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 2 

Abstract 20 

In order to understand how prefrontal cortex provides the benefits of working memory (WM) for visual 21 

processing we examined the influence of WM on the representation of visual signals in V4 neurons in two 22 

macaque monkeys. We found that WM induces strong β oscillations in V4 and that the timing of action 23 

potentials relative to this oscillation reflects sensory information- i.e., a phase coding of visual information. 24 

Pharmacologically inactivating the Frontal Eye Field part of prefrontal cortex, we confirmed the necessity 25 

of prefrontal signals for the WM-driven boost in phase coding of visual information. Indeed, changes in the 26 

average firing rate of V4 neurons could be accounted for by WM-induced oscillatory changes. We present 27 

a network model to describe how WM signals can recruit sensory areas primarily by inducing oscillations 28 

within these areas and discuss the implications of these findings for a sensory recruitment theory of WM 29 

through coherence. 30 

 31 
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 3 

Introduction  34 

Our capacity to dynamically interact with the world around us based on our own needs, priorities 35 

and goals is an example of our cognitive flexibility. The goals and plans preserved by working memory (WM) 36 

are capable of altering our perceptions of and actions toward the world around us. Thus, understanding 37 

how our plans alter the representation of sensory information can reveal the neural basis of cognitive 38 

flexibility. Prefrontal cortex (PFC) is believed to be one of the sources controlling sensory signals according 39 

to goals and plans1-6. In this study, we are specifically examining how WM information sent from PFC can 40 

influence the representation of sensory information in visual areas in macaque monkeys. We have already 41 

shown that the Frontal Eye Field (FEF) part of PFC sends a direct WM signal to extrastriate area V47, and 42 

visual areas manifest the WM content in their oscillatory behavior8. Within the FEF, WM alters the efficacy 43 

of V4 inputs as well, and these inputs mostly target neurons believed to be involved in the transformation 44 

of visual information into motor action9. The finding that extrastriate visual areas receive the content of 45 

WM, and that information sent from these areas to prefrontal cortex is undergoing a visuomotor 46 

transformation, provide a clear picture of the sequence of events giving rise to the benefits of WM. 47 

However, exactly how this top-down WM signal enhances the representation in visual areas is not known, 48 

considering that neurons in extrastriate visual areas show little or no change in their firing rate in response 49 

to WM content10-14. Thus, how WM impacts visual representations is crucial for understanding the neural 50 

code, since the behavioral consequences of WM15-21 suggest that the representation altered by WM content 51 

is likely to be the representation that our behavior relies on.  52 

Knowing that the FEF sends a spatially-specific signal to V4 carrying the content of WM7, we studied 53 

the responses of V4 neurons while top-down WM is directed to their receptive field (RF) or elsewhere, 54 

under the conditions in which FEF activity is intact or disrupted using pharmacological manipulation. V4 55 

neurons were provided with a bottom-up visual input with the goal of understanding how a top-down WM 56 

signal can alter the representation of bottom-up information. This arrangement revealed that WM primarily 57 

enhances the phase coding of visual information in V4. Pharmacological inactivation demonstrated that FEF 58 

activity is necessary for this phase-dependent representational enhancement in V4. We also show that 59 

average firing rate modulations within visual areas can be accounted for by WM-induced oscillations within 60 

these areas, supporting the primacy of WM-dependent oscillations in generating the signatures of WM 61 

within sensory areas. These results corroborate a WM model in which sensory areas can be recruited by 62 

higher areas without needing to change the average firing rate of sensory neurons.  63 

  64 
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Results 65 

WM modulates oscillatory power and spike timing in V4, but not average firing rates 66 

 In order to assess the impact of WM on the visual representation, we recorded local field potentials 67 

