifications and TERTp C228T mutation, respectively. For FISH signal quan-
tification, nuclei were assigned as having a gene amplification in a gene g if  at least 6 copies of  g were 
recorded in that nuclear area, analogous to the HER2 FISH scoring guidelines of  the American Society of  
Clinical Oncology/College of  American Pathologists (38). Coordinates for which 50 or greater copies of  
any gene were recorded were removed from the data set, as these likely represent overlapping cells. Nuclei 
with STAR-FISH signal were classified as TERTp mutant.

Image-based phenotype assignment. Nuclei were classified as belonging to “immune cell” or “EC” based 
on their localization within the immunofluorescence signal segmentation region positive for CD45RO or 
CD31, respectively. Segmentation was performed using custom analytical pipeline developed in CellProfil-
er (37) version 4.2.5 (available at GitHub: https://github.com/mjaniszewska-lab/IF-STAR-FISH). Nuclei 
with gene amplifications and/or TERTp mutation were classified as “tumor cells” based on intranuclear 
speckle counts. Tumor cells positive for CD31 staining were assigned as “endothelial mimicry tumor cell” 
class. Nuclei lacking characteristics for all the above-mentioned classifications were classified as “unclassi-
fied” based on lack of  measured phenotypic features and gene amplifications. Nuclei were also assigned as 
“hypoxic” using positivity for nuclear HIF1α.

Shannon index calculation. Shannon index of  diversity was calculated for every tumor sample using the 
R vegan package (https://cran.r-project.org/web/packages/vegan/index.html).

Integrative image analysis. Using our criteria for image-based phenotype assignment, we performed a 
series of  logic-based operations on count matrices containing CellProfiler information to assign cellular 
properties to nuclear objects. Genotyping classification specifically categorized, single, double, and triple 
amplification including equivocal amplification. Phenotyping classification identified different cell types of  
the microenvironment. Mutation status classification differentiated TERTp mutation–positive from TERTp 
mutation–negative cells. We then clustered these cell segmentation data at the cellular level and at the FOV 
level for both frequency and spatial proximity analysis. To handle cells colocalizing at the exact same point, 
we added a small random noise to their features in the original matrix and then performed tSNE dimension-
ality reduction. Finally, we applied multiview clustering of  data by pooling cell segments from primary and 
recurrent labels for differential analysis.

The code written in Python 3.12 related to this analysis is available on GitHub: https://github.com/
MathOnco/onubogu_spatial_analysis_of_recurrent_glioblastoma.

Reflectance quadrat analysis. Using the principles of  species distribution modeling (SDM), we devel-
oped a deep neural network (DNN) to quantify the association between each cell phenotype and the 
local ECM texture, as captured in the reflectance imaging. The inputs to the network were quadrat 
counts based on the spatial cell segmentation data (described above), and the output the labeled ECM 
texture (i.e., one of  “string-like,” “spotty,” or “mossy”), which could be compared to the ground truth 
hand annotations.
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We performed the model fitting using 4 different quadrat sizes (width and height of  114, 199, 266, or 
399 pixels), and found that a quadrat width and height of  199 pixels provided the most accurate classifi-
cations. There was a total of  1,270 quadrats, spread across the 90 FOVs. Cell counts were independently 
scaled between 0 and 1 before creating the train, validation, and test splits, which had proportions of  0.8, 
0.1, and 0.1, respectively. The training data set was then balanced by using SMOTE (39) to synthesize 
minority classes, such that all classes in the training data set had similar frequencies. This process increased 
the training set from 1016 quadrats to 1793 quadrats. Finally, the training data was split into 11 batches, 
with approximately 163 quadrats per batch.

The DNN had a “funnel” structure, such that size of  the final layers gradually decreased from a max-
imum width to the number of  classes being predicted. More specifically, the complete structure of  the 
network was 12 → 36 (×10) → 24 → 12 → 3, with batch normalization being performed on each layer. To 
minimize overfitting, dropout layers were also included in the main body of  the network (layers 1–11, all of  
which have 36 hidden units), with the dropout probability decreasing linearly across layers, going from 0.15 
to 0. Leaky RELU was used as the activation function for each layer.

