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Abstract

■ The sensory recruitment hypothesis conceptualizes informa-
tion in working memory as being activated representations of
information in long-term memory. Accordingly, changes made
to an item in working memory would be expected to influence
its subsequent retention. Here, we tested the hypothesis that
suppressing information from working memory, which can
reduce short-term access to that information, may also alter
its long-term neural representation. We obtained fMRI data
(n = 25; 13 female / 12 male participants) while participants
completed a working memory removal task with scene images
as stimuli, followed by a final surprise recognition test of the
examined items. We applied a multivariate pattern analysis to
the data to quantify the engagement of suppression on each

trial, to track the contents of working memory during suppres-
sion, and to assess representational changes afterward. Our
analysis confirms previous reports that suppression of informa-
tion in working memory involves focused attention to target
and remove unwanted information. Furthermore, our findings
provide new evidence that even a single dose of suppression of
an item in working memory can (if engaged with sufficient
strength) produce lasting changes in its neural representation,
particularly weakening the unique, item-specific features, which
leads to forgetting. Our study sheds light on the underlying
mechanisms that contribute to the suppression of unwanted
thoughts and highlights the dynamic interplay between working
memory and long-term memory. ■

INTRODUCTION

Working memory is crucial for managing goal-relevant
information but has a finite capacity and benefits from
the removal of unwanted information (Lewis-Peacock,
Kessler, & Oberauer, 2018; Luck & Vogel, 2013; Cowan,
2001). Information can be removed from working mem-
ory in different ways, for example, by replacing it with
another thought, suppressing that particular thought, or
clearing the mind of all thoughts (Kim, Smolker, Smith,
Banich, & Lewis-Peacock, 2020; Banich, Mackiewicz
Seghete, Depue, & Burgess, 2015). Eachmethod has a dis-
tinct neural signature and behavioral impact. Suppression
is most successful at reducing access to information in the
short term, but its long-term effects remain unknown. This
study evaluates the consequences for long-term memory
when items are actively removed from working memory
via suppression or replacement. It is vital to highlight
the distinction between the transient nature of suppres-
sion effects in working memory and the potentially endur-
ing impacts on long-term memory. Although suppression
may not always manifest immediate behavioral effects,
such as forgetting, its neural correlates in workingmemory
and long-term memory can be highly informative. Studies
suggest that fMRI data can capture subtle neural changes
that may precede and possibly predict behavioral changes,

including those extending into long-term memory (Paller
& Wagner, 2002). This fact is particularly relevant in the
context of suppression-induced forgetting of information
in long-termmemory, a phenomenon where existing liter-
ature shows that multiple repetitions of suppression cues
are often required to observe a behavioral forgetting effect
(Benoit & Anderson, 2012; Depue, Curran, & Banich,
2007; Anderson & Green, 2001). However, our inquiry
diverges from these prior studies as it probes the active
mechanisms of suppression within working memory (a
process we term “maintenance suppression”) and its
potential ripple effects on long-term memory, which
might operate under different dynamics than retrieval sup-
pression from long-term memory. Therefore, our study
leverages fMRI data to explore how maintenance suppres-
sion might alter neural representations both in working
memory and long-term memory, even if such changes
are not observable at the behavioral level. We employed
multi-voxel pattern analysis (MVPA) of fMRI data (Haxby,
Connolly, & Guntupalli, 2014; Lewis-Peacock & Norman,
2014b) to assess changes in the neural representation of
items that are either maintained, replaced, or suppressed
from working memory. We hypothesized that if an item’s
neural representation is altered during removal from
workingmemory, its subsequent accessibility in long-term
memory may also be reduced.

Our hypothesis is grounded in the sensory recruitment
theory of working memory (Serences, 2016; D’Esposito &1University of Texas at Austin, 2University of Colorado
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Postle, 2015; Sreenivasan, Curtis, & D’Esposito, 2014;
Serences, Ester, Vogel, & Awh, 2009), positing that
working memory employs the same cortical regions used
for sensory perception and long-term memory storage.
Supporting this idea, neuroimaging research has shown
the involvement of sensory regions, such as the visual cor-
tex, in working memory tasks with visual stimuli (Albers,
Kok, Toni, Dijkerman, & de Lange, 2013; Harrison & Tong,
2009; Serences et al., 2009). Furthermore, both working
memory and long-term memory engage a neural activity
in the dorsolateral prefrontal cortex (dLPFC) and medial
temporal lobe, linking working memory maintenance
and long-term memory formation (Melrose et al., 2020;
Axmacher, Schmitz, Weinreich, Elger, & Fell, 2008;
Blumenfeld & Ranganath, 2006; Ranganath, Cohen, &
Brozinsky, 2005). In line with this overlap between neural
mechanisms for working and long-termmemory, research
using the directed forgetting paradigm, in which an indi-
vidual mentally manipulates in working memory prior
associations learned between items in long-termmemory,
suggests that intentional forgetting can lead to reduced
recollection in long-term memory (Levy & Anderson,
2008; Anderson & Green, 2001). These studies indicate
that cognitive operations like suppression may not just
be a short-term strategy for managing information in
working memory but could have lasting impacts on how
information is stored and retrieved in long-term memory.

One vantage point from which to consider how manip-
ulating information in working memory might affect its
long-term memory representation is to note that memory
representations can be characterized by item-level and
category-level features. Item-level features are specific
details like sensory attributes, whereas category-level fea-
tures are broader semantic aspects providing context and
meaning, with dissociable neural representations (Martin,
2007). Prior evidence suggests these feature levels may be
independently modified by suppression. Results from our
prior study suggest that suppression in working memory
may target item-level representations (Kim, Smolker, et al.,
2020). Specifically, after an item is maintained in working
memory, the neural representation of a subsequently
encoded item from that same category suffers from proac-
tive interference. The representation of the initial item
lingers in memory and interferes with the encoding of a
similar item. However, if that initial item is instead sup-
pressed, proactive interference is eliminated and subse-
quent encoding of same-category items is even facilitated
relative to different-category items. The inference from
this result is that suppression of a working memory item
may target its item-specific features for weakening while
preserving category-level features of the item in memory,
which facilitates the encoding of a new category exemplar.
Consistent with this idea of targeting item-specific features
for weakening is an item-method, directed-forgetting
study that found increased activation of item-unique fea-
tures for items following a forget cue versus a remember
cue (Wang, Placek, & Lewis-Peacock, 2019). As is common

in directed-forgetting research, no explicit strategy was
given to participants for how to forget. Nonetheless, the
to-be-forgotten items were more poorly remembered,
suggesting that emphasizing item-specific features during
the attempt to forget may have facilitated the targeted
weakening of these features inmemory, leading to failures
in recognition of the items on a subsequent memory test.
Related evidence from studies examining the suppres-

sion of retrieval from long-term memory suggests a
dissociation in which these two aspects of a memory
representation are differentially affected depending on
the stage of processing at which suppression occurs. Initial
suppression of information from long-term memory
weakens memory traces by inhibiting their sensory fea-
tures (Depue et al., 2007), which is a key component of
item-level representations (Anderson & Hanslmayr,
2014). This effect is further evidenced by research show-
ing that retrieval suppression reduces perceptual priming
for suppressed items (Taubenfeld, Anderson, & Levy,
2019; Gagnepain, Henson, & Anderson, 2014). This reduc-
tion in perceptual priming indicates a loss of item-specific
information, suggesting that suppression of retrieval of
information from long-term memory can selectively
impair item-level features. It is unclear whether the main-
tenance suppression of information in working memory
would similarly produce long-lasting impairment of the
item-level features of that information. The present study
sought to test this hypothesis.
We designed a neuroimaging study to evaluate whether

suppressing an item in working memory—as compared
with keeping that item inmind or replacing it with another
item (see Figure 1)—would alter its item-specific repre-
sentation in long-term memory and produce forgetting
on a subsequent recognition memory test. Participants
(n = 25; 13 female / 12 male participants) were initially
exposed once to a set of scene pictures in the fMRI scan-
ner. Then, they performed a working memory task in
which these pictures reappeared once and participants
were instructed to either maintain, suppress, or replace
each item. At the end of the experiment, they performed
a recognition memory test for those pictures while still in
the scanner. We used MVPA to differentiate and track pat-
terns of brain activity corresponding to (1) the contents of
working memory (category-level decoding), (2) the cogni-
tive control operation being engaged in working memory
(operation-level decoding), and (3) the long-term mem-
ory representation of items both before and after the
working memory task (item-level decoding). We tracked
the strength of memory representation on each trial and
the classifier evidence for the engagement of the cognitive
operation. We then analyzed how the variable engagement
of the operation on a given trial predicted the strength of
the memory representation in working memory and the
subsequent memory outcomes in long-term memory.
Finally, we evaluated potential changes in long-term mem-
ory representations in scene-related occipito-temporal
cortex of the items from the working memory task by
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comparing their before (from the initial exposure) and
after (from thememory test) item-specific neural patterns,
separately for items that were later remembered and for
items that were later forgotten.

METHODS

Participant Information

Twenty-five healthy participants (13 female, 12 male par-
ticipants; age M = 20.413 years, SD = 2.44 years; all
right-handed) were recruited from the Austin, Texas, area
for this fMRI study. Three participants were excluded
because of poor fMRI classification performance or con-
founds such as excessive motion. All participants had nor-
mal or corrected-to-normal vision, provided informed
consent, and received $60 in compensation.

Stimuli

Our fMRI experiment employed colored images (400 ×
400 pixels) from two main categories, each with two sub-
categories: scenes (manmade and natural) and faces (male
and female). Scenes served as the primary stimuli and are
the focus of the current study, whereas faces were utilized
in a subset of trials, the replace trials, specifically serving as
the items to be brought into mind to replace the scene
images.
The selection of scenes as the primary stimulus type was

methodologically motivated. Scenes offer high decodabil-
ity and separability, particularly important for our primary
measures involving category-level evidence in working
memory and representational similarity analyses (RSAs)
of item-specific features, making them a reliable choice
for a memory experiment (Epstein & Kanwisher, 1998).
The scenes used were recognizable locales, such as tropi-
cal beaches, or well-known landmarks like the Golden
Gate Bridge.
Faces were chosen as replacement stimuli on replace

trials because of their high decodability and their ease of
recognition and training within a constrained session. The
faces used were recognizable celebrities, enabling us to
select faces that participants could readily recall, thus

minimizing variability across trials (Bruce & Young,
1986). The ability of participants to recognize and differen-
tiate faces ensures that the experimental design remains
straightforward and minimizes potential confounds (like
being unable to visualize the replacement face).

All images were sourced from various platforms, includ-
ing the Bank of Standardized Stimuli and Google Images.
Two hundred forty images were used in the study: 90
scenes per scene subcategory (manmade, natural) and
30 faces per subcategory (male, female). Half of the face
images were used during the initial exposure phase
(explained below) and the other half as targets during
the replace trials.

In the initial exposure phase, participants were intro-
duced to 60 stimuli, comprising 30 scenes and 30 faces.
The faces presented during this phase were specifically
chosen to be used later in the replace trials of the working
memory manipulation task, where participants were
prompted to replace the encoded scene with one of these
familiar faces. The premanipulation recognition test
assessed memory for the “old” items from the initial expo-
sure, presenting 30 old scenes alongside 90 “new” scenes
that were designated for use in the subsequent working
memory manipulation task. The faces were balanced, with
30 old faces (from initial exposure) matched against 30
new faces. During theworkingmemorymanipulation task,
the 90 new scenes from the premanipulation recognition
were divided equally among the three operations: main-
tain, replace, and suppress, with 30 scenes allocated to
each operation. In the replace trials, participants were
instructed to bring to mind a specific face from the initial
exposure phase, effectively replacing the current scene in
their working memory with this familiar face. Finally, the
postmanipulation recognition test aimed to assess long-
term memory for the scenes across all phases, involving
180 scenes in total. This included 30 old scenes from the
initial exposure, 90 old scenes (30 from each operation),
and an additional 60 new scenes, providing a comprehen-
sive evaluation of memory retention and the impact of
each working memory operation.

To control for stimulus-specific effects like familiarity,
the study images were fully randomized across trials,

Figure 1. Visualization of
removal operations. Depicts the
hypothesized attentional states
in working memory during the
removal operations: replace and
suppress used in the study. When
the item “A” is goal relevant, it is
active and bound to its context
in working memory. During
removal, the removal target “A” is
diminished either by redirecting
focal attention to a new item “B”
or by suppressing the target in
the focal attention. (Adopted
and adjusted from Lewis-Peacock
et al., 2018).
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conditions, and participants. A consistent subset of 15
male faces and 15 female faces was used as replacement
items across participants. All stimuli were presented on a
gray background, with task-related words and fixation
crosses displayed in white font.

Experimental Design and fMRI Procedure

The experiment consisted of five phases in the MRI scan-
ner, completed in order: a 12-min resting-state scan (not
analyzed here), an initial exposure phase (completed

during an magnetization prepared rapid gradient echo
anatomical scan), a premanipulation recognition test,
themainmanipulation phase, and a postmanipulation rec-
ognition test (Figure 2). In the initial exposure phase, par-
ticipants saw the 30 faces that will be used for replacement
and 30 scenes that will not be manipulated in the main
study phase. The recognition memory tests were identical
except that they were conducted on items from the initial
exposure phase (for the premanipulation test) or on items
from the main manipulation phase (for the postmanipula-
tion test). This procedure allowed us to evaluate any

Figure 2. fMRI study design and classifier procedures. (A) Illustrates the experimental procedure and design. During the initial exposure phase
(during which the anatomical scan was collected), participants saw a stream of images (scenes/faces) presented one by one with two name options
under each and were asked to select the correct name. In the first recognition test (premanipulation) phase, participants performed a surprise
recognition memory test for previously seen items, along with novel items. During the manipulation phase, the task involved viewing a scene, then
a screen indicating the operation (maintain, replace, suppress) to apply to the scene, followed by a fixation cross. Finally, the second recognition
test (poststudy) contained another surprise recognition memory test for all items previously seen, including those that were initially exposed
in the premanipulation phase and those that were introduced during the manipulation phase, along with novel items. (B) Brain data from the
premanipulation task (left) were used for MVPA for category-level decoding, trained on faces, scenes, and rest, within the VVS ROI. This classifier was
then applied to decode information in the focus of attention in working memory during the manipulation phase. Whole brain data from the
manipulation phase was used for classification of the cognitive operation being performed on each trial (adopted and adjusted from Kim, Smolker,
et al., 2020).
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neural and behavioral changes to the items. We also eval-
uated for possible neural changes to the items during the
main manipulation phase. Neural data from the visual
cortex in the premanipulation test phase were used as
a baseline for category-level classification using MVPAs
and item-specific RSA. Lastly, the cognitive operations
(maintain vs. replace vs. suppress) were also decoded
during the main manipulation phase as in Kim, Smolker,
and colleagues (2020).
Participants were asked to perform different tasks dur-

ing each of the phases of the study. During the initial expo-
sure phase, a stream of images was presented one by one
with two potential labels (e.g., “Bernie Sanders” and
“Jay-Z”) appearing under each, and participants were
asked to select the correct label. During the recognition
test phases, participants determined whether a presented
item had ever been seen previously (“old”) or not (“new”)
and then specified their confidence level (“sure” or
“unsure”). During the main manipulation phase, the par-
ticipant’s task on each trial was to view a scene item for
2 sec and then, after it disappeared, they were instructed
to manipulate it in working memory for 4 sec, with no
response required at the end of the trial. Themanipulation
was either to: maintain the scene in mind, replace it with a
particular face (denoted by its label from the initial expo-
sure phase), or suppress it. The manipulation instruction
consisted of two words, one in the top and one in the
bottom halves of the screen, presented over a gray back-
ground. For themaintain and suppress conditions, the top
and bottom words both indicated the name of the instruc-
tion (e.g., “maintain / maintain” or “suppress / suppress”).
In the replace condition, the top word was “switch” and
the bottom word indicated the face’s label (e.g., “Bernie
Sanders”). Before the experiment began, participants
were briefed on the procedures for each type of trial.
For “maintain” trials, they were instructed to keep the
given item in their mind throughout the trial. In “replace”
trials, participants were told to bring the specific cued face
to mind, replacing the scene they had just encoded.
During “suppress” trials, participants were guided to “sup-
press as you would suppress a cough,” with explicit
instructions not to empty their minds entirely or to substi-
tute the item inmind with a thought from long-termmem-
ory. Instead, they were to focus on actively pushing the
item out of their working memory. Each trial was then
followed by a jittered intertrial fixation lasting either 5, 6,
or 7 sec, consisting of a white fixation cross centered over
a gray background.

Long-term Memory Tests

The two recognition memory tests were designed to
match each other, with the only differences being the
items that were tested and the total trial count. Partici-
pants saw an image on the screen for 2 sec and were told
to respond if the item was “old” (meaning they had seen it
at some point earlier in the experiment) or “new”

(meaning this was a new image to them), along with the
confidence of their response (“sure” or “unsure”). Only
“sure old” responses were considered hits for an old item
and “sure new” for novel items, consistent with prior work
(Kim, Schlichting, Preston, & Lewis-Peacock, 2020; Kim,
Lewis-Peacock, Norman, & Turk-Browne, 2014; Lewis-
Peacock & Norman, 2014a). In the premanipulation
memory test, participants began with a test of 60 face
images, split across two runs (4 min 6 sec each). Half of
the faces were new, and the other half were old faces that
subsequently served as replacement items in the main
study phase. Then there were four runs of memory tests
for scene images (4 min 6 sec each), with 30 old scenes
that had been shown in the initial exposure phase and
90 new scenes that subsequently appeared in the main
manipulation phase. This yielded a 1:3 ratio of old:new
scenes items. The postmanipulation memory test con-
tained a test of 180 scene images, of which 90 were “old
and manipulated” (having been seen twice before, first
as a “new” image in the prestudy memory test and then
again when it was manipulated in the main study phase),
30 were “old but unmanipulated” (having been seen twice
before, first in the initial exposure phase and then again in
the prestudy memory test, but not in the main study
phase), along with 60 novel scenes. There were six runs
of memory tests for this post-study phase (4 min 6 sec
each). This yielded a 2:1 ratio of old:new scene items.