(LFPs) and neuronal activity in extrastriate area V4 during a spatial WM task with visual signals presented 68 

to neurons independent of the WM demand (see Methods; Fig. 1A). The animal had to remember a visual 69 

cue presented either inside the V4 RF or in the opposite hemifield (memory IN and OUT conditions, 70 

respectively), and following a delay period, made a saccade to the remembered location to receive a 71 

reward. The background stimulus could have one of four orientations and three levels of contrasts (or no 72 

contrast, the classic memory-guided saccade (MGS) task), allowing us to examine the interaction between 73 

bottom-up sensory information and top-down WM signals. We recorded 145 V4 neurons across 88 74 

recording sessions; most of our analysis focuses on their responses during the last 700ms of the delay period 75 

of the WM task.  76 

As expected, V4 neurons were capable of signaling the properties of the background stimulus present in 77 

their RF. The left panel in figure 1B shows the response of a sample V4 neuron during the IN condition. 78 

During the fixation period and the cue period, the neuron exhibited sensitivity to different contrast levels 79 

of the background stimulus projected to its RF (main effect of contrast: FFixation=41.744, p<10-16; FCue=14.541, 80 

p<10-6; one-way ANOVAs). The neuron’s contrast sensitivity was still manifested in its firing rate during the 81 

delay period (FIN=19.950, p<10-8; One-way). As shown on the right side of figure 1B, this neuron also showed 82 

contrast sensitivity during the delay period of the OUT condition (FOUT= 17.851, p<10-7; One-way ANOVA). 83 

Importantly, the contrast sensitivity during the delay period was not significantly different between the IN 84 

vs. OUT conditions (Fcondition= 5x10-4, p=0.981; Fcontrast=37.540, p<10-16; Finteraction=0.301, p=0.742; Two-way 85 

ANOVA). Similarly, the neuron was selective for the orientation of the background stimulus. The neuron 86 

exhibited orientation sensitivity during the fixation period as well as the delay period in both IN and OUT 87 

conditions (main effect of orientation: FFixation=16.401, p<10-8; FIN=10.410, p<10-5; FOUT=19.014, p<10-10; 88 

One-way ANOVAs; Fig. 1C). As with contrast, the content of WM (IN vs. OUT condition) did not significantly 89 

change the neuron’s orientation sensitivity during the delay period (FCondition= 5x10-4, p=0.982; 90 

FOrientation=28.082, p<10-16; FInteraction=0.810, p=0.492; Two-way ANOVA). Thus, this sample neuron exhibited 91 

contrast and orientation sensitivity for the background stimulus; however, WM did not alter the stimulus 92 

information reflected in the neuron’s firing rate.  93 
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The same pattern was observed in the population of 145 V4 neurons: neurons’ firing rates reflected 94 

the properties of the background stimulus, but this capacity was not affected by WM. The response to 95 

different background stimuli was similar between the fixation period, delay IN, and delay OUT conditions, 96 

both for contrast (FContrast=16.923, p<10-7; FCondition=0.311, p=0.733; FInteraction=0.400, p=0.811; Two-way 97 

ANOVA) and orientation (FOrientation=23.294, p<10-14; FCondition=0.770, p=0.465; FInteraction=0.202, p=0.976; 98 

Two-way ANOVA) (Fig. 1D, 1E; see also Fig. S1A-B). Figure 1F shows the ability of V4 neurons to discriminate 99 

between all 12 stimuli of various contrasts and orientations across time. Overall, the ability of V4 neurons 100 

to discriminate between various background stimuli was not altered during the delay period of the IN vs. 101 

OUT conditions (discriminabilityIN=1.514±0.783, discriminabilityOUT=1.482±0.680, p=0.462; Fig. 1G; see also 102 

Fig. S1C-D). Therefore, whereas sensory information is reflected in the firing rate of V4 neurons, the impact 103 

of spatial WM on the sensory representation is not traceable by this neural signature. 104 

In contrast to the lack of WM-driven change in firing rates, we found that V4 LFP oscillations strongly 105 

reflect the content of WM. Figure 1H shows the LFP power spectrum during the delay period for the same 106 

channel of recording as of the example neuron shown in Figure 1B-C. The β (14-22 Hz; see Methods) band 107 

power was 0.019±0.013 dB/Hz during the IN condition, which is 18.9% greater than the 0.016±0.012 dB/Hz 108 

during the OUT condition (Wilcoxon ranksum, p=0.002). Therefore, although neurons’ firing rates do not 109 

change due to WM, the power of the LFP oscillation in the β range reflects the impact of WM in the same 110 

recording channel. This phenomenon was observed across the 88 LFP recordings (Fig. 1I): β LFP power 111 

during the delay was greater for the IN condition compared to the OUT condition (PowerIN=2.001±0.336, 112 