Using PyTorch (2.0.1) (40), the above network was trained to minimize the class-balanced focal loss 
function (41), with ADAMW being used for optimization. To avoid overfitting, we trained the model until 
the training and validation loss started to diverge, with the former decreasing and the latter increasing. The 
process of  model fitting was then repeated 100 times. This approach resulted in an average of  313.8 epochs 
per model, with median AUC-ROC scores of  0.66 and 0.784 for the test and overall data sets (excluding 
SMOTE-synthesized training data), respectively.

The relationship between each input feature (i.e., the cell phenotype) and the network output (i.e., 
ECM texture classification) was quantified by applying the Integrated Gradients method (14) to each 
trained network, as implemented in the Python package, Captum (0.6.0) (42). As this method calculates the 
feature attribution for each sample (i.e., quadrat), we were able to subset our results to include only those 
quadrats that were correctly classified, meaning we were able to remove inaccurate attributions. This pro-
cess was repeated on all 100 model fits. Each cell type’s attribution score was then averaged and weighted 
by the number of  times it had a correct non-zero attribution, thus allowing us to account for cases where a 
feature was most often non-informative (i.e., associated with an incorrect classification and/or had 0 influ-
ence on the classification), but very rarely had a high absolute attribution score. By excluding inaccurate 
attributions, having 100 model replicates to capture more quadrats (i.e., those that may have been correctly 
classified by one model but not another), and weighting by the frequency of  informative attributions, we 
can have more confidence that the attribution scores are accurate, despite each individual model not having 
exceptional AUC-ROC scores.

The code related to this analysis is available on GitHub: https://github.com/MathOnco/onubogu_
spatial_analysis_of_recurrent_glioblastoma.

Spatial transcriptomic data analysis. We used Giotto Suite (4.0.1; https://github.com/drieslab/Giotto/
tree/suite) (43) and Seurat (5.0.1; https://github.com/satijalab/seurat) (44) to analyze subcellular tran-
script information and polygon data generated from the CosMx SMI. A standard Giotto spatial data pro-
cessing and analysis pipeline was used to visualize spatial clusters. Specifically, raw data from CosMx SMI 
was loaded into a giotto object. Using polygon centroid coordinates as cell spatial locations, we computed 
the overlapping feature points to establish an expression matrix onto which we performed data filtering and 
normalization. A minimum of  5 detected features per cell with an expression threshold of  1 feature were 
set as filtering parameters. We applied library size normalization, log normalization, and SC Transform 
normalization (in Seurat) to produce normalized, scaled, and SC transformed normalization values respec-
tively. These features were then used in a typical scRNA-seq workflow, including dimension reduction 
(PCA and UMAP), creation of  a shared nearest-neighbor network, and Leiden clustering to create spatial 
expression-informed clusters for all FOVs. Expression-informed clustering was used to annotate clusters 
based on gene expression to establish a list of  cell types. To plot differences between the groups we comput-
ed candidate marker genes, testing for differential expression among cell types.

Spatially organized gene expression can be analyzed by examining the binarized expression of  cells 
and their spatial neighbors. To investigate the spatial expression patterns in more detail, we created a spatial 
network based on physical distance of  cell centroids and performed binary spatial extraction of  genes using 
the binSpect() function. We used this network to then compute cell-cell interaction enrichment to visualize 
patterns of  cellular positioning. Spatial proximity enrichment or depletion between pairs of  cell types was 
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performed using the cellProximityEnrichment() function, which calculated the observed over the expected 
frequency of  cell-cell proximity interactions. The expected frequency is the average frequency calculated 
from a number of  spatial network simulations. Each individual simulation was obtained by reshuffling the 
cell type labels of  each node (cell) in the spatial network.

Using the positional information of  each cell, we also computed spatial niches in Seurat. Niche analysis 
of  spatial data distinguishes areas of  tissue niches, which are defined by the composition of  spatially adja-
cent cell types (45). The local neighborhood for each cell was determined by the number of  spatially prox-
imal neighbors (k = 30), counting the number of  occurrences of  each cell type present in a neighborhood. 
K-means clustering was then used to group cells that have similar neighborhoods into 7 spatial niches.

Study approval
All experiments with use of  human tumor tissue were approved by Scripps Research IRB protocol IRB-18-
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blastoma). Numerical values for graphs are provided in the Supporting Data Values XLS file.
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