Data Acquisition

MRI data were acquired on a Siemens Skyra 3.0 Tesla scan-
ner at the Biomedical Imaging Center on the campus of
The University of Texas at Austin. fMRI scans were
acquired using a sequence with the following parameters:
TR (repetition time) = 1000 msec, echo time = 30 msec,
field of view = 230 mm—100% phase, multiband accel-
eration factor = 4, with a 2.4 × 2.4 × 2.4 mm3 voxel size,
acquired across 56 axial slices and aligned along the ante-
rior commissure-posterior commissure line. There were
17 runs: two resting-state runs and 15 task runs. Six pre-
manipulation and postmanipulation recognition memory
test runs were acquired, each consisting of 246 EPIs, for
1476 images. The main manipulation phase consisted of
three runs with 366 EPIs each, for 1098 images. Total
data acquisition time was 91 min 30 sec for each partic-
ipant, along with an additional 15 min of setup and
breakdown time.

fMRI Preprocessing

fMRI data set was formatted in Brain ImagingData Structure
(BIDS) and preprocessed via fMRIPrep 21.0.1 (Esteban
et al., 2019), which is based on Nipype 1.6.1 (Esteban et al.,
2022; Gorgolewski et al., 2011), FMRIB Software Library
(FSL; Version 6.0.5.1:57b01774), and FreeSurfer (Version
6.0.1). For the distortion correction of the magnetic field,
each participant’s B0 inhomogeneity field map was estimated
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from the phase-drift map(s) measure with two consecutive
gradient-recalled echo acquisitions. The corresponding
phase-map(s) were phase-unwrapped with a prelude
(FSL).

A high-resolution, T1-weighted (T1w) image was cor-
rected for intensity non-uniformity with N4BiasField-
Correction (Tustison et al., 2010) and skull-stripped
(target template: OASIS30ANTs) with Nipype in the antsBrain-
Extraction.sh workflow, both of which were distributed by
ANTs (Version 2.3.3; Avants, Epstein, Grossman, & Gee,
2008). The brain-extracted T1w was used as a T1w refer-
ence for data alignment and also to define brain tissue
segmentation of cerebrospinal fluid (CSF), white matter,
and graymatter (GM) with FAST in FSL. Brain surfaces were
reconstructed from the T1w with recon-all in FreeSurfer,
and the brain mask estimated in the previous step was
refined with a custom variation of the method to reconcile
ANTs-derived and FreeSurfer-derived segmentations of the
cortical GMofMindboggle (Klein et al., 2017). To normalize
the data toMontreal Neurological Institute (MNI) standard
space, volume-based spatial transformation parameters
were estimated through nonlinear registration with
antsRegistration in ANTs (International Consortium for
Brain Mapping 152 Nonlinear Asymmetrical template
Version 2009c [RRID: SCR_008796]; Fonov, Evans,
McKinstry, Almli, & Collins, 2009; TemplateFlow ID:
MNI152NLin2009cAsym), using brain-extracted versions
of both T1w reference and the T1w template.

Functional EPI images from the 17 runs per participant
(across all task phases) were estimated and resampled
with the preprocessing steps, including motion and
slice-time corrections, distortion correction when avail-
able, co-registrations to anatomical T1w space, and
normalization to MNI standard space. Head motion was
estimated with MCFLIRT (rigid transformation with six
motion parameters) based on the EPI reference volume
and its skull-stripped version, generated by aligning and
averaging one single-band reference. The slice-time cor-
rection was estimated centered by 0.455 sec (0.5 of slice
acquisition range = 0–0.91 sec) for each volume using
3dTshift from AFNI (RRID: SCR_005927). The field coeffi-
cients from the estimated fieldmapwere then alignedwith
rigid registration to the EPI reference run. The EPI refer-
ence was then co-registered with the T1w reference by
boundary-based registration (six degrees of freedom)
using bbregister in FreeSurfer (Greve & Fischl, 2009). All
EPI data were resampled into the final MNI volumetric
space with a single interpolation step by composing all
the pertinent transformations obtained during the esti-
mations. Gridded resamplings were performed using
antsApplyTransforms in ANTs, configured with Lanczos
interpolation to minimize the smoothing effects of other
kernels (Lanczos, 1964).

Several confounding factors were calculated based on
the preprocessed BOLD (EPI) images: framewise displace-
ment (FD), dynamic voxel-wise amplitude response signal
(DVARS), and three region-wise global signals. FD and

DVARS were calculated for each functional run (Power,
2014) using Nipype. FD was computed using two formula-
tions, the absolute sum of relative motions (Power, 2014)
and the relative root mean square displacement between
affines (Jenkinson, Bannister, Brady, & Smith, 2002). The
three global signals were extracted within the CSF, white
matter, and whole-brain masks. In addition, physiological
regressors were extracted for component-based noise cor-
rection (CompCor; Behzadi, Restom, Liau, & Liu, 2007).
Principal components were estimated from the prepro-
cessed BOLD time series after high-pass filtering (a discrete
cosine filter with a 128-sec cutoff ) for the two CompCor
variants: temporal (tCompCor) and anatomical (aCompCor).
The tCompCor components are then calculated from the
top 2% variable voxels within the brain mask. For the
aCompCor, three probabilistic masks (CSF, white matter,
and combined CSF + white matter) are generated in ana-
tomical space. The mask of pixels, which was obtained by
dilating a GM mask extracted from the FreeSurfer’s age
segmentation, was subtracted from the aCompCor masks
to remove any voxels containing a minimal fraction of GM
(Behzadi et al., 2007). Finally, these aCompCor masks
were resampled into EPI space and binarized by threshold-
ing at 0.99. The components were also calculated sepa-
rately within the white matter and CSF masks. For each
CompCor decomposition, the k components with the
largest singular values were retained, such that the
retained components’ time series was sufficient to explain
50% of variance across the nuisance masks (CSF, white
matter, combined, or temporal), and the remaining com-
ponents were dropped from consideration. The confound
time series derived from head-motion estimates and global
signals were also includedwith the temporal derivatives and
quadratic terms for each (Satterthwaite et al., 2013). For our
univariate and multivariate analyses, we used fMRIPrep-
preprocessed images. During analysis, confound regressors
generated by fMRIPrep were employed to clean the data,
effectively addressing physiological and motion-related
noise while preserving task-related signals.

ROIs

To characterize the visual representations of the stimuli
used in the task (faces and scenes), we focused our anal-
yses on the ventral visual stream (VVS) in the occipito-
temporal lobes. This mask consists of anatomically
defined regions from the Desikan-Killiany Atlas (pack-
aged with FSL): intracalcarine cortex, lingual gyrus, lateral
occipital cortex, occipital fusiform gyrus, occipital pole,
parahippocampal gyrus, temporal fusiform cortex, tem-
poral, occipital fusiform cortex, inferior temporal gyrus,
middle temporal gyrus, superior temporal gyrus, and
temporal pole. Individual masks of these regions were
extracted from each participant’s parcellated cortical
MNI map (from fMRIPrep) and summed together to con-
struct masks for each participant across hemispheres.
The ROI masks were then binarized so that voxels within
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the mask had a value of 1 and voxels outside the mask
had a value of 0 (VVS: M = 15,349 voxels, SD = 461).
For the RSA analyses, we included three additional ROIs:
one covering various areas in the pFC (M = 12,507 vox-
els, SD = 406; lateral orbitofrontal, medial orbitofrontal,
rostral middle frontal, caudal middle frontal, superior
frontal, and frontal pole), one covering the parietal cortex
(M = 7742 voxels, SD = 402; inferior parietal, superior
parietal, and precuneus), and one covering the hippo-
campus (M = 854 voxels, SD = 25). These regions were
selected based on existing literature suggesting their
involvement in representing category-level information
and higher-order processing (Zhou, Mohan, & Freedman,
2022; Rademaker, Chunharas, & Serences, 2019; Davachi,
2006).

Statistical Analyses

Univariate Analyses

fMRI univariate analyses were carried out using the Python
package Nilearn (Version 0.10.0; general linear model
[GLM] module). The preprocessed and smoothed
(8-mm FWHM) BOLD data normalized in MNI space were
filtered with a group-level GM mask derived from a com-
bination of each participant’s GM probability segmenta-
tion via fMRIPrep. The GLM modeled three operations
across all trials within 4 sec during which the operation
of the item is occurring and rest periods between trials
were serving as a baseline. The TRs during the presenta-
tion time of the stimulus served as an explanatory variable
of no interest. Following the methods from our previous
studies (Kim, Smolker, et al., 2020; Banich et al., 2015), we
explored three main contrasts from the GLM beta esti-
mates to confirm if we could replicate previously estab-
lished univariate maps of each operation (suppress vs.
replace + maintain, replace vs. suppress + maintain,
and suppress + replace vs. maintain). For this analysis,
contrast maps were initially thresholded voxel-wise by
implementing a false discovery rate correction at p <
.05. Subsequently, a cluster extent threshold of 20 voxels
was applied to retain only those clusters of significant vox-
els that met or exceeded this size. The voxel-wise thresh-
old was set to the most stringent value obtained from the
individual conditions, which was 2.404.

Multivariate Analyses

MVPA was applied to classify task-related signals in work-
ing memory with a nonmultinomial (one-versus-others)
logistic regression model with L2 regularization. Using
the scikit-learn toolbox in Python (Kumar et al., 2020),
our models operated on a one-versus-all (also known as
one-versus-others) basis within a multiclass framework.
This approach allows for the differentiation of each cate-
gory from the others in the model. A single penalty value
was selected for each participant based on the maximum

performance on cross-validation analyses. The features
from the preprocessed and standardized data (MNI or
T1w) were selected by voxel-wise ANOVA on the training
data with a threshold of p < .01 and then applied to both
training and testing in the classifications. The working
memory contents and operations were classified within
each participant, and additional classifications were con-
ducted between-participant and between-experiment
models to test the generalizability of the working memory
operation activation patterns.

Working memory content classification. A three-
category classifier (face, scene, and rest) was built on the
prestudy memory test fMRI data from the VVS (Grill-
Spector & Weiner, 2014; Goodale & Milner, 1992), using
a one-versus-all strategy, to decode the representations
of visual items in working memory (Gayet, Paffen, & Van
der Stigchel, 2018). The intertrial interval time points in
which a fixation was presented were modeled as the “rest”
category. The classifier’s performance was initially vali-
dated using twofold cross-validation, where the premani-
pulation memory data were split into training and testing
sets for each iteration, ensuring the model’s accuracy
before generalizing it to the main manipulation phase.

To balance the number of samples in each class, half of
the scene trials were randomly selected from the training
data, as there were twice as many scene trials as face trials.
As a result, an equal number of trials (60 trials, with 2 TR
per trial = 120 samples per category) were included in the
cross-validation, and the remaining scenes were dropped.
This was done to ensure balance and fairness in the model
training process. Feature selectionwas performed for each
training set using a voxel-wise ANOVA across classes
(threshold: p = .05) with the regressors shifted forward
5 TR (5 sec) to account for hemodynamic lag. To find
the optimal L2 penalty value to best fit the classifier model
for each participant, cross-validation was done with differ-
ent penalties (range: 0.001–1000). Classification accuracy
was reliably above chance, assessed via the area under the
receiver operating characteristic (ROC) curve (AUC).
ROC/AUC scores of the classifier evidence were signifi-
cantly above baseline (0.5) at the category level (M =
0.897, SEM = 0.009; one-sample t test against 0.5: t(21) =
46.156, p = 1.34e−22, d = 10.07).

All data from the premanipulationmemory test (but still
subsampled to maintain balance between the classes)
were then used to retrain the classifiers and then applied
to the manipulation phase data. The training again
included ANOVA-based feature selection for each voxel,
and an individualized optimal penalty derived from the
cross-validation analysis was used for each participant.
These classifiers were used to decode every time point
in the manipulation phase data. In addition, to further
investigate the role of category-specific regions, we
applied the same decoding approach to parahippocampal
(M= 616 voxels, SD= 57) and fusiform (M= 3289 voxels,
SD= 462) ROIs, known for their preferential responses to
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scenes and faces, respectively. A 14-sec time window
beginning at trial onset was used to evaluate the trajectory
of classification evidence (i.e., class probabilities).
Previous research has shown that using neural activity pat-
terns to decode the information in working memory
reveals only the information held in the focus of attention
(LaRocque, Lewis-Peacock, & Postle, 2014; Lewis-Peacock,
Drysdale, Oberauer, & Postle, 2012). Therefore, by track-
ing the category evidence for an item being manipulated
on a given trial, we can assess the operation’s impact on
the item in the focus of attention.

Within-participant working memory operation
classification. The working memory operation classi-
fiers were built with the manipulation phase data from
the GM mask across the whole brain. The classifier was
trained and validated through a three-fold leave-one-run-
out cross-validation approach. In this method, the classi-
fier was trained on two of the three runs and tested on
the remaining run. This process was repeated until each
run had served as the test set. The classifier regressor
included the three operations (maintain, replace, and sup-
press) in which the operation period (4 sec [4 TRs]) and
the subsequent fixation period (jittered from 5 to 7 sec)
were modeled on each trial with being shifted forward 5
TR to account for hemodynamic lag. We included the fix-
ation period in the regressor because previous work has
shown that relevant information can be captured during
this window (Kim, Smolker, et al., 2020). The operation
classifier was sensitive across all operations, AUC averaged
across operations: M = 0.807, SEM = 0.022; one-sample
t test for maintain: t(21) = 11.773, p = 1.034e−10, d =
2.569; replace: t(21) = 15.368, p = 6.740e−13, d = 3.353;
suppress: t(21) = 12.379, p = 4.097e−11, d = 2.701,
indicating that the operations were reliably differentiated
from each other.

Between-participant working memory operation
classification. All data from all participants (n = 22)
were normalized to MNI standard brain space and
concatenated so that all voxels were aligned across partic-
ipants. The classification was done with a 22-fold leave-
one-participant-out cross-validation with the data in the
whole-brain GM mask segmented from the standardized
MNI brain. The ANOVA-based feature selection was
applied to the anatomically aligned data in which the first
half of all runs for each participant were concatenated
across participants. The other half of the data was used
for training and testing the classifier. The operation regres-
sors were shifted forward 5 sec to account for hemody-
namic lag within each participant and concatenated. The
between-participant classifier was able to decode and
differentiate each operation successfully, AUC averaged
across operations: M = 0.658, SEM = 0.0103; one-sample
t test formaintain: t(21)= 7.768,p=1.316e−07, d=1.695;
replace: t(21) = 10.344, p = 1.068e−09, d = 2.257;
suppress: t(21) = 8.458, p = 3.333e−08, d = 1.846.

Between-experiment working memory operation
classification. We also performed an across-experiment
classification analysis for these working memory opera-
tions. The goal was to confirm that the patterns of neural
activation engaged for these working memory operations
were consistent across different experiments and different
sites of data collection (University of Colorado Boulder
and University of Texas at Austin). We trained across-
participant classifiers on fMRI data collected previously
in Boulder (n= 50; Kim, Smolker, et al., 2020) and tested
on data from the present study collected in Austin. Train-
ing data was anatomically aligned to MNI space, z scored,
feature-selected for the top 10,000 voxels (group-level fea-
ture mask), and then reduced to 70 components via PCA.
Testing data were anatomically aligned to MNI space,
resampled to match the training voxel space (2.4 mm3 to
2 mm3, via AFNI’s 3dresample function), masked with the
group-feature mask and transformed to 70 components
using the same transformations from the fitted PCA.
One-versus-others L2 logistic regression classification with
a penalty of 50 was used, and results indicated that each
operation was successfully decodable in each participant.

RSA

To evaluate possible changes to the neural representa-
tions in the long-term memory of the items that were
manipulated in themain study task, we applied RSA to data
from the premanipulation phase and the postmanipula-
tion phase. We used a custom pipeline in Python from
our laboratory (Kim, Smolker, et al., 2020) to compute a
comparative metric of “fidelity” that quantifies the degree
to which neural representations remain consistent, from
the premanipulation memory test through to the postma-
nipulation memory test. By applying feature weighting to
the data before RSA (Kaniuth & Hebart, 2022), this fidelity
measure can be evaluated at both the item level and cate-
gory level, offering a nuanced understanding of represen-
tational changes over time.
We defined a template pattern of activity for each item

(90 items total) from the premanipulation memory test
data and used this to evaluate item-specific representa-
tions in the manipulation phase and also in the postmani-
pulation memory test. To evaluate representational
changes at different levels of granularity, we used a
feature-weighting procedure to create both category-level
and item-level templates for each stimulus (Figure 6). We
first employed a GLM to select category-specific voxels
within the VVS ROI using a scene versus face t-contrast,
with a voxel-wise threshold of p < .05 and cluster correc-
tion with a voxel extent of 10. These identified voxels were
then weighted to create these templates at the category
and item levels. For category-level templates, voxel pat-
terns were weighted using the beta contrasts from the
scene > faces comparison. In the item-level templates,
each item was assigned a unique regressor and weighted
by contrasting them against the 89 other items in the
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study, leveraging least squares - all for this modeling
(Abdulrahman & Henson, 2016). These weighted templates
were then used for our RSA analyses. To quantify represen-
tational fidelity, these templates were compared against neu-
ral patterns captured during the postmanipulation memory
test. The analysis yielded a similarity score, calculated as
normalized correlation coefficients (Pearson r) using
Fisher’s z transformation for group-level statistical analysis.
To ensure the reliability and sensitivity of these tem-

plate weights, we evaluated if the weighted templates
allowed us to discriminate between the item of interest
from other stimuli during the manipulation phase. RSA
similarity scores for a given item were higher than the
similarity to all other items from the manipulation phase,
t(21) = 6.955, p = 7.19e−07.
To further explore the relationship between representa-

tional similarity andmemory outcomes, items were sorted
based on their memory status (remembered or forgotten),
allowing us to scrutinize how representational similarity
might differ across memory outcomes. To assess this rela-
tionship, we performed a paired t test to subject-specific
average fidelity scores, contrasting memory status across
the operations. However, n = 4 participants were
excluded from this test because of missing “forgotten”
items in one or more operations, restricting the sample
to n = 18. To address this limitation, we employed
mixed-effects modeling (via statsmodels) for each mem-
ory operation (maintain, replace, and suppress), analyzing
all trials across all n= 22 participants (Seabold & Perktold,
2010). In our mixed-effects model, “subjects”were treated
as a random effect to accommodate individual differences,
and “memory outcome” served as a fixed effect to assess
the impact of the operations on representational fidelity.
Our model included both intercepts and slopes for
“memory effect” as random effects by participant, speci-
fied as (1 +Memory | Participant). This adjustment allows
the model to account for individual variations in both the
baseline fidelity of neural representations and their sensi-
tivity to memory operations. The use of this additional
analysis enabled us to discern the influence of different
memory operations on representation fidelity using all
available data and confirm our initial findings.

