Skip to main content
. 2024 Aug;45(8):1081–1089. doi: 10.3174/ajnr.A8293

Table 2:

Results comparing the performance metrics of nnU-Net versus DeepMedic architectures for WT and tumor component segmentations compared with the manual ground truth in terms of Dice score metric

Region Internal Test Subjects External Test Subjects
Dice Score: Mean (median) Dice Score: Mean (median)
nnU-Net DeepMedic nnU-Net DeepMedic
WT 0.9 (SD,0.07) (0.94) 0.82 (SD, 0.16) (0.88) 0.88 (SD, 0.07) (0.9) 0.78 (SD, 0.18) (0.86)
ET 0.77 (SD, 0.29) (0.86) 0.66 (SD, 0.32) (0.75) 0.75 (SD, 0.26) (0.85) 0.65 (SD, 0.32) (0.8)
NET 0.66 (SD, 0.32) (0.80) 0.48 (SD, 0.27) (0.49) 0.53 (SD, 0.32) (0.64) 0.4 (SD, 0.27) (0.4)
CC 0.71 (SD, 0.33) (0.83) 0.48 (SD, 0.36) (0.55) 0.55 (SD, 0.33) (0.67) 0.37 (SD, 0.33) (0.35)
ED 0.71 (SD, 0.40) (1) 0.19 (SD, 0.33) (0) 0.4 (SD, 0.43) (0.19) 0.21 (SD, 0.32) (0)
NET+CC+ED 0.82 (SD, 0.14) (0.86) 0.67 (SD, 0.2) (0.73) 0.74 (SD, 0.2) (0.8) 0.59 (SD, 0.23) (0.65)
TC 0.91 (SD, 0.07) (0.94) 0.78 (SD, 0.18) (0.83) 0.87 (SD, 0.07) (0.88) 0.76 (SD, 0.18) (0.79)