Table 2:
Results comparing the performance metrics of nnU-Net versus DeepMedic architectures for WT and tumor component segmentations compared with the manual ground truth in terms of Dice score metric
| Region | Internal Test Subjects | External Test Subjects | ||
|---|---|---|---|---|
| Dice Score: Mean (median) | Dice Score: Mean (median) | |||
| nnU-Net | DeepMedic | nnU-Net | DeepMedic | |
| WT | 0.9 (SD,0.07) (0.94) | 0.82 (SD, 0.16) (0.88) | 0.88 (SD, 0.07) (0.9) | 0.78 (SD, 0.18) (0.86) |
| ET | 0.77 (SD, 0.29) (0.86) | 0.66 (SD, 0.32) (0.75) | 0.75 (SD, 0.26) (0.85) | 0.65 (SD, 0.32) (0.8) |
| NET | 0.66 (SD, 0.32) (0.80) | 0.48 (SD, 0.27) (0.49) | 0.53 (SD, 0.32) (0.64) | 0.4 (SD, 0.27) (0.4) |
| CC | 0.71 (SD, 0.33) (0.83) | 0.48 (SD, 0.36) (0.55) | 0.55 (SD, 0.33) (0.67) | 0.37 (SD, 0.33) (0.35) |
| ED | 0.71 (SD, 0.40) (1) | 0.19 (SD, 0.33) (0) | 0.4 (SD, 0.43) (0.19) | 0.21 (SD, 0.32) (0) |
| NET+CC+ED | 0.82 (SD, 0.14) (0.86) | 0.67 (SD, 0.2) (0.73) | 0.74 (SD, 0.2) (0.8) | 0.59 (SD, 0.23) (0.65) |
| TC | 0.91 (SD, 0.07) (0.94) | 0.78 (SD, 0.18) (0.83) | 0.87 (SD, 0.07) (0.88) | 0.76 (SD, 0.18) (0.79) |