Variability in Engagement of Working
Memory Operations

There is variability inherent in engaging complex working
memory operations (Armbruster-Genç, Ueltzhöffer, &
Fiebach, 2016) which reflects the dynamic nature of
cognitive resource allocation (Waschke, Kloosterman,
Obleser, & Garrett, 2021; Garrett et al., 2013). Attentional
fluctuations from trial to trial can impact themaintenance of
information in working memory (Hakim, deBettencourt,
Awh, & Vogel, 2020; deBettencourt, Keene, Awh, & Vogel,
2019). To assess fluctuations in control engagement, we
computed the trial-by-trial variability in operation classi-
fier evidence values across the 30 trials of each operation

(from a 4-sec window after the onset of the instruction,
z scored across trials). These classifier evidence values
represented the predicted data for each trial, reflecting
the classifier’s confidence in identifying the operation being
performed. The variance was calculated using the NumPy
var() function, which computes the mean of the squared
deviations from the mean (var = mean(abs(a – a.mean())
**2)). The magnitude of the operation classifier’s pre-
dicted evidence on a given trial reflects the strength of
operation engagement on that particular trial, whereas
the variability in predicted evidence across trials indicates
the consistency of engagement for each operation. To
statistically assess the significance of the observed differ-
ences in operation variance, we conducted a one-way
ANOVA and follow-up t tests for pairwise comparisons
between each operation.

To investigate the impact of operation engagement on
neural representation and memory outcomes, we con-
ducted regression analyses using the same classifier evi-
dence values that informed the variance calculation. These
evidence values, for the operation and category classifiers,
were averaged over the same 4-sec window following the
onset of the operation cue to ensure consistent time
points across analyses. This approach allowed us to deter-
mine the extent to which trial-level engagement, as
reflected by the operation classifier evidence, influenced
the fidelity of working memory representations during
the manipulation phase, as well as the accuracy of subse-
quent memory recognition. To increase our ability to
detect trial-specific effects, we pooled data from all
participants and then performed bootstrap resampling
to evaluate the population reliability of the result (Kim,
Schlichting, et al., 2020; Fisher & Hall, 1991; Efron,
1979). On each bootstrap iteration (of 10,000 in total),
we randomly sampled (with replacement) a collection of
participants’ data to match the size of our sample. For the
subsequent memory analysis, n = 4 participants were
excluded because they had at least one operation with
no forgotten items and thus could not provide samples
for all conditions, leaving a sample of n = 18. Statistical
significance was calculated with a nonparametric test
across bootstrap iterations, evaluating the stability of an
effect of interest by calculating the proportion of iterations
in which the effect was found. Finally, to verify that the
results were not driven by variance across participants,
we repeated the primary analyses using standardized
(z scored) classifier evidence for each participant to
remove participant-specific effects (Kim, Schlichting, et al.,
2020; Kim et al., 2014). Results from the primary analyses
were qualitatively similar and confirmed.

Statistics and Reproducibility

The fMRI experiment was performed once by each partic-
ipant. No replication was conducted. We conducted a
post hoc power analysis to assess the likelihood of detecting
the premanipulation versus postmanipulation change in
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neural representations. Using a one-tailed t test for
matched samples, we found that our study had a power
of 0.663, with an observed effect size of 0.507. Using a
one-tailed t test for unmatched samples, we found that
our analysis had a power of 0.758, with an observed effect
size of 0.218. Although these are both slightly below the
commonly accepted threshold for adequate power (0.8),
our statistical tests (along with bootstrapping) converge to
corroborate our findings.

RESULTS

Removal Operations Are Stable across Trials
and Participants

Our first objective was to confirm findings from prior
research that the working memory operations of interest

(maintain, replace, and suppress) in the current study
were neurally distinct. A group-level mass univariate anal-
ysis produced results consistent with our previous studies
(Kim, Smolker, et al., 2020; Banich et al., 2015; Figure 3).
The replace operation showed activation of the fusiform
face area (FFA), consistent with replacing scenes with
faces, as well as activity in the posterior cingulate cortex
and OFC, indicative of integration of working memory
content and updating. In contrast, the suppress operation
showed bilateral activation in the dlPFC and a decrease in
activity in scene-responsive regions (parahippocampal
place area), consistent with the engagement of cognitive
control mechanisms.
Neural distinctiveness of these working memory

operations was confirmed by training fMRI pattern classi-
fiers on whole-brain data separately for each participant
(AUC) averaged across operations, M = 0.807, SEM =

Figure 3. GLM activation maps and MVPA decoding of working memory operations. (A) Univariate contrasts of fMRI data by operation. Key regions
previously shown to be activated by each operation are highlighted. In addition, we identified activity in the FFA, which is part of the ventral visual
processing stream. (B) Operation classifier performance as the AUC where chance is 0.5. The within-participant and between-participant classification
was performed on the data from the current study (n = 22), and the between-experiment classification was performed by training on data (n = 50)
from Kim, Smolker, and colleagues (2020) and testing on the data from the current study. PCC = posterior cingulate cortex; LH/RH = left/right
hemisphere.
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0.022; one-sample t tests for maintain: t(21) = 11.773,
p = 1.034e−10, d = 2.569; replace: t(21) = 15.368, p =
6.739e−13, d = 3.353; and suppress: t(21) = 12.379,
p = 4.097e−11, d = 2.701 (Figure 3B). Classification was
also successful across participants, M = 0.658, SEM =
0.010; one-sample t test for maintain: t(21) = 7.768, p =
1.316e−07, d = 1.695; replace: t(21) = 10.344, p = 1.068e
−09, d = 2.257; suppress: t(21) = 8.458, p = 3.333e−08,
d = 1.846, and across experiments, M = 0.6541, SEM =
0.0146; one-sample t test for maintain: t(21) = 9.040, p =
1.101e−08, d = 1.973; replace: t(21) = 9.428, p = 5.377e
−09, d= 2.057; suppress: t(21) = 12.929, p= 1.818e−11,
d = 2.821.

Removal Operations Have Divergent Impacts on
the Contents of Working Memory

The next set of analyses, which were also confirmatory in
nature, was designed to assess how these removal opera-
tions influence the representation of information in
working memory. Consistent with our prior work (Kim,
Smolker, et al., 2020), the decoding of items being
replaced from working memory dropped below the
decoding for items being maintained; in contrast, the
decoding of items being suppressed from working
memory did not (Figure 4). The replace operation showed
category evidence that dropped below both of the other
operations. Suppress, however, did not diverge from
maintain, 8–10 sec: t(21) = 1.540, p = .138; 10–12 sec:
t(21) = 0.307, p = .762, indicating that suppression did
not remove category information from working memory
while the operation was being engaged.
Further analyses, focusing on the fusiform and parahip-

pocampal ROIs—selected for their propensities toward
faces and scenes, respectively—revealed that both regions
decoded both face and scene information effectively,
underscoring their capacity to represent more than just
their specialized content. Specifically, although the fusi-
form ROI demonstrated an increase in face evidence,
aligning with its specialization, face evidence in the para-
hippocampal ROI also followed an expected trajectory,
albeit less prominently. We observed in the parahippo-
campal ROI that scene evidence during suppress trials
numerically fell below that of maintain trials, but there
were no statistical differences, 8–10 sec: t(21) = −2.653,
p = .223; 10–12 sec: t(21) = −2.454, p = .344. These
results were therefore consistent with what we observed
in the larger VVS that suppression did not remove category
information from working memory while the operation
was being engaged.

The Variability of Control Engagement Influences
the Impact of Removal Operations

We next considered the consistency of operation engage-
ment across trials and its potential influence on memory
representations. This analysis is rooted in the literature

suggesting that neural variability is a key dimension for
understanding brain–behavior relationships (Waschke
et al., 2021). Variabilities in internal physiological states
and external environmental constraints may engender dif-
ferential engagement in control across individual trials
(Braver, 2012), and consistency in attention control, a
facet of cognitive variability, is an important aspect inter-
twined with various cognitive abilities (Unsworth, 2015).
In a novel analysis in the present article, we assessed if
the consistency to which an operation is engaged influ-
ences the extent to which the item representation is
altered and whether those effects vary across the opera-
tions. We first evaluated the consistency of operation
engagement across trials using trial-to-trial variability of
classifier evidence for each operation. Control engage-
ment varied across operations, F(2, 21) = 41.390, p =

Figure 4. Neural decoding of working memory representations
during removal. (A) Group-averaged classifier evidence scores from
the category-level fMRI pattern classifier, unshifted for hemodynamic
lag. (B) Relative classifier evidence scores for replace and suppress trials
relative to maintain trials. Statistical significance between operations is
indicated in the boxes below the graph. The dark gray cells indicate
significant results ( p < .05, Bonferroni-corrected) from a one-sample
t test (suppress vs. maintain and replace vs. maintain) and paired
t test (suppress vs. replace). The width of each line represents the
mean ± 1 SEM.
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2.458e-18, and suppression was more variable than main-
tenance, t(21)= 2.392, p= .026, and replacement, t(21)=
2.438, p = .0237, but replacement did not differ from
maintenance, t(21) = 0.534, p = .599.

Having established the variability in operation engage-
ment, we then examined how the strength of engagement
within each operation—suppression and replacement, in
particular—affects the neural representation of memory
items. The strength of engagement of the maintenance
operation on a given trial did not influence the decoding
of that representation in working memory. However,
greater engagement of the suppression and replacement
operations did (Figure 5A). Specifically, stronger engage-
ment in the replacement of an item fromworkingmemory
was associated with weaker decoding of the removed item
(scene; 95% CI [−0.10,−0.03]) and stronger decoding of
the new item (face; 95% CI [0.10, 0.19], data not shown).
Stronger engagement in the suppression of an item from
working memory was associated with higher decoding of
that item during suppression (95% CI [0.01, 0.09]).
Although these findings for maintenance suppression
may appear counterintuitive at first glance, they align well
with prior work and will be further elaborated in the
Discussion section.

Suppression of an Item from Working Memory Can
Weaken Its Subsequent Accessibility

Removing items from working memory did not lead to
more forgetting, on average, than did maintaining them
(22.9% forgotten for replace and suppress trials, versus
20.3% for maintain trials; all pairwise ps > .05). When
accounting for variability in operation engagement, how-
ever, we found a negative relationship between suppres-
sion engagement and subsequent memory such that
stronger engagement of suppression was associated with

more forgetting (95% CI [−0.40, −0.06]; see Figure 5C).
This relationship was not mediated by the strength of the
representation in working memory during suppression
(95% CI [−0.42, −0.08]). These results indicate that
greater attempts at suppression lead to greater category
evidence in working memory for the items being sup-
pressed but worse long-term recognition memory for
those items. No relationship was found between the
engagement of either maintenance (95% CI [−0.25,
0.09]) or replacement (95% CI [−0.17, 0.15]) and
memory. Separate from the level of control engagement,
stronger representations of items being maintained in
working memory were associated with better memory
(see Figure 5B). This relationship was not found for either
of the two removal operations, whose effects were driven
instead by the engagement of those control operations.

Maintenance Suppression Can Lead to the
Weakening of Item-level Features in
Long-term Memory

To test our hypothesis that maintenance suppression
selectively impairs item-level features in long-term mem-
ory, we computed the feature-weighted neural pattern
similarity of memory representations before and after they
were operated on in working memory (see Methods
section for details). As shown in Figure 6, the fidelity of
category-level representations in the ventral visual cortex
did not differ for remembered versus forgotten items in
the suppressed items. The item-level representation fidel-
ity was selectively impaired, however, for suppressed
items that were subsequently forgotten, t(17) = 2.151,
p = .046, bootstrap 95% CI [0.424, 4.633]. We analyzed
these data in two ways: pooled across participants (evalu-
ating the average premanipulation/postmanipulation
changes across participants, using a paired t test) and

Figure 5. Increased engagement of maintenance suppression predicts stronger representation in working memory and more forgetting. (A) Linear
regression linking operation engagement and representation of the item in working memory. Statistics are based on bootstrap analyses with 10,000
iterations (*p < .05). (B) Logistic regression linking working memory representations and subsequent memory. (C) Logistic regression linking
operation engagement and subsequent memory. Trial-level operation and representation evidence were taken from a 4TR window following the
onset of the operation cue. WM = working memory.
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pooled across items (evaluating the premanipulation/
postmanipulation changes in the representation of all
items, regardless of participant, using mixed effects
modeling). Pooling data across items confirmed the signif-
icant effect of maintenance suppression on item-level rep-
resentation fidelity when the item was forgotten (β =
0.014, SE = 0.006, z = 2.421, p = .015, 95% CI [0.003,
0.026]). Moreover, we confirmed the lack of significant
change in category-level representation fidelity because
of maintenance suppression (β = 0.007, SE = 0.004, z =
1.568, p = .117, 95% CI [−0.002, 0.015]).
Further analyses were conducted to investigate the

effects of the maintain and replace operations. These

operations did not significantly impact the neural repre-
sentation fidelity (regardless of memory outcome), either
at the item or category level. Specifically, in the maintain
condition, item-level (β = 0.004, SE = 0.015, z = 0.261,
p = .794, 95% CI [−0.025, 0.033]) and category-level
changes were not significant (β = 0.004, SE = 0.004, z =
0.929, p = 0.353, 95% CI [−0.005, 0.013]). Similarly, the
replace condition showed no significant effects on item-
level (β = −0.001, SE = 0.007, z = −0.070, p = 0.944,
95% CI [−0.015, 0.014]) or category-level (β = −0.002,
SE = 0.005, z = −0.392, p = 0.695, 95% CI [−0.013,
0.008]) fidelity. These null results suggest that the
observed impairments in neural representation fidelity

Figure 6. Feature-weighted representational changes in long-term memory. Top: Illustration of the method to extract item- and category-level
representational templates to evaluate representational changes following an operation. Bottom: Category-level and item-level RSA results for
premanipulation versus postmanipulation changes to item representations. Items are sorted by memory outcome (*p < .05). Violins represent the
kernel density estimate of the underlying distributions. The violin interior represents a box plot of the data, with the mean indicated by a white dash
and inner-quartile ranges indicated by a thick bar.
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are specific to the maintenance suppression operation
and do not extend to maintain or replace trials.

This finding in maintenance suppression was also selec-
tive to the ventral visual cortex and did not extend to pFC,
parietal cortex, or hippocampus (see Methods section for
how these regions were defined). Maintenance suppres-
sion did not impact the category-level fidelity of forgotten
versus remembered items in pFC (95% CI [−0.824,
2.989]), parietal regions (95% CI [−1.560, 2.710]), or hip-
pocampus (95% CI [−3.172, 0.911]), nor did it impact the
item-level fidelity in pFC (95%CI [−0.857, 2.992]), parietal
cortex (95% CI [−1.067, 3.284]), or hippocampus (95% CI
[−1.708, 2.224]). These analyses support the regional
specificity of maintenance suppression effects on repre-
sentations in sensory regions.

DISCUSSION

Our study set out to examine the influence of two working
memory removal operations—maintenance suppression
and replacement—on the long-term memory of visual
stimuli. First, MVPA of fMRI data indicated that when an
item in working memory was replaced by another, its
neural representation became deactivated. Importantly,
this deactivation did not appear to have a lasting impact
on the item’s representation or accessibility in long-term
memory. Conversely, maintenance suppression did
impact long-term memory. When an item was suppressed
from working memory, its neural representation was not
deactivated, but rather it remained activated to a similar
degree as on maintain trials, suggesting that the sup-
pressed item likely remained in the focus of attention
(Lewis-Peacock et al., 2012). These findings corroborate
prior studies showing that suppressing items from work-
ing memory is an active process requiring focused atten-
tion on the unwanted information (Kim, Smolker, et al.,
2020; Banich et al., 2015; Benoit & Anderson, 2012). In
fact, our analyses showed that greater attempts to sup-
press an item in working memory led to a seemingly par-
adoxical increase in neural activation in working memory
that was also associated with subsequent forgetting in
long-term memory (Figure 5). This pattern of results has
been reported previously in an item-method, directed-
forgetting study with visual stimuli where a forget cue pro-
duced greater neural activation of the item in the ventral
temporal cortex, relative to a remember cue, and this led
to more forgetting on an item-recognition test (Wang
et al., 2019). In the present study, a single dose of mainte-
nance suppression selectively weakened the item-level
features, but not category-level features, in the ventral
temporal cortex of items that were subsequently forgot-
ten. However, there were no representational changes
observed in brain areas associated with the control of
memories including the hippocampus, pFC, and parietal
cortex. In summary, our data illustrate that removing infor-
mation from working memory can be accomplished
using different cognitive strategies (suppression or

replacement) with distinct neural signatures with diver-
gent impacts on long-term memory representations.
We conducted several analyses to validate the distinc-

tiveness and consistency of the working memory removal
operations being studied here. First, we performed a
group-level mass univariate analysis of the fMRI data to
identify unique patterns of brain activity associated with
maintaining, replacing, and suppressing information in
working memory. These results were consistent with
previous studies on the same cognitive operations (Kim,
Smolker, et al., 2020; Banich et al., 2015; Benoit &
Anderson, 2012). Next, we used MVPA to show that the
neural patterns of activity underlying each operation were
distinct and consistent within individuals. Moreover, these
operation activity patterns were sufficiently consistent to
be decodable across participants in this study and our
prior study (Kim, Smolker, et al., 2020).
Another important aspect of our findings lies in the con-

sideration of variability in cognitive control across trials. It
has been shown that variability in attention and control
can significantly impact perceptions, decision-making,
and maintenance of information in working memory
(Hakim et al., 2020; Wolff et al., 2019; Arazi, Censor, &
Dinstein, 2017; Armbruster-Genç et al., 2016). In the pres-
ent study, we evaluated the impact of variability in the
application of maintenance suppression in working mem-
ory on the long-term memory representations of the sup-
pressed items. To do this, we used the operation classifier
evidence on each trial to show that trials with greater
evidence that the maintenance suppression operation
was effectively engaged were associated with a stronger
representation of the to-be-suppressed item in working
memory and, subsequently, worse long-term memory
recognition for that item. Our findings propose that the
variability in patterns of neural activity during attempts
to suppress information in working memory could serve
as a predictive neural signature for the success of the sup-
pression effort, and by extension, its enduring impact on
memory. These findings align with an emerging apprecia-
tion that variability in neuroimaging measurements across
trials is not mere noise but a meaningful signal that can
offer novel insights into brain function (Waschke et al.,
2021; Armbruster-Genç et al., 2016; Garrett et al., 2013;
Braver, 2012).
To investigate the lasting impact of maintenance sup-

pression on long-term memory, we compared the repre-
sentation of items from the premanipulation scan to the
postmanipulation scan. Our results were consistent with
Kim, Smolker, and colleagues (2020) in elucidating the
unique effects of maintenance suppression within working
memory. However, we extend this line of research by show-
ing that maintenance suppression can also have a specific
and durable impact on long-term memory. When an item
was suppressed and later forgotten, we observed a signifi-
cant weakening of its item-level features in the sensory cor-
tex. This effect diverges from theeffects noted for items that
were either maintained or replaced. In these conditions,
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we did not observe any changes in item- or category-level
features, suggesting that forgetting in these conditions is
likely driven by more passive mechanisms like decay or
general interference (Pertzov, Manohar, & Husain,
2017). It is important to note, however, that although
these more passive mechanisms may not manifest as
measurable changes in our fMRI data (Zhang & Luck,
2009), they do affect the likelihood of successful recall.
Therefore, the absence of item- or category-level impacts
in maintained or replaced items does not guarantee their
successful retention and highlights a possible limitation in
our neural measures. Nonetheless, the representational
changes we observed for maintenance suppression point
to a targeted, active mechanism of forgetting, aligning
with prior observations on the active processes underpin-
ning memory suppression (Banich et al., 2015; Benoit &
Anderson, 2012).
The results of this study are generally consistent with

the sensory recruitment hypothesis (Christophel, Klink,
Spitzer, Roelfsema, & Haynes, 2017; Serences, 2016;
D’Esposito & Postle, 2015; Harrison & Tong, 2009;
Serences et al., 2009; D’Esposito, 2007). We observed
suppression-induced representational changes in sensory
areas (ventral temporal cortex) responsible for initial
encoding and representation of the visual stimuli, but
not in regions associated with the control of attention
and memory such as the hippocampus, pFC, and parietal
cortex (Zhou et al., 2022; Rademaker et al., 2019; Bowman
& Zeithamova, 2018). Consistent with the biased-
competition model (Polk, Drake, Jonides, Smith, & Smith,
2008) and the attentional theory proposed by Zanto and
Gazzaley (2009), we suggest that attentional signals may
selectively target item-level features in suppression,
leaving the category-level features largely intact. It is note-
worthy that our cognitive frameworks for “stimulus cate-
gories” are dynamic (Jern & Kemp, 2013), even though
we innately recognize and remember patterns within
them (Brady & Oliva, 2008). This adaptability might
explain why, under maintenance suppression, specific
item details fade but the broader categorical structures
remain. These preserved category-level features could
function as an “organizational scaffold” for long-term
memory (Reagh & Ranganath, 2023). This idea is in line
with prior work that showed regions in the inferior
temporal cortex, such as the FFA and parahippocampal
place area, are not just passive recipients of sensory infor-
mation but are actively modulated during the encoding
and maintenance phases of working memory tasks
(Ranganath et al., 2005; Ranganath, Cohen, Dam, &
D’Esposito, 2004; Ranganath, DeGutis, & D’Esposito,
2004). This aligns with our findings from the fusiform
and parahippocampal ROIs, where scene evidence did
not significantly fall below maintain during the mainte-
nance suppression trials, indicating these regions’ role
in retaining broad informational content (Christophel
et al., 2017). The retention of category-level features dur-
ing successful maintenance suppression could thus be

conceptualized as an efficient strategy for memory func-
tion. The selective weakening of item-level features, but
not category features, could minimize the erasure of use-
ful categorical frameworks that could facilitate future
encoding and retrieval of related information. This idea
is supported by Hemmer and Persaud (2014), who argue
that integrating categorical knowledge not only aids in
episodic memory reconstruction but also can enhance
memory accuracy. Our findings suggest that maintenance
suppression is not merely a “blunt tool” for forgetting but
rather a fine-tuned process that contributes to the
remembering of related information (Rademaker et al.,
2019; Gayet et al., 2018; Hemmer & Persaud, 2014;
Ranganath et al., 2005).

Much prior work has emphasized memory suppression
in the context of retrieval from long-term memory (e.g.,
Anderson & Hanslmayr, 2014). Such paradigms shed light
on mechanisms affecting both episodic memory and what
has been termed as conceptual implicit memory. This idea
refers to the memory of information’s meaning without
explicit recall of encountering it. Prior work has revealed
that suppressing memories can impact this conceptual
implicit memory, suggesting alterations in the semantic
representations of suppressed content (Taubenfeld et al.,
2019). However, these studies typically necessitate multi-
ple manipulations of an item before discernible effects on
memory are observed (Taubenfeld et al., 2019; Depue
et al., 2007; Anderson & Green, 2001). Drawing a distinc-
tion, our research focuses on the suppression of informa-
tion within working memory. Rather than requiring
numerous attempts, our study reveals that a singular event
of maintenance suppression can manifest lasting changes
in item-level representations and recognition memory
performance. These results not only demonstrate the
immediacy of the impact of maintenance suppression on
long-term memory but also helps to build on our under-
standing of dynamics between shared representations in
working and long-term memory (Vo et al., 2022).

Directed forgetting research offers another perspective
on memory modulation in which forgetting is accom-
plished not by altering an item’s representation, but rather
by changes to the contextual representation to which that
item is bound in episodic memory (Hubbard & Sahakyan,
2021, 2023; Sahakyan & Kelley, 2002). In a recent study
using the item-method, directed-forgetting procedure,
participants were shown words interspersed with scene
images that acted as “context tags.” When participants
were later instructed to forget specific items, there was
an enhanced reactivation of their associated context (the
“scene” activity pattern), whereas item-specific informa-
tion (the “word” activity pattern) was reduced. Greater
differences between context and item activity were predic-
tive of successful forgetting (Chiu, Wang, Beck, Lewis-
Peacock, & Sahakyan, 2021). These results suggest an
important role of context in memory modification such
that intentional forgetting may involve dissociating items
from their contexts. It is possible that context unbinding
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also plays a role in maintenance suppression. We have no
way of assessing this in the present study, but we plan to
address this in future research.

There are several key limitations to our study that war-
rant noting. First, our investigation exclusively focused on
the effects of suppression and replacement of visual non-
verbal stimuli, specifically scenes (e.g., landscapes and
monuments). The importance of this limitation lies in
the question of generalizability. It remains unclear
whether our findings extend to other types of stimuli, such
as other classes of visual information, or verbal and/or
auditory information. Future research should explore
these different sensory and content domains to determine
the breadth of the mechanisms we have identified. Such
future studies are crucial for establishing whether the
weakening of item-level features during maintenance sup-
pression is a general phenomenon. Second, although we
discerned nuanced impacts, a consistent long-term mem-
ory effect from the removal operations was not universally
observed. The lack of reliable long-term behavioral effects
could stem from a ceiling effect, as some participants did
not forget any items in a given condition. Addressing this
ceiling effect in future studies could involve incorporating
a more complex array of stimuli where participants would
be asked to manipulate more than one item at a time,
thereby increasing the task’s difficulty. Third, and finally,
we did not include emotionally relevant stimuli, either
negative or positive, in our experiment. Adding emotional
content is an important consideration for future work,
particularly given the different neural and cognitive pro-
cessing pathways for emotionally charged memories.
Understanding how maintenance suppression affects
these types of memories could have important clinical
implications, especially for conditions that involve the
intrusion of unwanted, emotionally charged memories,
such as those that occur in individuals with posttraumatic
stress disorder (PTSD). This is a topic of ongoing research
in our laboratories.

This study may hold relevance for clinical applications.
One such application concerns possible treatments for
PTSD aimed at reducing the frequency and impact of intru-
sive thoughts (Foa &McLean, 2016; Hayes, VanElzakker, &
Shin, 2012). Our demonstration that maintenance sup-
pression can weaken item-level features in long-term
memory offers a potential strategy for suppressing aspects
of traumatic memories. However, the application and tim-
ing of suppression must be carefully considered. The
memory suppression examined in related research using
the Think/No-Think paradigm (Anderson, 2004; Anderson
& Green, 2001) is focused on suppressing the retrieval of
information from long-term memory, not on suppressing
the representation of information in working memory. In
the retrieval-induced forgetting literature, there is evi-
dence that disruptions in memory control associated with
trauma are associated with reduced activation in the right
middle frontal gyrus duringmemory suppression attempts
in trauma-exposed individuals (Sullivan et al., 2019).

Another recent study indicates a generalized disruption
in PTSD of the regulation signal controlling the reactiva-
tion of unwanted memories, suggesting a deficit in mem-
ory control following trauma (Mary et al., 2020). Although
these studies explored the impacts of retrieval suppres-
sion, they provide a broader context on memory control
and its potential malfunction in PTSD, thus accentuating
the importance of understanding suppression mecha-
nisms at different memory stages. However, often in
PTSD, the suppression of retrieval of unwanted informa-
tion is not possible, and such information enters working
memory (so-called “intrusions”). Our work fills a crucial
gap and suggests that acting on information that intrudes
into working memory, for example, might enable a
change in the long-term memory representation of that
information which could reduce the likelihood of future
intrusions.

Conclusion

In conclusion, our study focuses on the long-termmemory
consequences of suppressing information from working
memory. Our findings reveal that maintenance suppres-
sion selectively weakens item-level features of forgotten
items in the sensory regions of the brain that encoded
them. As such, these results are consistent with the
sensory recruitment hypothesis of working memory, and
they complement prior observations that suppressing the
retrieval of items from long-term memory can weaken
their item-specific features. It is an important area of
future research to evaluate how the neural mechanisms
of maintenance suppression differ from those of retrieval
suppression.

Acknowledgments

We thank Paige Stetson for her assistance in fMRI data
collection.

Corresponding author: Zachary H. Bretton, Institute for Neuro-
science, University of Texas at Austin, 1 University Station, Stop
C7000, Austin, TX 78712-1139, or via e-mail: zbretton@utexas
.edu.

Data Availability Statement

All de-identified neuroimaging data are available from the
authors upon request.

Author Contributions

Zachary H. Bretton: Conceptualization; Data curation;
Formal analysis; Investigation; Methodology; Project
administration; Software; Validation; Visualization; Writing—
Original draft; Writing—Review & editing. Hyojeong Kim:
Conceptualization; Methodology; Software; Visualization;
Writing—Original draft; Writing—Review & editing.
Marie T. Banich: Conceptualization; Funding acquisition;

2132 Journal of Cognitive Neuroscience Volume 36, Number 10

mailto:zbretton@utexas.edu
mailto:zbretton@utexas.edu


Methodology; Writing—Original draft; Writing—Review&
editing. Jarrod A. Lewis-Peacock: Conceptualization;
Funding acquisition; Methodology; Project administra-
tion; Resources; Supervision; Writing—Original draft;
Writing—Review & editing.

Funding Information

This work was supported by the National Eye Institute
(https://dx.doi.org/10.13039/100000053), grant number:
R01EY028746; and National Institute of Mental Health
(https://dx.doi.org/10.13039/100000025), grant numbers:
R56MH125642, T32MH106454.

Diversity in Citation Practices

Retrospective analysis of the citations in every article pub-
lished in this journal from 2010 to 2021 reveals a persistent
pattern of gender imbalance: Although the proportions of
authorship teams (categorized by estimated gender
identification of first author/ last author) publishing in
the Journal of Cognitive Neuroscience ( JoCN) during this
period were M(an)/M = .407, W(oman)/M = .32, M/W =
.115, andW/W= .159, the comparable proportions for the
articles that these authorship teams cited were M/M =
.549, W/M = .257, M/W = .109, and W/W = .085 (Postle
and Fulvio, JoCN, 34:1, pp. 1–3). Consequently, JoCN
encourages all authors to consider gender balance explic-
itly when selecting which articles to cite and gives them
the opportunity to report their article’s gender citation
balance. The authors of this article report its proportions
of citations by gender category to be: M/M = .623;
W/M = .208; M/W = .104; W/W = .065.

REFERENCES

Abdulrahman, H., & Henson, R. N. (2016). Effect of trial-to-trial
variability on optimal event-related fMRI design: Implications
for beta-series correlation and multi-voxel pattern analysis.
Neuroimage, 125, 756–766. https://doi.org/10.1016/j
.neuroimage.2015.11.009, PubMed: 26549299

Albers, A. M., Kok, P., Toni, I., Dijkerman, H. C., & de Lange,
F. P. (2013). Shared representations for working memory
and mental imagery in early visual cortex. Current Biology,
23, 1427–1431. https://doi.org/10.1016/j.cub.2013.05.065,
PubMed: 23871239

Anderson, M. C. (2004). Neural systems underlying the
suppression of unwanted memories. Science, 303, 232–235.
https://doi.org/10.1126/science.1089504, PubMed: 14716015

Anderson, M. C., & Green, C. (2001). Suppressing unwanted
memories by executive control. Nature, 410, 366–369.
https://doi.org/10.1038/35066572, PubMed: 11268212

Anderson, M. C., & Hanslmayr, S. (2014). Neural mechanisms
of motivated forgetting. Trends in Cognitive Sciences, 18,
279–292. https://doi.org/10.1016/j.tics.2014.03.002, PubMed:
24747000

Arazi, A., Censor, N., & Dinstein, I. (2017). Neural variability
quenching predicts individual perceptual abilities. Journal
of Neuroscience, 37, 97–109. https://doi.org/10.1523
/JNEUROSCI.1671-16.2016, PubMed: 28053033

Armbruster-Genç, D. J. N., Ueltzhöffer, K., & Fiebach, C. J.
(2016). Brain signal variability differentially affects cognitive
flexibility and cognitive stability. Journal of Neuroscience, 36,
3978–3987. https://doi.org/10.1523/JNEUROSCI.2517-14
.2016, PubMed: 27053205

Avants, B., Epstein, C., Grossman, M., & Gee, J. (2008).
Symmetric diffeomorphic image registration with
cross-correlation: Evaluating automated labeling of elderly
and neurodegenerative brain. Medical Image Analysis, 12,
26–41. https://doi.org/10.1016/j.media.2007.06.004, PubMed:
17659998

Axmacher, N., Schmitz, D. P., Weinreich, I., Elger, C. E., & Fell, J.
(2008). Interaction of working memory and long-term
memory in the medial temporal lobe. Cerebral Cortex, 18,
2868–2878. https://doi.org/10.1093/cercor/bhn045, PubMed:
18403397

Banich, M. T., Mackiewicz Seghete, K. L., Depue, B. E., &
Burgess, G. C. (2015). Multiple modes of clearing one’s mind
of current thoughts: Overlapping and distinct neural systems.
Neuropsychologia, 69, 105–117. https://doi.org/10.1016/j
.neuropsychologia.2015.01.039, PubMed: 25637772

Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A
component based noise correction method (CompCor) for
BOLD and perfusion based fMRI. Neuroimage, 37, 90–101.
https://doi.org/10.1016/j.neuroimage.2007.04.042, PubMed:
17560126

Benoit, R. G., & Anderson, M. C. (2012). Opposing mechanisms
support the voluntary forgetting of unwanted memories.
Neuron, 76, 450–460. https://doi.org/10.1016/j.neuron.2012
.07.025, PubMed: 23083745

Blumenfeld, R. S., & Ranganath, C. (2006). Dorsolateral
prefrontal cortex promotes long-term memory formation
through its role in working memory organization. Journal
of Neuroscience, 26, 916–925. https://doi.org/10.1523
/JNEUROSCI.2353-05.2006, PubMed: 16421311

Bowman, C. R., & Zeithamova, D. (2018). Abstract memory
representations in the ventromedial prefrontal cortex and
hippocampus support concept generalization. Journal of
Neuroscience, 38, 2605–2614. https://doi.org/10.1523
/JNEUROSCI.2811-17.2018, PubMed: 29437891

Brady, T. F., & Oliva, A. (2008). Statistical learning using
real-world scenes: Extracting categorical regularities without
conscious intent. Psychological Science, 19, 678–685. https://
doi.org/10.1111/j.1467-9280.2008.02142.x, PubMed:
18727783

Braver, T. S. (2012). The variable nature of cognitive control: A
dual mechanisms framework. Trends in Cognitive Sciences,
16, 106–113. https://doi.org/10.1016/j.tics.2011.12.010,
PubMed: 22245618

Bruce, V., & Young, A. (1986). Understanding face recognition.
British Journal of Psychology, 77, 305–327. https://doi.org/10
.1111/j.2044-8295.1986.tb02199.x, PubMed: 3756376

Chiu, Y.-C., Wang, T. H., Beck, D. M., Lewis-Peacock, J. A., &
Sahakyan, L. (2021). Separation of item and context in
item-method directed forgetting. Neuroimage, 235, 117983.
https://doi.org/10.1016/j.neuroimage.2021.117983, PubMed:
33762219

Christophel, T. B., Klink, P. C., Spitzer, B., Roelfsema, P. R., &
Haynes, J.-D. (2017). The distributed nature of working
memory. Trends in Cognitive Sciences, 21, 111–124. https://
doi.org/10.1016/j.tics.2016.12.007, PubMed: 28063661

Cowan, N. (2001). The magical number 4 in short-term
memory: A reconsideration of mental storage capacity.
Behavioral and Brain Sciences, 24, 87–114. https://doi.org
/10.1017/S0140525X01003922, PubMed: 11515286

D’Esposito, M. (2007). From cognitive to neural models of
working memory. Philosophical Transactions of the Royal
Society of London, Series B: Biological Sciences, 362,

Bretton et al. 2133

http://dx.doi.org/10.13039/100000053
http://dx.doi.org/10.13039/100000053
http://dx.doi.org/10.13039/100000053
http://dx.doi.org/10.13039/100000053
http://dx.doi.org/10.13039/100000053
http://dx.doi.org/10.13039/100000053
http://dx.doi.org/10.13039/100000053
http://dx.doi.org/10.13039/100000053
http://dx.doi.org/10.13039/100000025
http://dx.doi.org/10.13039/100000025
http://dx.doi.org/10.13039/100000025
http://dx.doi.org/10.13039/100000025
http://dx.doi.org/10.13039/100000025
http://dx.doi.org/10.13039/100000025
http://dx.doi.org/10.13039/100000025
http://dx.doi.org/10.13039/100000025
https://doi.org/10.1016/j.neuroimage.2015.11.009
https://doi.org/10.1016/j.neuroimage.2015.11.009
https://doi.org/10.1016/j.neuroimage.2015.11.009
https://doi.org/10.1016/j.neuroimage.2015.11.009
https://doi.org/10.1016/j.neuroimage.2015.11.009
https://doi.org/10.1016/j.neuroimage.2015.11.009
https://doi.org/10.1016/j.neuroimage.2015.11.009
https://doi.org/10.1016/j.neuroimage.2015.11.009
https://doi.org/10.1016/j.neuroimage.2015.11.009
https://doi.org/10.1016/j.neuroimage.2015.11.009
https://doi.org/10.1016/j.neuroimage.2015.11.009
https://pubmed.ncbi.nlm.nih.gov/26549299
https://doi.org/10.1016/j.cub.2013.05.065
https://doi.org/10.1016/j.cub.2013.05.065
https://doi.org/10.1016/j.cub.2013.05.065
https://doi.org/10.1016/j.cub.2013.05.065
https://doi.org/10.1016/j.cub.2013.05.065
https://doi.org/10.1016/j.cub.2013.05.065
https://doi.org/10.1016/j.cub.2013.05.065
https://doi.org/10.1016/j.cub.2013.05.065
https://doi.org/10.1016/j.cub.2013.05.065
https://doi.org/10.1016/j.cub.2013.05.065
https://doi.org/10.1016/j.cub.2013.05.065
https://pubmed.ncbi.nlm.nih.gov/23871239
https://doi.org/10.1126/science.1089504
https://doi.org/10.1126/science.1089504
https://doi.org/10.1126/science.1089504
https://doi.org/10.1126/science.1089504
https://doi.org/10.1126/science.1089504
https://doi.org/10.1126/science.1089504
https://doi.org/10.1126/science.1089504
https://doi.org/10.1126/science.1089504
https://pubmed.ncbi.nlm.nih.gov/14716015
https://doi.org/10.1038/35066572
https://doi.org/10.1038/35066572
https://doi.org/10.1038/35066572
https://doi.org/10.1038/35066572
https://doi.org/10.1038/35066572
https://doi.org/10.1038/35066572
https://doi.org/10.1038/35066572
https://pubmed.ncbi.nlm.nih.gov/11268212
https://doi.org/10.1016/j.tics.2014.03.002
https://doi.org/10.1016/j.tics.2014.03.002
https://doi.org/10.1016/j.tics.2014.03.002
https://doi.org/10.1016/j.tics.2014.03.002
https://doi.org/10.1016/j.tics.2014.03.002
https://doi.org/10.1016/j.tics.2014.03.002
https://doi.org/10.1016/j.tics.2014.03.002
https://doi.org/10.1016/j.tics.2014.03.002
https://doi.org/10.1016/j.tics.2014.03.002
https://doi.org/10.1016/j.tics.2014.03.002
https://doi.org/10.1016/j.tics.2014.03.002
https://pubmed.ncbi.nlm.nih.gov/24747000
https://doi.org/10.1523/JNEUROSCI.1671-16.2016
https://doi.org/10.1523/JNEUROSCI.1671-16.2016
https://doi.org/10.1523/JNEUROSCI.1671-16.2016
https://doi.org/10.1523/JNEUROSCI.1671-16.2016
https://doi.org/10.1523/JNEUROSCI.1671-16.2016
https://doi.org/10.1523/JNEUROSCI.1671-16.2016
https://doi.org/10.1523/JNEUROSCI.1671-16.2016
https://doi.org/10.1523/JNEUROSCI.1671-16.2016
https://doi.org/10.1523/JNEUROSCI.1671-16.2016
https://doi.org/10.1523/JNEUROSCI.1671-16.2016
https://doi.org/10.1523/JNEUROSCI.1671-16.2016
https://pubmed.ncbi.nlm.nih.gov/28053033
https://doi.org/10.1523/JNEUROSCI.2517-14.2016
https://doi.org/10.1523/JNEUROSCI.2517-14.2016
https://doi.org/10.1523/JNEUROSCI.2517-14.2016
https://doi.org/10.1523/JNEUROSCI.2517-14.2016
https://doi.org/10.1523/JNEUROSCI.2517-14.2016
https://doi.org/10.1523/JNEUROSCI.2517-14.2016
https://doi.org/10.1523/JNEUROSCI.2517-14.2016
https://doi.org/10.1523/JNEUROSCI.2517-14.2016
https://doi.org/10.1523/JNEUROSCI.2517-14.2016
https://doi.org/10.1523/JNEUROSCI.2517-14.2016
https://doi.org/10.1523/JNEUROSCI.2517-14.2016
https://pubmed.ncbi.nlm.nih.gov/27053205
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1016/j.media.2007.06.004
https://doi.org/10.1016/j.media.2007.06.004
https://pubmed.ncbi.nlm.nih.gov/17659998
https://doi.org/10.1093/cercor/bhn045
https://doi.org/10.1093/cercor/bhn045
https://doi.org/10.1093/cercor/bhn045
https://doi.org/10.1093/cercor/bhn045
https://doi.org/10.1093/cercor/bhn045
https://doi.org/10.1093/cercor/bhn045
https://doi.org/10.1093/cercor/bhn045
https://doi.org/10.1093/cercor/bhn045
https://doi.org/10.1093/cercor/bhn045
https://pubmed.ncbi.nlm.nih.gov/18403397
https://doi.org/10.1016/j.neuropsychologia.2015.01.039
https://doi.org/10.1016/j.neuropsychologia.2015.01.039
https://doi.org/10.1016/j.neuropsychologia.2015.01.039
https://doi.org/10.1016/j.neuropsychologia.2015.01.039
https://doi.org/10.1016/j.neuropsychologia.2015.01.039
https://doi.org/10.1016/j.neuropsychologia.2015.01.039
https://doi.org/10.1016/j.neuropsychologia.2015.01.039
https://doi.org/10.1016/j.neuropsychologia.2015.01.039
https://doi.org/10.1016/j.neuropsychologia.2015.01.039
https://doi.org/10.1016/j.neuropsychologia.2015.01.039
https://doi.org/10.1016/j.neuropsychologia.2015.01.039
https://pubmed.ncbi.nlm.nih.gov/25637772
https://doi.org/10.1016/j.neuroimage.2007.04.042
https://doi.org/10.1016/j.neuroimage.2007.04.042
https://doi.org/10.1016/j.neuroimage.2007.04.042
https://doi.org/10.1016/j.neuroimage.2007.04.042
https://doi.org/10.1016/j.neuroimage.2007.04.042
https://doi.org/10.1016/j.neuroimage.2007.04.042
https://doi.org/10.1016/j.neuroimage.2007.04.042
https://doi.org/10.1016/j.neuroimage.2007.04.042
https://doi.org/10.1016/j.neuroimage.2007.04.042
https://doi.org/10.1016/j.neuroimage.2007.04.042
https://doi.org/10.1016/j.neuroimage.2007.04.042
https://pubmed.ncbi.nlm.nih.gov/17560126
https://doi.org/10.1016/j.neuron.2012.07.025
https://doi.org/10.1016/j.neuron.2012.07.025
https://doi.org/10.1016/j.neuron.2012.07.025
https://doi.org/10.1016/j.neuron.2012.07.025
https://doi.org/10.1016/j.neuron.2012.07.025
https://doi.org/10.1016/j.neuron.2012.07.025
https://doi.org/10.1016/j.neuron.2012.07.025
https://doi.org/10.1016/j.neuron.2012.07.025
https://doi.org/10.1016/j.neuron.2012.07.025
https://doi.org/10.1016/j.neuron.2012.07.025
https://doi.org/10.1016/j.neuron.2012.07.025
https://pubmed.ncbi.nlm.nih.gov/23083745
https://doi.org/10.1523/JNEUROSCI.2353-05.2006
https://doi.org/10.1523/JNEUROSCI.2353-05.2006
https://doi.org/10.1523/JNEUROSCI.2353-05.2006
https://doi.org/10.1523/JNEUROSCI.2353-05.2006
https://doi.org/10.1523/JNEUROSCI.2353-05.2006
https://doi.org/10.1523/JNEUROSCI.2353-05.2006
https://doi.org/10.1523/JNEUROSCI.2353-05.2006
https://doi.org/10.1523/JNEUROSCI.2353-05.2006
https://doi.org/10.1523/JNEUROSCI.2353-05.2006
https://doi.org/10.1523/JNEUROSCI.2353-05.2006
https://doi.org/10.1523/JNEUROSCI.2353-05.2006
https://pubmed.ncbi.nlm.nih.gov/16421311
https://doi.org/10.1523/JNEUROSCI.2811-17.2018
https://doi.org/10.1523/JNEUROSCI.2811-17.2018
https://doi.org/10.1523/JNEUROSCI.2811-17.2018
https://doi.org/10.1523/JNEUROSCI.2811-17.2018
https://doi.org/10.1523/JNEUROSCI.2811-17.2018
https://doi.org/10.1523/JNEUROSCI.2811-17.2018
https://doi.org/10.1523/JNEUROSCI.2811-17.2018
https://doi.org/10.1523/JNEUROSCI.2811-17.2018
https://doi.org/10.1523/JNEUROSCI.2811-17.2018
https://doi.org/10.1523/JNEUROSCI.2811-17.2018
https://doi.org/10.1523/JNEUROSCI.2811-17.2018
https://pubmed.ncbi.nlm.nih.gov/29437891
https://doi.org/10.1111/j.1467-9280.2008.02142.x
https://doi.org/10.1111/j.1467-9280.2008.02142.x
https://doi.org/10.1111/j.1467-9280.2008.02142.x
https://doi.org/10.1111/j.1467-9280.2008.02142.x
https://doi.org/10.1111/j.1467-9280.2008.02142.x
https://doi.org/10.1111/j.1467-9280.2008.02142.x
https://doi.org/10.1111/j.1467-9280.2008.02142.x
https://doi.org/10.1111/j.1467-9280.2008.02142.x
https://doi.org/10.1111/j.1467-9280.2008.02142.x
https://doi.org/10.1111/j.1467-9280.2008.02142.x
https://doi.org/10.1111/j.1467-9280.2008.02142.x
https://doi.org/10.1111/j.1467-9280.2008.02142.x
https://doi.org/10.1111/j.1467-9280.2008.02142.x
https://pubmed.ncbi.nlm.nih.gov/18727783
https://doi.org/10.1016/j.tics.2011.12.010
https://doi.org/10.1016/j.tics.2011.12.010
https://doi.org/10.1016/j.tics.2011.12.010
https://doi.org/10.1016/j.tics.2011.12.010
https://doi.org/10.1016/j.tics.2011.12.010
https://doi.org/10.1016/j.tics.2011.12.010
https://doi.org/10.1016/j.tics.2011.12.010
https://doi.org/10.1016/j.tics.2011.12.010
https://doi.org/10.1016/j.tics.2011.12.010
https://doi.org/10.1016/j.tics.2011.12.010
https://doi.org/10.1016/j.tics.2011.12.010
https://pubmed.ncbi.nlm.nih.gov/22245618
https://doi.org/10.1111/j.2044-8295.1986.tb02199.x
https://doi.org/10.1111/j.2044-8295.1986.tb02199.x
https://doi.org/10.1111/j.2044-8295.1986.tb02199.x
https://doi.org/10.1111/j.2044-8295.1986.tb02199.x
https://doi.org/10.1111/j.2044-8295.1986.tb02199.x
https://doi.org/10.1111/j.2044-8295.1986.tb02199.x
https://doi.org/10.1111/j.2044-8295.1986.tb02199.x
https://doi.org/10.1111/j.2044-8295.1986.tb02199.x
https://doi.org/10.1111/j.2044-8295.1986.tb02199.x
https://doi.org/10.1111/j.2044-8295.1986.tb02199.x
https://doi.org/10.1111/j.2044-8295.1986.tb02199.x
https://doi.org/10.1111/j.2044-8295.1986.tb02199.x
https://pubmed.ncbi.nlm.nih.gov/3756376
https://doi.org/10.1016/j.neuroimage.2021.117983
https://doi.org/10.1016/j.neuroimage.2021.117983
https://doi.org/10.1016/j.neuroimage.2021.117983
https://doi.org/10.1016/j.neuroimage.2021.117983
https://doi.org/10.1016/j.neuroimage.2021.117983
https://doi.org/10.1016/j.neuroimage.2021.117983
https://doi.org/10.1016/j.neuroimage.2021.117983
https://doi.org/10.1016/j.neuroimage.2021.117983
https://doi.org/10.1016/j.neuroimage.2021.117983
https://doi.org/10.1016/j.neuroimage.2021.117983
https://pubmed.ncbi.nlm.nih.gov/33762219
https://doi.org/10.1016/j.tics.2016.12.007
https://doi.org/10.1016/j.tics.2016.12.007
https://doi.org/10.1016/j.tics.2016.12.007
https://doi.org/10.1016/j.tics.2016.12.007
https://doi.org/10.1016/j.tics.2016.12.007
https://doi.org/10.1016/j.tics.2016.12.007
https://doi.org/10.1016/j.tics.2016.12.007
https://doi.org/10.1016/j.tics.2016.12.007
https://doi.org/10.1016/j.tics.2016.12.007
https://doi.org/10.1016/j.tics.2016.12.007
https://doi.org/10.1016/j.tics.2016.12.007
https://doi.org/10.1016/j.tics.2016.12.007
https://pubmed.ncbi.nlm.nih.gov/28063661
https://doi.org/10.1017/S0140525X01003922
https://doi.org/10.1017/S0140525X01003922
https://doi.org/10.1017/S0140525X01003922
https://doi.org/10.1017/S0140525X01003922
https://doi.org/10.1017/S0140525X01003922
https://doi.org/10.1017/S0140525X01003922
https://doi.org/10.1017/S0140525X01003922
https://pubmed.ncbi.nlm.nih.gov/11515286


761–772. https://doi.org/10.1098/rstb.2007.2086, PubMed:
17400538

D’Esposito, M., & Postle, B. R. (2015). The cognitive
neuroscience of working memory. Annual Review of
Psychology, 66, 115–142. https://doi.org/10.1146/annurev
-psych-010814-015031, PubMed: 25251486

Davachi, L. (2006). Item, context and relational episodic
encoding in humans. Current Opinion in Neurobiology, 16,
693–700. https://doi.org/10.1016/j.conb.2006.10.012,
PubMed: 17097284

deBettencourt, M. T., Keene, P. A., Awh, E., & Vogel, E. K.
(2019). Real-time triggering reveals concurrent lapses of
attention and working memory. Nature Human Behaviour,
3, 808–816. https://doi.org/10.1038/s41562-019-0606-6,
PubMed: 31110335

Depue, B. E., Curran, T., & Banich, M. T. (2007). Prefrontal
regions orchestrate suppression of emotional memories via a
two-phase process. Science, 317, 215–219. https://doi.org/10
.1126/science.1139560, PubMed: 17626877

Efron, B. (1979). Bootstrap methods: Another look at the
jackknife. Annals of Statistics, 7, 1–26. https://doi.org/10.1214
/aos/1176344552

Epstein, R., & Kanwisher, N. (1998). A cortical representation of
the local visual environment. Nature, 392, 598–601. https://
doi.org/10.1038/33402, PubMed: 9560155

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik,
A. I., Erramuzpe, A., et al. (2019). fMRIPrep: A robust
preprocessing pipeline for functional MRI. Nature Methods,
16, 111–116. https://doi.org/10.1038/s41592-018-0235-4,
PubMed: 30532080

Esteban, O., Markiewicz, C. J., Burns, C., Goncalves, M., Jarecka,
D., Ziegler, E., et al. (2022). nipy/nipype: 1.8.1 [Computer
software]. Zenodo. https://doi.org/10.5281/ZENODO
.6555085

Fisher, N. I., & Hall, P. (1991). Bootstrap algorithms for small
samples. Journal of Statistical Planning and Inference, 27,
157–169. https://doi.org/10.1016/0378-3758(91)90013-5

Foa, E. B., & McLean, C. P. (2016). The efficacy of exposure
therapy for anxiety-related disorders and its underlying
mechanisms: The case of OCD and PTSD. Annual Review
of Clinical Psychology, 12, 1–28. https://doi.org/10.1146
/annurev-clinpsy-021815-093533, PubMed: 26565122

Fonov, V., Evans, A., McKinstry, R., Almli, C., & Collins, D. (2009).
Unbiased nonlinear average age-appropriate brain templates
from birth to adulthood. Neuroimage, 47 (Suppl. 1), S102.
https://doi.org/10.1016/S1053-8119(09)70884-5

Gagnepain, P., Henson, R. N., & Anderson, M. C. (2014).
Suppressing unwanted memories reduces their unconscious
influence via targeted cortical inhibition. Proceedings of the
National Academy of Sciences, U.S.A., 111, E1310–E1319.
https://doi.org/10.1073/pnas.1311468111, PubMed: 24639546

Garrett, D. D., Samanez-Larkin, G. R., MacDonald, S. W. S.,
Lindenberger, U., McIntosh, A. R., & Grady, C. L. (2013).
Moment-to-moment brain signal variability: A next frontier
in human brain mapping? Neuroscience & Biobehavioral
Reviews, 37, 610–624. https://doi.org/10.1016/j.neubiorev
.2013.02.015, PubMed: 23458776

Gayet, S., Paffen, C. L. E., & Van der Stigchel, S. (2018). Visual
working memory storage recruits sensory processing areas.
Trends in Cognitive Sciences, 22, 189–190. https://doi.org/10
.1016/j.tics.2017.09.011, PubMed: 29050827

Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways
for perception and action. Trends in Neurosciences, 15,
20–25. https://doi.org/10.1016/0166-2236(92)90344-8,
PubMed: 1374953

Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko,
Y. O., Waskom, M. L., et al. (2011). Nipype: A flexible,
lightweight and extensible neuroimaging data processing

framework in Python. Frontiers in Neuroinformatics, 5, 13.
https://doi.org/10.3389/fninf.2011.00013, PubMed: 21897815

Greve, D. N., & Fischl, B. (2009). Accurate and robust brain
image alignment using boundary-based registration.
Neuroimage, 48, 63–72. https://doi.org/10.1016/j.neuroimage
.2009.06.060, PubMed: 19573611

Grill-Spector, K., & Weiner, K. S. (2014). The functional
architecture of the ventral temporal cortex and its role in
categorization. Nature Reviews Neuroscience, 15, 536–548.
https://doi.org/10.1038/nrn3747, PubMed: 24962370

Hakim, N., deBettencourt, M. T., Awh, E., & Vogel, E. K. (2020).
Attention fluctuations impact ongoing maintenance of
information in working memory. Psychonomic Bulletin &
Review, 27, 1269–1278. https://doi.org/10.3758/s13423-020
-01790-z, PubMed: 32808159

Harrison, S. A., & Tong, F. (2009). Decoding reveals the
contents of visual working memory in early visual areas.
Nature, 458, 632–635. https://doi.org/10.1038/nature07832,
PubMed: 19225460

Haxby, J. V., Connolly, A. C., & Guntupalli, J. S. (2014).
Decoding neural representational spaces using multivariate
pattern analysis. Annual Review of Neuroscience, 37,
435–456. https://doi.org/10.1146/annurev-neuro-062012
-170325, PubMed: 25002277

Hayes, J. P., VanElzakker, M. B., & Shin, L. M. (2012). Emotion
and cognition interactions in PTSD: A review of neurocognitive
and neuroimaging studies. Frontiers in Integrative
Neuroscience, 6, 89. https://doi.org/10.3389/fnint.2012
.00089, PubMed: 23087624

Hemmer, P., & Persaud, K. (2014). Interaction between
categorical knowledge and episodic memory across domains.
Frontiers in Psychology, 5, 584. https://doi.org/10.3389/fpsyg
.2014.00584, PubMed: 24966848

Hubbard, R. J., & Sahakyan, L. (2021). Separable neural
mechanisms support intentional forgetting and thought
substitution. Cortex, 142, 317–331. https://doi.org/10.1016/j
.cortex.2021.06.013, PubMed: 34343901

Hubbard, R. J., & Sahakyan, L. (2023). Differential recruitment
of inhibitory control processes by directed forgetting and
thought substitution. Journal of Neuroscience, 43,
1963–1975. https://doi.org/10.1523/JNEUROSCI.0696-22
.2023, PubMed: 36810228

Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002).
Improved optimization for the robust and accurate linear
registration and motion correction of brain images.
Neuroimage, 17, 825–841. https://doi.org/10.1006/nimg.2002
.1132, PubMed: 12377157

Jern, A., & Kemp, C. (2013). A probabilistic account of exemplar
and category generation. Cognitive Psychology, 66, 85–125.
https://doi.org/10.1016/j.cogpsych.2012.09.003, PubMed:
23108001

Kaniuth, P., & Hebart, M. N. (2022). Feature-reweighted
representational similarity analysis: A method for improving
the fit between computational models, brains, and behavior.
Neuroimage, 257, 119294. https://doi.org/10.1016/j
.neuroimage.2022.119294, PubMed: 35580810

Kim, G., Lewis-Peacock, J. A., Norman, K. A., & Turk-Browne, N. B.
(2014). Pruning of memories by context-based prediction
error. Proceedings of the National Academy of Sciences,
U.S.A., 111, 8997–9002. https://doi.org/10.1073/pnas
.1319438111, PubMed: 24889631

Kim, H., Schlichting, M. L., Preston, A. R., & Lewis-Peacock, J. A.
(2020). Predictability changes what we remember in familiar
temporal contexts. Journal of Cognitive Neuroscience, 32,
124–140. https://doi.org/10.1162/jocn_a_01473, PubMed:
31560266

Kim, H., Smolker, H. R., Smith, L. L., Banich, M. T., & Lewis-
Peacock, J. A. (2020). Changes to information in working

2134 Journal of Cognitive Neuroscience Volume 36, Number 10

https://doi.org/10.1098/rstb.2007.2086
https://doi.org/10.1098/rstb.2007.2086
https://doi.org/10.1098/rstb.2007.2086
https://doi.org/10.1098/rstb.2007.2086
https://doi.org/10.1098/rstb.2007.2086
https://doi.org/10.1098/rstb.2007.2086
https://doi.org/10.1098/rstb.2007.2086
https://doi.org/10.1098/rstb.2007.2086
https://doi.org/10.1098/rstb.2007.2086
https://pubmed.ncbi.nlm.nih.gov/17400538
https://doi.org/10.1146/annurev-psych-010814-015031
https://doi.org/10.1146/annurev-psych-010814-015031
https://doi.org/10.1146/annurev-psych-010814-015031
https://doi.org/10.1146/annurev-psych-010814-015031
https://doi.org/10.1146/annurev-psych-010814-015031
https://doi.org/10.1146/annurev-psych-010814-015031
https://doi.org/10.1146/annurev-psych-010814-015031
https://doi.org/10.1146/annurev-psych-010814-015031
https://doi.org/10.1146/annurev-psych-010814-015031
https://doi.org/10.1146/annurev-psych-010814-015031
https://pubmed.ncbi.nlm.nih.gov/25251486
https://doi.org/10.1016/j.conb.2006.10.012
https://doi.org/10.1016/j.conb.2006.10.012
https://doi.org/10.1016/j.conb.2006.10.012
https://doi.org/10.1016/j.conb.2006.10.012
https://doi.org/10.1016/j.conb.2006.10.012
https://doi.org/10.1016/j.conb.2006.10.012
https://doi.org/10.1016/j.conb.2006.10.012
https://doi.org/10.1016/j.conb.2006.10.012
https://doi.org/10.1016/j.conb.2006.10.012
https://doi.org/10.1016/j.conb.2006.10.012
https://doi.org/10.1016/j.conb.2006.10.012
https://pubmed.ncbi.nlm.nih.gov/17097284
https://doi.org/10.1038/s41562-019-0606-6
https://doi.org/10.1038/s41562-019-0606-6
https://doi.org/10.1038/s41562-019-0606-6
https://doi.org/10.1038/s41562-019-0606-6
https://doi.org/10.1038/s41562-019-0606-6
https://doi.org/10.1038/s41562-019-0606-6
https://doi.org/10.1038/s41562-019-0606-6
https://doi.org/10.1038/s41562-019-0606-6
https://doi.org/10.1038/s41562-019-0606-6
https://doi.org/10.1038/s41562-019-0606-6
https://pubmed.ncbi.nlm.nih.gov/31110335
https://doi.org/10.1126/science.1139560
https://doi.org/10.1126/science.1139560
https://doi.org/10.1126/science.1139560
https://doi.org/10.1126/science.1139560
https://doi.org/10.1126/science.1139560
https://doi.org/10.1126/science.1139560
https://doi.org/10.1126/science.1139560
https://doi.org/10.1126/science.1139560
https://pubmed.ncbi.nlm.nih.gov/17626877
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1038/33402
https://doi.org/10.1038/33402
https://doi.org/10.1038/33402
https://doi.org/10.1038/33402
https://doi.org/10.1038/33402
https://doi.org/10.1038/33402
https://doi.org/10.1038/33402
https://doi.org/10.1038/33402
https://pubmed.ncbi.nlm.nih.gov/9560155
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/s41592-018-0235-4
https://doi.org/10.1038/s41592-018-0235-4
https://pubmed.ncbi.nlm.nih.gov/30532080
https://doi.org/10.5281/ZENODO.6555085
https://doi.org/10.5281/ZENODO.6555085
https://doi.org/10.5281/ZENODO.6555085
https://doi.org/10.5281/ZENODO.6555085
https://doi.org/10.5281/ZENODO.6555085
https://doi.org/10.5281/ZENODO.6555085
https://doi.org/10.5281/ZENODO.6555085
https://doi.org/10.5281/ZENODO.6555085
https://doi.org/10.5281/ZENODO.6555085
https://doi.org/10.1016/0378-3758(91)90013-5
https://doi.org/10.1016/0378-3758(91)90013-5
https://doi.org/10.1016/0378-3758(91)90013-5
https://doi.org/10.1016/0378-3758(91)90013-5
https://doi.org/10.1016/0378-3758(91)90013-5
https://doi.org/10.1016/0378-3758(91)90013-5
https://doi.org/10.1016/0378-3758(91)90013-5
https://doi.org/10.1016/0378-3758(91)90013-5
https://doi.org/10.1016/0378-3758(91)90013-5
https://doi.org/10.1146/annurev-clinpsy-021815-093533
https://doi.org/10.1146/annurev-clinpsy-021815-093533
https://doi.org/10.1146/annurev-clinpsy-021815-093533
https://doi.org/10.1146/annurev-clinpsy-021815-093533
https://doi.org/10.1146/annurev-clinpsy-021815-093533
https://doi.org/10.1146/annurev-clinpsy-021815-093533
https://doi.org/10.1146/annurev-clinpsy-021815-093533
https://doi.org/10.1146/annurev-clinpsy-021815-093533
https://doi.org/10.1146/annurev-clinpsy-021815-093533
https://doi.org/10.1146/annurev-clinpsy-021815-093533
https://pubmed.ncbi.nlm.nih.gov/26565122
https://doi.org/10.1016/S1053-8119(09)70884-5
https://doi.org/10.1016/S1053-8119(09)70884-5
https://doi.org/10.1016/S1053-8119(09)70884-5
https://doi.org/10.1016/S1053-8119(09)70884-5
https://doi.org/10.1016/S1053-8119(09)70884-5
https://doi.org/10.1016/S1053-8119(09)70884-5
https://doi.org/10.1016/S1053-8119(09)70884-5
https://doi.org/10.1016/S1053-8119(09)70884-5
https://doi.org/10.1016/S1053-8119(09)70884-5
https://doi.org/10.1073/pnas.1311468111
https://doi.org/10.1073/pnas.1311468111
https://doi.org/10.1073/pnas.1311468111
https://doi.org/10.1073/pnas.1311468111
https://doi.org/10.1073/pnas.1311468111
https://doi.org/10.1073/pnas.1311468111
https://doi.org/10.1073/pnas.1311468111
https://doi.org/10.1073/pnas.1311468111
https://pubmed.ncbi.nlm.nih.gov/24639546
https://doi.org/10.1016/j.neubiorev.2013.02.015
https://doi.org/10.1016/j.neubiorev.2013.02.015
https://doi.org/10.1016/j.neubiorev.2013.02.015
https://doi.org/10.1016/j.neubiorev.2013.02.015
https://doi.org/10.1016/j.neubiorev.2013.02.015
https://doi.org/10.1016/j.neubiorev.2013.02.015
https://doi.org/10.1016/j.neubiorev.2013.02.015
https://doi.org/10.1016/j.neubiorev.2013.02.015
https://doi.org/10.1016/j.neubiorev.2013.02.015
https://doi.org/10.1016/j.neubiorev.2013.02.015
https://doi.org/10.1016/j.neubiorev.2013.02.015
https://pubmed.ncbi.nlm.nih.gov/23458776
https://doi.org/10.1016/j.tics.2017.09.011
https://doi.org/10.1016/j.tics.2017.09.011
https://doi.org/10.1016/j.tics.2017.09.011
https://doi.org/10.1016/j.tics.2017.09.011
https://doi.org/10.1016/j.tics.2017.09.011
https://doi.org/10.1016/j.tics.2017.09.011
https://doi.org/10.1016/j.tics.2017.09.011
https://doi.org/10.1016/j.tics.2017.09.011
https://doi.org/10.1016/j.tics.2017.09.011
https://doi.org/10.1016/j.tics.2017.09.011
https://doi.org/10.1016/j.tics.2017.09.011
https://pubmed.ncbi.nlm.nih.gov/29050827
https://doi.org/10.1016/0166-2236(92)90344-8
https://doi.org/10.1016/0166-2236(92)90344-8
https://doi.org/10.1016/0166-2236(92)90344-8
https://doi.org/10.1016/0166-2236(92)90344-8
https://doi.org/10.1016/0166-2236(92)90344-8
https://doi.org/10.1016/0166-2236(92)90344-8
https://doi.org/10.1016/0166-2236(92)90344-8
https://doi.org/10.1016/0166-2236(92)90344-8
https://doi.org/10.1016/0166-2236(92)90344-8
https://pubmed.ncbi.nlm.nih.gov/1374953
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.3389/fninf.2011.00013
https://doi.org/10.3389/fninf.2011.00013
https://pubmed.ncbi.nlm.nih.gov/21897815
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://doi.org/10.1016/j.neuroimage.2009.06.060
https://pubmed.ncbi.nlm.nih.gov/19573611
https://doi.org/10.1038/nrn3747
https://doi.org/10.1038/nrn3747
https://doi.org/10.1038/nrn3747
https://doi.org/10.1038/nrn3747
https://doi.org/10.1038/nrn3747
https://doi.org/10.1038/nrn3747
https://doi.org/10.1038/nrn3747
https://pubmed.ncbi.nlm.nih.gov/24962370
https://doi.org/10.3758/s13423-020-01790-z
https://doi.org/10.3758/s13423-020-01790-z
https://doi.org/10.3758/s13423-020-01790-z
https://doi.org/10.3758/s13423-020-01790-z
https://doi.org/10.3758/s13423-020-01790-z
https://doi.org/10.3758/s13423-020-01790-z
https://doi.org/10.3758/s13423-020-01790-z
https://doi.org/10.3758/s13423-020-01790-z
https://doi.org/10.3758/s13423-020-01790-z
https://doi.org/10.3758/s13423-020-01790-z
https://pubmed.ncbi.nlm.nih.gov/32808159
https://doi.org/10.1038/nature07832
https://doi.org/10.1038/nature07832
https://doi.org/10.1038/nature07832
https://doi.org/10.1038/nature07832
https://doi.org/10.1038/nature07832
https://doi.org/10.1038/nature07832
https://doi.org/10.1038/nature07832
https://pubmed.ncbi.nlm.nih.gov/19225460
https://doi.org/10.1146/annurev-neuro-062012-170325
https://doi.org/10.1146/annurev-neuro-062012-170325
https://doi.org/10.1146/annurev-neuro-062012-170325
https://doi.org/10.1146/annurev-neuro-062012-170325
https://doi.org/10.1146/annurev-neuro-062012-170325
https://doi.org/10.1146/annurev-neuro-062012-170325
https://doi.org/10.1146/annurev-neuro-062012-170325
https://doi.org/10.1146/annurev-neuro-062012-170325
https://doi.org/10.1146/annurev-neuro-062012-170325
https://doi.org/10.1146/annurev-neuro-062012-170325
https://pubmed.ncbi.nlm.nih.gov/25002277
https://doi.org/10.3389/fnint.2012.00089
https://doi.org/10.3389/fnint.2012.00089
https://doi.org/10.3389/fnint.2012.00089
https://doi.org/10.3389/fnint.2012.00089
https://doi.org/10.3389/fnint.2012.00089
https://doi.org/10.3389/fnint.2012.00089
https://doi.org/10.3389/fnint.2012.00089
https://doi.org/10.3389/fnint.2012.00089
https://doi.org/10.3389/fnint.2012.00089
https://pubmed.ncbi.nlm.nih.gov/23087624
https://doi.org/10.3389/fpsyg.2014.00584
https://doi.org/10.3389/fpsyg.2014.00584
https://doi.org/10.3389/fpsyg.2014.00584
https://doi.org/10.3389/fpsyg.2014.00584
https://doi.org/10.3389/fpsyg.2014.00584
https://doi.org/10.3389/fpsyg.2014.00584
https://doi.org/10.3389/fpsyg.2014.00584
https://doi.org/10.3389/fpsyg.2014.00584
https://doi.org/10.3389/fpsyg.2014.00584
https://pubmed.ncbi.nlm.nih.gov/24966848
https://doi.org/10.1016/j.cortex.2021.06.013
https://doi.org/10.1016/j.cortex.2021.06.013
https://doi.org/10.1016/j.cortex.2021.06.013
https://doi.org/10.1016/j.cortex.2021.06.013
https://doi.org/10.1016/j.cortex.2021.06.013
https://doi.org/10.1016/j.cortex.2021.06.013
https://doi.org/10.1016/j.cortex.2021.06.013
https://doi.org/10.1016/j.cortex.2021.06.013
https://doi.org/10.1016/j.cortex.2021.06.013
https://doi.org/10.1016/j.cortex.2021.06.013
https://doi.org/10.1016/j.cortex.2021.06.013
https://pubmed.ncbi.nlm.nih.gov/34343901
https://doi.org/10.1523/JNEUROSCI.0696-22.2023
https://doi.org/10.1523/JNEUROSCI.0696-22.2023
https://doi.org/10.1523/JNEUROSCI.0696-22.2023
https://doi.org/10.1523/JNEUROSCI.0696-22.2023
https://doi.org/10.1523/JNEUROSCI.0696-22.2023
https://doi.org/10.1523/JNEUROSCI.0696-22.2023
https://doi.org/10.1523/JNEUROSCI.0696-22.2023
https://doi.org/10.1523/JNEUROSCI.0696-22.2023
https://doi.org/10.1523/JNEUROSCI.0696-22.2023
https://doi.org/10.1523/JNEUROSCI.0696-22.2023
https://doi.org/10.1523/JNEUROSCI.0696-22.2023
https://pubmed.ncbi.nlm.nih.gov/36810228
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1006/nimg.2002.1132
https://pubmed.ncbi.nlm.nih.gov/12377157
https://doi.org/10.1016/j.cogpsych.2012.09.003
https://doi.org/10.1016/j.cogpsych.2012.09.003
https://doi.org/10.1016/j.cogpsych.2012.09.003
https://doi.org/10.1016/j.cogpsych.2012.09.003
https://doi.org/10.1016/j.cogpsych.2012.09.003
https://doi.org/10.1016/j.cogpsych.2012.09.003
https://doi.org/10.1016/j.cogpsych.2012.09.003
https://doi.org/10.1016/j.cogpsych.2012.09.003
https://doi.org/10.1016/j.cogpsych.2012.09.003
https://doi.org/10.1016/j.cogpsych.2012.09.003
https://doi.org/10.1016/j.cogpsych.2012.09.003
https://pubmed.ncbi.nlm.nih.gov/23108001
https://doi.org/10.1016/j.neuroimage.2022.119294
https://doi.org/10.1016/j.neuroimage.2022.119294
https://doi.org/10.1016/j.neuroimage.2022.119294
https://doi.org/10.1016/j.neuroimage.2022.119294
https://doi.org/10.1016/j.neuroimage.2022.119294
https://doi.org/10.1016/j.neuroimage.2022.119294
https://doi.org/10.1016/j.neuroimage.2022.119294
https://doi.org/10.1016/j.neuroimage.2022.119294
https://doi.org/10.1016/j.neuroimage.2022.119294
https://doi.org/10.1016/j.neuroimage.2022.119294
https://pubmed.ncbi.nlm.nih.gov/35580810
https://doi.org/10.1073/pnas.1319438111
https://doi.org/10.1073/pnas.1319438111
https://doi.org/10.1073/pnas.1319438111
https://doi.org/10.1073/pnas.1319438111
https://doi.org/10.1073/pnas.1319438111
https://doi.org/10.1073/pnas.1319438111
https://doi.org/10.1073/pnas.1319438111
https://doi.org/10.1073/pnas.1319438111
https://pubmed.ncbi.nlm.nih.gov/24889631
https://doi.org/10.1162/jocn_a_01473
https://doi.org/10.1162/jocn_a_01473
https://doi.org/10.1162/jocn_a_01473
https://doi.org/10.1162/jocn_a_01473
https://doi.org/10.1162/jocn_a_01473
https://doi.org/10.1162/jocn_a_01473
https://doi.org/10.1162/jocn_a_01473
https://doi.org/10.1162/jocn_a_01473
https://doi.org/10.1162/jocn_a_01473
https://pubmed.ncbi.nlm.nih.gov/31560266


memory depend on distinct removal operations. Nature
Communications, 11, 6239. https://doi.org/10.1038/s41467
-020-20085-4, PubMed: 33288756

Klein, A., Ghosh, S. S., Bao, F. S., Giard, J., Häme, Y., Stavsky, E.,
et al. (2017). Mindboggling morphometry of human
brains. PLoS Computational Biology, 13, e1005350.
https://doi.org/10.1371/journal.pcbi.1005350, PubMed:
28231282

Kumar, M., Ellis, C. T., Lu, Q., Zhang, H., Capotă, M., Willke,
T. L., et al. (2020). BrainIAK tutorials: User-friendly learning
materials for advanced fMRI analysis. PLoS Computational
Biology, 16, e1007549. https://doi.org/10.1371/journal.pcbi
.1007549, PubMed: 31940340

Lanczos, C. (1964). Evaluation of noisy data. Journal of the
Society for Industrial and Applied Mathematics: Series B,
Numerical Analysis, 1, 76–85. https://doi.org/10.1137
/0701007

LaRocque, J. J., Lewis-Peacock, J. A., & Postle, B. R. (2014).
Multiple neural states of representation in short-term
memory? It’s a matter of attention. Frontiers in Human
Neuroscience, 8, 5. https://doi.org/10.3389/fnhum.2014
.00005, PubMed: 24478671

Levy, B. J., & Anderson, M. C. (2008). Individual differences
in the suppression of unwanted memories: The executive
deficit hypothesis. Acta Psychologica, 127, 623–635.
https://doi.org/10.1016/j.actpsy.2007.12.004, PubMed:
18242571

Lewis-Peacock, J. A., Drysdale, A. T., Oberauer, K., & Postle,
B. R. (2012). Neural evidence for a distinction between
short-term memory and the focus of attention. Journal of
Cognitive Neuroscience, 24, 61–79. https://doi.org/10.1162
/jocn_a_00140, PubMed: 21955164

Lewis-Peacock, J. A., Kessler, Y., & Oberauer, K. (2018). The
removal of information from working memory. Annals of the
New York Academy of Sciences, 1424, 33–44. https://doi.org
/10.1111/nyas.13714, PubMed: 29741212

Lewis-Peacock, J. A., & Norman, K. A. (2014a). Competition
between items in working memory leads to forgetting.
Nature Communications, 5, 5768. https://doi.org/10.1038
/ncomms6768, PubMed: 25519874

Lewis-Peacock, J. A., & Norman, K. A. (2014b). Multi-voxel
pattern analysis of fMRI data. In The cognitive neurosciences
(pp. 911–920). Cambridge, MA: MIT Press. https://doi.org/10
.7551/mitpress/11442.001.0001

Luck, S. J., & Vogel, E. K. (2013). Visual working memory
capacity: From psychophysics and neurobiology to individual
differences. Trends in Cognitive Sciences, 17, 391–400.
https://doi.org/10.1016/j.tics.2013.06.006, PubMed: 23850263

Martin, A. (2007). The representation of object concepts in the
brain. Annual Review of Psychology, 58, 25–45. https://doi
.org/10.1146/annurev.psych.57.102904.190143, PubMed:
16968210

Mary, A., Dayan, J., Leone, G., Postel, C., Fraisse, F., Malle, C.,
et al. (2020). Resilience after trauma: The role of memory
suppression. Science, 367, eaay8477. https://doi.org/10.1126
/science.aay8477, PubMed: 32054733

Melrose, R. J., Zahniser, E., Wilkins, S. S., Veliz, J., Hasratian,
A. S., Sultzer, D. L., et al. (2020). Prefrontal working
memory activity predicts episodic memory performance:
A neuroimaging study. Behavioural Brain Research, 379,
112307. https://doi.org/10.1016/j.bbr.2019.112307, PubMed:
31678217

Paller, K. A., & Wagner, A. D. (2002). Observing the
transformation of experience into memory. Trends in
Cognitive Sciences, 6, 93–102. https://doi.org/10.1016/S1364
-6613(00)01845-3, PubMed: 15866193

Pertzov, Y., Manohar, S., & Husain, M. (2017). Rapid forgetting
results from competition over time between items in visual

working memory. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 43, 528–536. https://doi
.org/10.1037/xlm0000328, PubMed: 27668485

Polk, T. A., Drake, R. M., Jonides, J. J., Smith, M. R., & Smith,
E. E. (2008). Attention enhances the neural processing of
relevant features and suppresses the processing of irrelevant
features in humans: A functional magnetic resonance imaging
study of the Stroop task. Journal of Neuroscience, 28,
13786–13792. https://doi.org/10.1523/JNEUROSCI.1026-08
.2008, PubMed: 19091969

Power, J. D. (2014). Methods to detect, characterize, and
remove motion artifact in resting state fMRI. Neuroimage, 84,
320–341. https://doi.org/10.1016/j.neuroimage.2013.08.048,
PubMed: 23994314

Rademaker, R. L., Chunharas, C., & Serences, J. T. (2019).
Coexisting representations of sensory and mnemonic
information in human visual cortex. Nature Neuroscience,
22, 1336–1344. https://doi.org/10.1038/s41593-019-0428-x,
PubMed: 31263205

Ranganath, C., Cohen, M. X., & Brozinsky, C. J. (2005). Working
memory maintenance contributes to long-term memory
formation: Neural and behavioral evidence. Journal of
Cognitive Neuroscience, 17, 994–1010. https://doi.org/10
.1162/0898929054475118, PubMed: 16102232

Ranganath, C., Cohen, M. X., Dam, C., & D’Esposito, M. (2004).
Inferior temporal, prefrontal, and hippocampal contributions
to visual working memory maintenance and associative
memory retrieval. Journal of Neuroscience, 24, 3917–3925.
https://doi.org/10.1523/JNEUROSCI.5053-03.2004, PubMed:
15102907

Ranganath, C., DeGutis, J., & D’Esposito, M. (2004). Category-
specific modulation of inferior temporal activity during
working memory encoding and maintenance. Cognitive
Brain Research, 20, 37–45. https://doi.org/10.1016/j
.cogbrainres.2003.11.017, PubMed: 15130587

Reagh, Z. M., & Ranganath, C. (2023). Flexible reuse of
cortico-hippocampal representations during encoding and
recall of naturalistic events. Nature Communications, 14,
1279. https://doi.org/10.1038/s41467-023-36805-5, PubMed:
36890146

Sahakyan, L., & Kelley, C. M. (2002). A contextual change
account of the directed forgetting effect. Journal of
Experimental Psychology: Learning, Memory, and
Cognition, 28, 1064–1072. https://doi.org/10.1037/0278-7393
.28.6.1064, PubMed: 12450332

Satterthwaite, T. D., Elliott, M. A., Gerraty, R. T., Ruparel, K.,
Loughead, J., Calkins, M. E., et al. (2013). An improved
framework for confound regression and filtering for control
of motion artifact in the preprocessing of resting-state
functional connectivity data. Neuroimage, 64, 240–256. https://
doi.org/10.1016/j.neuroimage.2012.08.052, PubMed: 22926292

Seabold, S., & Perktold, J. (2010). Statsmodels: Econometric
and statistical modeling with Python. In Proceedings of the
9th Python in Science Conference (pp. 92–96). https://doi
.org/10.25080/Majora-92bf1922-011

Serences, J. T. (2016). Neural mechanisms of information storage
in visual short-term memory. Vision Research, 128, 53–67.
https://doi.org/10.1016/j.visres.2016.09.010, PubMed: 27668990

Serences, J. T., Ester, E. F., Vogel, E. K., & Awh, E. (2009).
Stimulus-specific delay activity in human primary visual
cortex. Psychological Science, 20, 207–214. https://doi.org/10
.1111/j.1467-9280.2009.02276.x, PubMed: 19170936

Sreenivasan, K. K., Curtis, C. E., & D’Esposito, M. (2014).
Revisiting the role of persistent neural activity during working
memory. Trends in Cognitive Sciences, 18, 82–89. https://doi
.org/10.1016/j.tics.2013.12.001, PubMed: 24439529

Sullivan, D. R., Marx, B., Chen, M. S., Depue, B. E., Hayes, S. M.,
& Hayes, J. P. (2019). Behavioral and neural correlates of

Bretton et al. 2135

https://doi.org/10.1038/s41467-020-20085-4
https://doi.org/10.1038/s41467-020-20085-4
https://doi.org/10.1038/s41467-020-20085-4
https://doi.org/10.1038/s41467-020-20085-4
https://doi.org/10.1038/s41467-020-20085-4
https://doi.org/10.1038/s41467-020-20085-4
https://doi.org/10.1038/s41467-020-20085-4
https://doi.org/10.1038/s41467-020-20085-4
https://doi.org/10.1038/s41467-020-20085-4
https://doi.org/10.1038/s41467-020-20085-4
https://pubmed.ncbi.nlm.nih.gov/33288756
https://doi.org/10.1371/journal.pcbi.1005350
https://doi.org/10.1371/journal.pcbi.1005350
https://doi.org/10.1371/journal.pcbi.1005350
https://doi.org/10.1371/journal.pcbi.1005350
https://doi.org/10.1371/journal.pcbi.1005350
https://doi.org/10.1371/journal.pcbi.1005350
https://doi.org/10.1371/journal.pcbi.1005350
https://doi.org/10.1371/journal.pcbi.1005350
https://doi.org/10.1371/journal.pcbi.1005350
https://pubmed.ncbi.nlm.nih.gov/28231282
https://doi.org/10.1371/journal.pcbi.1007549
https://doi.org/10.1371/journal.pcbi.1007549
https://doi.org/10.1371/journal.pcbi.1007549
https://doi.org/10.1371/journal.pcbi.1007549
https://doi.org/10.1371/journal.pcbi.1007549
https://doi.org/10.1371/journal.pcbi.1007549
https://doi.org/10.1371/journal.pcbi.1007549
https://doi.org/10.1371/journal.pcbi.1007549
https://doi.org/10.1371/journal.pcbi.1007549
https://pubmed.ncbi.nlm.nih.gov/31940340
https://doi.org/10.1137/0701007
https://doi.org/10.1137/0701007
https://doi.org/10.1137/0701007
https://doi.org/10.1137/0701007
https://doi.org/10.1137/0701007
https://doi.org/10.1137/0701007
https://doi.org/10.1137/0701007
https://doi.org/10.3389/fnhum.2014.00005
https://doi.org/10.3389/fnhum.2014.00005
https://doi.org/10.3389/fnhum.2014.00005
https://doi.org/10.3389/fnhum.2014.00005
https://doi.org/10.3389/fnhum.2014.00005
https://doi.org/10.3389/fnhum.2014.00005
https://doi.org/10.3389/fnhum.2014.00005
https://doi.org/10.3389/fnhum.2014.00005
https://doi.org/10.3389/fnhum.2014.00005
https://pubmed.ncbi.nlm.nih.gov/24478671
https://doi.org/10.1016/j.actpsy.2007.12.004
https://doi.org/10.1016/j.actpsy.2007.12.004
https://doi.org/10.1016/j.actpsy.2007.12.004
https://doi.org/10.1016/j.actpsy.2007.12.004
https://doi.org/10.1016/j.actpsy.2007.12.004
https://doi.org/10.1016/j.actpsy.2007.12.004
https://doi.org/10.1016/j.actpsy.2007.12.004
https://doi.org/10.1016/j.actpsy.2007.12.004
https://doi.org/10.1016/j.actpsy.2007.12.004
https://doi.org/10.1016/j.actpsy.2007.12.004
https://doi.org/10.1016/j.actpsy.2007.12.004
https://pubmed.ncbi.nlm.nih.gov/18242571
https://doi.org/10.1162/jocn_a_00140
https://doi.org/10.1162/jocn_a_00140
https://doi.org/10.1162/jocn_a_00140
https://doi.org/10.1162/jocn_a_00140
https://doi.org/10.1162/jocn_a_00140
https://doi.org/10.1162/jocn_a_00140
https://doi.org/10.1162/jocn_a_00140
https://doi.org/10.1162/jocn_a_00140
https://doi.org/10.1162/jocn_a_00140
https://pubmed.ncbi.nlm.nih.gov/21955164
https://doi.org/10.1111/nyas.13714
https://doi.org/10.1111/nyas.13714
https://doi.org/10.1111/nyas.13714
https://doi.org/10.1111/nyas.13714
https://doi.org/10.1111/nyas.13714
https://doi.org/10.1111/nyas.13714
https://doi.org/10.1111/nyas.13714
https://doi.org/10.1111/nyas.13714
https://pubmed.ncbi.nlm.nih.gov/29741212
https://doi.org/10.1038/ncomms6768
https://doi.org/10.1038/ncomms6768
https://doi.org/10.1038/ncomms6768
https://doi.org/10.1038/ncomms6768
https://doi.org/10.1038/ncomms6768
https://doi.org/10.1038/ncomms6768
https://doi.org/10.1038/ncomms6768
https://pubmed.ncbi.nlm.nih.gov/25519874
https://doi.org/10.7551/mitpress/11442.001.0001
https://doi.org/10.7551/mitpress/11442.001.0001
https://doi.org/10.7551/mitpress/11442.001.0001
https://doi.org/10.7551/mitpress/11442.001.0001
https://doi.org/10.7551/mitpress/11442.001.0001
https://doi.org/10.7551/mitpress/11442.001.0001
https://doi.org/10.7551/mitpress/11442.001.0001
https://doi.org/10.7551/mitpress/11442.001.0001
https://doi.org/10.7551/mitpress/11442.001.0001
https://doi.org/10.7551/mitpress/11442.001.0001
https://doi.org/10.1016/j.tics.2013.06.006
https://doi.org/10.1016/j.tics.2013.06.006
https://doi.org/10.1016/j.tics.2013.06.006
https://doi.org/10.1016/j.tics.2013.06.006
https://doi.org/10.1016/j.tics.2013.06.006
https://doi.org/10.1016/j.tics.2013.06.006
https://doi.org/10.1016/j.tics.2013.06.006
https://doi.org/10.1016/j.tics.2013.06.006
https://doi.org/10.1016/j.tics.2013.06.006
https://doi.org/10.1016/j.tics.2013.06.006
https://doi.org/10.1016/j.tics.2013.06.006
https://pubmed.ncbi.nlm.nih.gov/23850263
https://doi.org/10.1146/annurev.psych.57.102904.190143
https://doi.org/10.1146/annurev.psych.57.102904.190143
https://doi.org/10.1146/annurev.psych.57.102904.190143
https://doi.org/10.1146/annurev.psych.57.102904.190143
https://doi.org/10.1146/annurev.psych.57.102904.190143
https://doi.org/10.1146/annurev.psych.57.102904.190143
https://doi.org/10.1146/annurev.psych.57.102904.190143
https://doi.org/10.1146/annurev.psych.57.102904.190143
https://doi.org/10.1146/annurev.psych.57.102904.190143
https://doi.org/10.1146/annurev.psych.57.102904.190143
https://doi.org/10.1146/annurev.psych.57.102904.190143
https://pubmed.ncbi.nlm.nih.gov/16968210
https://doi.org/10.1126/science.aay8477
https://doi.org/10.1126/science.aay8477
https://doi.org/10.1126/science.aay8477
https://doi.org/10.1126/science.aay8477
https://doi.org/10.1126/science.aay8477
https://doi.org/10.1126/science.aay8477
https://doi.org/10.1126/science.aay8477
https://doi.org/10.1126/science.aay8477
https://pubmed.ncbi.nlm.nih.gov/32054733
https://doi.org/10.1016/j.bbr.2019.112307
https://doi.org/10.1016/j.bbr.2019.112307
https://doi.org/10.1016/j.bbr.2019.112307
https://doi.org/10.1016/j.bbr.2019.112307
https://doi.org/10.1016/j.bbr.2019.112307
https://doi.org/10.1016/j.bbr.2019.112307
https://doi.org/10.1016/j.bbr.2019.112307
https://doi.org/10.1016/j.bbr.2019.112307
https://doi.org/10.1016/j.bbr.2019.112307
https://doi.org/10.1016/j.bbr.2019.112307
https://pubmed.ncbi.nlm.nih.gov/31678217
https://doi.org/10.1016/S1364-6613(00)01845-3
https://doi.org/10.1016/S1364-6613(00)01845-3
https://doi.org/10.1016/S1364-6613(00)01845-3
https://doi.org/10.1016/S1364-6613(00)01845-3
https://doi.org/10.1016/S1364-6613(00)01845-3
https://doi.org/10.1016/S1364-6613(00)01845-3
https://doi.org/10.1016/S1364-6613(00)01845-3
https://doi.org/10.1016/S1364-6613(00)01845-3
https://doi.org/10.1016/S1364-6613(00)01845-3
https://pubmed.ncbi.nlm.nih.gov/15866193
https://doi.org/10.1037/xlm0000328
https://doi.org/10.1037/xlm0000328
https://doi.org/10.1037/xlm0000328
https://doi.org/10.1037/xlm0000328
https://doi.org/10.1037/xlm0000328
https://doi.org/10.1037/xlm0000328
https://doi.org/10.1037/xlm0000328
https://pubmed.ncbi.nlm.nih.gov/27668485
https://doi.org/10.1523/JNEUROSCI.1026-08.2008
https://doi.org/10.1523/JNEUROSCI.1026-08.2008
https://doi.org/10.1523/JNEUROSCI.1026-08.2008
https://doi.org/10.1523/JNEUROSCI.1026-08.2008
https://doi.org/10.1523/JNEUROSCI.1026-08.2008
https://doi.org/10.1523/JNEUROSCI.1026-08.2008
https://doi.org/10.1523/JNEUROSCI.1026-08.2008
https://doi.org/10.1523/JNEUROSCI.1026-08.2008
https://doi.org/10.1523/JNEUROSCI.1026-08.2008
https://doi.org/10.1523/JNEUROSCI.1026-08.2008
https://doi.org/10.1523/JNEUROSCI.1026-08.2008
https://pubmed.ncbi.nlm.nih.gov/19091969
https://doi.org/10.1016/j.neuroimage.2013.08.048
https://doi.org/10.1016/j.neuroimage.2013.08.048
https://doi.org/10.1016/j.neuroimage.2013.08.048
https://doi.org/10.1016/j.neuroimage.2013.08.048
https://doi.org/10.1016/j.neuroimage.2013.08.048
https://doi.org/10.1016/j.neuroimage.2013.08.048
https://doi.org/10.1016/j.neuroimage.2013.08.048
https://doi.org/10.1016/j.neuroimage.2013.08.048
https://doi.org/10.1016/j.neuroimage.2013.08.048
https://doi.org/10.1016/j.neuroimage.2013.08.048
https://doi.org/10.1016/j.neuroimage.2013.08.048
https://pubmed.ncbi.nlm.nih.gov/23994314
https://doi.org/10.1038/s41593-019-0428-x
https://doi.org/10.1038/s41593-019-0428-x
https://doi.org/10.1038/s41593-019-0428-x
https://doi.org/10.1038/s41593-019-0428-x
https://doi.org/10.1038/s41593-019-0428-x
https://doi.org/10.1038/s41593-019-0428-x
https://doi.org/10.1038/s41593-019-0428-x
https://doi.org/10.1038/s41593-019-0428-x
https://doi.org/10.1038/s41593-019-0428-x
https://doi.org/10.1038/s41593-019-0428-x
https://pubmed.ncbi.nlm.nih.gov/31263205
https://doi.org/10.1162/0898929054475118
https://doi.org/10.1162/0898929054475118
https://doi.org/10.1162/0898929054475118
https://doi.org/10.1162/0898929054475118
https://doi.org/10.1162/0898929054475118
https://doi.org/10.1162/0898929054475118
https://doi.org/10.1162/0898929054475118
https://pubmed.ncbi.nlm.nih.gov/16102232
https://doi.org/10.1523/JNEUROSCI.5053-03.2004
https://doi.org/10.1523/JNEUROSCI.5053-03.2004
https://doi.org/10.1523/JNEUROSCI.5053-03.2004
https://doi.org/10.1523/JNEUROSCI.5053-03.2004
https://doi.org/10.1523/JNEUROSCI.5053-03.2004
https://doi.org/10.1523/JNEUROSCI.5053-03.2004
https://doi.org/10.1523/JNEUROSCI.5053-03.2004
https://doi.org/10.1523/JNEUROSCI.5053-03.2004
https://doi.org/10.1523/JNEUROSCI.5053-03.2004
https://doi.org/10.1523/JNEUROSCI.5053-03.2004
https://doi.org/10.1523/JNEUROSCI.5053-03.2004
https://pubmed.ncbi.nlm.nih.gov/15102907
https://doi.org/10.1016/j.cogbrainres.2003.11.017
https://doi.org/10.1016/j.cogbrainres.2003.11.017
https://doi.org/10.1016/j.cogbrainres.2003.11.017
https://doi.org/10.1016/j.cogbrainres.2003.11.017
https://doi.org/10.1016/j.cogbrainres.2003.11.017
https://doi.org/10.1016/j.cogbrainres.2003.11.017
https://doi.org/10.1016/j.cogbrainres.2003.11.017
https://doi.org/10.1016/j.cogbrainres.2003.11.017
https://doi.org/10.1016/j.cogbrainres.2003.11.017
https://doi.org/10.1016/j.cogbrainres.2003.11.017
https://doi.org/10.1016/j.cogbrainres.2003.11.017
https://pubmed.ncbi.nlm.nih.gov/15130587
https://doi.org/10.1038/s41467-023-36805-5
https://doi.org/10.1038/s41467-023-36805-5
https://doi.org/10.1038/s41467-023-36805-5
https://doi.org/10.1038/s41467-023-36805-5
https://doi.org/10.1038/s41467-023-36805-5
https://doi.org/10.1038/s41467-023-36805-5
https://doi.org/10.1038/s41467-023-36805-5
https://doi.org/10.1038/s41467-023-36805-5
https://doi.org/10.1038/s41467-023-36805-5
https://doi.org/10.1038/s41467-023-36805-5
https://pubmed.ncbi.nlm.nih.gov/36890146
https://doi.org/10.1037/0278-7393.28.6.1064
https://doi.org/10.1037/0278-7393.28.6.1064
https://doi.org/10.1037/0278-7393.28.6.1064
https://doi.org/10.1037/0278-7393.28.6.1064
https://doi.org/10.1037/0278-7393.28.6.1064
https://doi.org/10.1037/0278-7393.28.6.1064
https://doi.org/10.1037/0278-7393.28.6.1064
https://doi.org/10.1037/0278-7393.28.6.1064
https://doi.org/10.1037/0278-7393.28.6.1064
https://doi.org/10.1037/0278-7393.28.6.1064
https://doi.org/10.1037/0278-7393.28.6.1064
https://pubmed.ncbi.nlm.nih.gov/12450332
https://doi.org/10.1016/j.neuroimage.2012.08.052
https://doi.org/10.1016/j.neuroimage.2012.08.052
https://doi.org/10.1016/j.neuroimage.2012.08.052
https://doi.org/10.1016/j.neuroimage.2012.08.052
https://doi.org/10.1016/j.neuroimage.2012.08.052
https://doi.org/10.1016/j.neuroimage.2012.08.052
https://doi.org/10.1016/j.neuroimage.2012.08.052
https://doi.org/10.1016/j.neuroimage.2012.08.052
https://doi.org/10.1016/j.neuroimage.2012.08.052
https://doi.org/10.1016/j.neuroimage.2012.08.052
https://doi.org/10.1016/j.neuroimage.2012.08.052
https://doi.org/10.1016/j.neuroimage.2012.08.052
https://pubmed.ncbi.nlm.nih.gov/22926292
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.25080/Majora-92bf1922-011
https://doi.org/10.1016/j.visres.2016.09.010
https://doi.org/10.1016/j.visres.2016.09.010
https://doi.org/10.1016/j.visres.2016.09.010
https://doi.org/10.1016/j.visres.2016.09.010
https://doi.org/10.1016/j.visres.2016.09.010
https://doi.org/10.1016/j.visres.2016.09.010
https://doi.org/10.1016/j.visres.2016.09.010
https://doi.org/10.1016/j.visres.2016.09.010
https://doi.org/10.1016/j.visres.2016.09.010
https://doi.org/10.1016/j.visres.2016.09.010
https://doi.org/10.1016/j.visres.2016.09.010
https://pubmed.ncbi.nlm.nih.gov/27668990
https://doi.org/10.1111/j.1467-9280.2009.02276.x
https://doi.org/10.1111/j.1467-9280.2009.02276.x
https://doi.org/10.1111/j.1467-9280.2009.02276.x
https://doi.org/10.1111/j.1467-9280.2009.02276.x
https://doi.org/10.1111/j.1467-9280.2009.02276.x
https://doi.org/10.1111/j.1467-9280.2009.02276.x
https://doi.org/10.1111/j.1467-9280.2009.02276.x
https://doi.org/10.1111/j.1467-9280.2009.02276.x
https://doi.org/10.1111/j.1467-9280.2009.02276.x
https://doi.org/10.1111/j.1467-9280.2009.02276.x
https://doi.org/10.1111/j.1467-9280.2009.02276.x
https://doi.org/10.1111/j.1467-9280.2009.02276.x
https://pubmed.ncbi.nlm.nih.gov/19170936
https://doi.org/10.1016/j.tics.2013.12.001
https://doi.org/10.1016/j.tics.2013.12.001
https://doi.org/10.1016/j.tics.2013.12.001
https://doi.org/10.1016/j.tics.2013.12.001
https://doi.org/10.1016/j.tics.2013.12.001
https://doi.org/10.1016/j.tics.2013.12.001
https://doi.org/10.1016/j.tics.2013.12.001
https://doi.org/10.1016/j.tics.2013.12.001
https://doi.org/10.1016/j.tics.2013.12.001
https://doi.org/10.1016/j.tics.2013.12.001
https://doi.org/10.1016/j.tics.2013.12.001
https://pubmed.ncbi.nlm.nih.gov/24439529


memory suppression in PTSD. Journal of Psychiatric
Research, 112, 30–37. https://doi.org/10.1016/j.jpsychires
.2019.02.015, PubMed: 30844595

Taubenfeld, A., Anderson, M. C., & Levy, D. A. (2019). The
impact of retrieval suppression on conceptual implicit
memory. Memory, 27, 686–697. https://doi.org/10.1080
/09658211.2018.1554079, PubMed: 30522403

Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A.,
Yushkevich, P. A., et al. (2010). N4ITK: Improved N3 bias
correction. IEEE Transactions on Medical Imaging, 29,
1310–1320. https://doi.org/10.1109/TMI.2010.2046908,
PubMed: 20378467

Unsworth, N. (2015). Consistency of attentional control as an
important cognitive trait: A latent variable analysis. Intelligence,
49, 110–128. https://doi.org/10.1016/j.intell.2015.01.005

Vo, V. A., Sutterer, D. W., Foster, J. J., Sprague, T. C., Awh, E., &
Serences, J. T. (2022). Shared representational formats for
information maintained in working memory and information
retrieved from long-term memory. Cerebral Cortex, 32,
1077–1092. https://doi.org/10.1093/cercor/bhab267, PubMed:
34428283

Wang, T. H., Placek, K., & Lewis-Peacock, J. A. (2019). More
is less: Increased processing of unwanted memories
facilitates forgetting. Journal of Neuroscience, 39,

3551–3560. https://doi.org/10.1523/JNEUROSCI.2033-18
.2019, PubMed: 30858162

Waschke, L., Kloosterman, N. A., Obleser, J., & Garrett, D. D.
(2021). Behavior needs neural variability. Neuron, 109,
751–766. https://doi.org/10.1016/j.neuron.2021.01.023,
PubMed: 33596406

Wolff, A., Yao, L., Gomez-Pilar, J., Shoaran, M., Jiang, N., &
Northoff, G. (2019). Neural variability quenching during
decision-making: Neural individuality and its prestimulus
complexity. Neuroimage, 192, 1–14. https://doi.org/10.1016/j
.neuroimage.2019.02.070, PubMed: 30844503

Zanto, T. P., & Gazzaley, A. (2009). Neural suppression of
irrelevant information underlies optimal working memory
performance. Journal of Neuroscience, 29, 3059–3066. https://
doi.org/10.1523/JNEUROSCI.4621-08.2009, PubMed: 19279242

Zhang, W., & Luck, S. J. (2009). Sudden death and gradual
decay in visual working memory. Psychological Science, 20,
423–428. https://doi.org/10.1111/j.1467-9280.2009.02322.x,
PubMed: 19320861

Zhou, Y., Mohan, K., & Freedman, D. J. (2022). Abstract
encoding of categorical decisions in medial superior
temporal and lateral intraparietal cortices. Journal of
Neuroscience, 42, 9069–9081. https://doi.org/10.1523
/JNEUROSCI.0017-22.2022, PubMed: 36261285

2136 Journal of Cognitive Neuroscience Volume 36, Number 10

https://doi.org/10.1016/j.jpsychires.2019.02.015
https://doi.org/10.1016/j.jpsychires.2019.02.015
https://doi.org/10.1016/j.jpsychires.2019.02.015
https://doi.org/10.1016/j.jpsychires.2019.02.015
https://doi.org/10.1016/j.jpsychires.2019.02.015
https://doi.org/10.1016/j.jpsychires.2019.02.015
https://doi.org/10.1016/j.jpsychires.2019.02.015
https://doi.org/10.1016/j.jpsychires.2019.02.015
https://doi.org/10.1016/j.jpsychires.2019.02.015
https://doi.org/10.1016/j.jpsychires.2019.02.015
https://doi.org/10.1016/j.jpsychires.2019.02.015
https://pubmed.ncbi.nlm.nih.gov/30844595
https://doi.org/10.1080/09658211.2018.1554079
https://doi.org/10.1080/09658211.2018.1554079
https://doi.org/10.1080/09658211.2018.1554079
https://doi.org/10.1080/09658211.2018.1554079
https://doi.org/10.1080/09658211.2018.1554079
https://doi.org/10.1080/09658211.2018.1554079
https://doi.org/10.1080/09658211.2018.1554079
https://doi.org/10.1080/09658211.2018.1554079
https://doi.org/10.1080/09658211.2018.1554079
https://pubmed.ncbi.nlm.nih.gov/30522403
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1109/TMI.2010.2046908
https://doi.org/10.1109/TMI.2010.2046908
https://pubmed.ncbi.nlm.nih.gov/20378467
https://doi.org/10.1016/j.intell.2015.01.005
https://doi.org/10.1016/j.intell.2015.01.005
https://doi.org/10.1016/j.intell.2015.01.005
https://doi.org/10.1016/j.intell.2015.01.005
https://doi.org/10.1016/j.intell.2015.01.005
https://doi.org/10.1016/j.intell.2015.01.005
https://doi.org/10.1016/j.intell.2015.01.005
https://doi.org/10.1016/j.intell.2015.01.005
https://doi.org/10.1016/j.intell.2015.01.005
https://doi.org/10.1016/j.intell.2015.01.005
https://doi.org/10.1016/j.intell.2015.01.005
https://doi.org/10.1093/cercor/bhab267
https://doi.org/10.1093/cercor/bhab267
https://doi.org/10.1093/cercor/bhab267
https://doi.org/10.1093/cercor/bhab267
https://doi.org/10.1093/cercor/bhab267
https://doi.org/10.1093/cercor/bhab267
https://doi.org/10.1093/cercor/bhab267
https://doi.org/10.1093/cercor/bhab267
https://doi.org/10.1093/cercor/bhab267
https://pubmed.ncbi.nlm.nih.gov/34428283
https://doi.org/10.1523/JNEUROSCI.2033-18.2019
https://doi.org/10.1523/JNEUROSCI.2033-18.2019
https://doi.org/10.1523/JNEUROSCI.2033-18.2019
https://doi.org/10.1523/JNEUROSCI.2033-18.2019
https://doi.org/10.1523/JNEUROSCI.2033-18.2019
https://doi.org/10.1523/JNEUROSCI.2033-18.2019
https://doi.org/10.1523/JNEUROSCI.2033-18.2019
https://doi.org/10.1523/JNEUROSCI.2033-18.2019
https://doi.org/10.1523/JNEUROSCI.2033-18.2019
https://doi.org/10.1523/JNEUROSCI.2033-18.2019
https://doi.org/10.1523/JNEUROSCI.2033-18.2019
https://pubmed.ncbi.nlm.nih.gov/30858162
https://doi.org/10.1016/j.neuron.2021.01.023
https://doi.org/10.1016/j.neuron.2021.01.023
https://doi.org/10.1016/j.neuron.2021.01.023
https://doi.org/10.1016/j.neuron.2021.01.023
https://doi.org/10.1016/j.neuron.2021.01.023
https://doi.org/10.1016/j.neuron.2021.01.023
https://doi.org/10.1016/j.neuron.2021.01.023
https://doi.org/10.1016/j.neuron.2021.01.023
https://doi.org/10.1016/j.neuron.2021.01.023
https://doi.org/10.1016/j.neuron.2021.01.023
https://doi.org/10.1016/j.neuron.2021.01.023
https://pubmed.ncbi.nlm.nih.gov/33596406
https://doi.org/10.1016/j.neuroimage.2019.02.070
https://doi.org/10.1016/j.neuroimage.2019.02.070
https://doi.org/10.1016/j.neuroimage.2019.02.070
https://doi.org/10.1016/j.neuroimage.2019.02.070
https://doi.org/10.1016/j.neuroimage.2019.02.070
https://doi.org/10.1016/j.neuroimage.2019.02.070
https://doi.org/10.1016/j.neuroimage.2019.02.070
https://doi.org/10.1016/j.neuroimage.2019.02.070
https://doi.org/10.1016/j.neuroimage.2019.02.070
https://doi.org/10.1016/j.neuroimage.2019.02.070
https://doi.org/10.1016/j.neuroimage.2019.02.070
https://pubmed.ncbi.nlm.nih.gov/30844503
https://doi.org/10.1523/JNEUROSCI.4621-08.2009
https://doi.org/10.1523/JNEUROSCI.4621-08.2009
https://doi.org/10.1523/JNEUROSCI.4621-08.2009
https://doi.org/10.1523/JNEUROSCI.4621-08.2009
https://doi.org/10.1523/JNEUROSCI.4621-08.2009
https://doi.org/10.1523/JNEUROSCI.4621-08.2009
https://doi.org/10.1523/JNEUROSCI.4621-08.2009
https://doi.org/10.1523/JNEUROSCI.4621-08.2009
https://doi.org/10.1523/JNEUROSCI.4621-08.2009
https://doi.org/10.1523/JNEUROSCI.4621-08.2009
https://doi.org/10.1523/JNEUROSCI.4621-08.2009
https://doi.org/10.1523/JNEUROSCI.4621-08.2009
https://pubmed.ncbi.nlm.nih.gov/19279242
https://doi.org/10.1111/j.1467-9280.2009.02322.x
https://doi.org/10.1111/j.1467-9280.2009.02322.x
https://doi.org/10.1111/j.1467-9280.2009.02322.x
https://doi.org/10.1111/j.1467-9280.2009.02322.x
https://doi.org/10.1111/j.1467-9280.2009.02322.x
https://doi.org/10.1111/j.1467-9280.2009.02322.x
https://doi.org/10.1111/j.1467-9280.2009.02322.x
https://doi.org/10.1111/j.1467-9280.2009.02322.x
https://doi.org/10.1111/j.1467-9280.2009.02322.x
https://doi.org/10.1111/j.1467-9280.2009.02322.x
https://doi.org/10.1111/j.1467-9280.2009.02322.x
https://doi.org/10.1111/j.1467-9280.2009.02322.x
https://pubmed.ncbi.nlm.nih.gov/19320861
https://doi.org/10.1523/JNEUROSCI.0017-22.2022
https://doi.org/10.1523/JNEUROSCI.0017-22.2022
https://doi.org/10.1523/JNEUROSCI.0017-22.2022
https://doi.org/10.1523/JNEUROSCI.0017-22.2022
https://doi.org/10.1523/JNEUROSCI.0017-22.2022
https://doi.org/10.1523/JNEUROSCI.0017-22.2022
https://doi.org/10.1523/JNEUROSCI.0017-22.2022
https://doi.org/10.1523/JNEUROSCI.0017-22.2022
https://doi.org/10.1523/JNEUROSCI.0017-22.2022
https://doi.org/10.1523/JNEUROSCI.0017-22.2022
https://doi.org/10.1523/JNEUROSCI.0017-22.2022
https://pubmed.ncbi.nlm.nih.gov/36261285