PowerOUT=1.842±0.333, p<10-3; Fig. 1J). Importantly, this WM-dependent enhancement of β power was 113 

observed independent of the background stimuli (Fig. S2). In summary, a visual area known to receive the 114 

spatial WM signal exhibits the signature of this top-down signal in its subthreshold LFP activity, but not in 115 

neurons’ firing rates.  116 

The LFP reflects a combination of nearby currents, including synaptic inputs22-25, and is not directly 117 

transmitted along axons to other brain areas in the manner that spikes are. Therefore, we sought to identify 118 

whether these WM-dependent oscillatory changes impact any other aspects of spiking activity within V4. 119 

Although at the coarse scale of average firing rate there was no change due to WM, at a higher temporal 120 

resolution it became evident that the timing of V4 action potentials depended on the phase of WM-induced 121 

β oscillations. Figure 2A shows the distribution of spikes generated by a sample V4 neuron across various 122 

phases of the β oscillation during the delay period, for memory IN and OUT conditions. The average delay 123 
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period FR was not different between the two memory conditions (FCondition= 2.050, p=0.153; FContrast=11.511, 124 

p<10-4; FInteraction=1.314, p=0.271; Two-way ANOVA), but the phase distribution of spikes during the delay 125 

period of the IN condition was more concentrated (centered around 160-degree phase) compared to the 126 

OUT condition. To quantify the phenomenon, we used the spike-phase locking (SPL) as a measure of how 127 

consistently spikes of a neuron are generated at a certain phase. The SPL index varies between 0 (spikes 128 

homogenously distributed across phases) to 1 (all spikes occurring at a certain phase). For the sample 129 

neuron shown in Figure 2A, SPL changed from 0.063 for the OUT to 0.163 for the IN condition. Across the 130 

population of 145 V4 neurons, we found a consistent impact of WM on SPL: SPL relative to the β oscillation 131 

was significantly greater during the IN condition compared to the OUT condition (n=145 neurons; 132 

SPLIN=0.164±0.014, SPLOUT=0.155±0.005, p<10-3; Fig. 2B). These results indicate that although WM does not 133 

change the average firing rate, it influences V4 spike timing to be more closely aligned with WM-dependent 134 

oscillations. Conversely, evaluating the consistency of the LFP at the time of V4 spikes, the spike triggered 135 

average (STA) LFP also shows this strong coupling of spikes to LFP phase in the β range (Fig. S3). 136 

Spatial WM specifically enhances phase coding of visual information 137 

To understand how WM-induced oscillations benefit the sensory representation within V4, we 138 

examined whether V4 neurons’ sensitivity was reflected in the timing of their spikes relative to these WM-139 

induced oscillations. As shown in figure 2C, analyzing the average normalized LFP at the time of spiking (the 140 

STA) for an example neuron, we observed that in the presence of the high contrast stimulus in the 141 

background during the memory IN condition, V4 spikes were associated with a steeper LFP change 142 

compared to when a low contrast stimulus was in the background (SlopeHigh=0.052, SlopeLow=0.029). For 143 

this neuron, this difference was less prominent during the OUT condition (SlopeHigh=0.042, SlopeLow=0.035). 144 

We observed a similar phenomenon across the population. The LFP slope around the time of a spike was 145 

significantly sharper when the preferred (high contrast) stimulus was presented in the background, 146 

compared to the nonpreferred (low contrast) stimulus, during the IN condition (SlopeHigh=0.046±0.003, 147 

SlopeLow=0.021±0.002, p<10-8; Fig. 2D left). This difference was not observed during the OUT condition 148 

(SlopeHigh=0.030±0.002, SlopeLow=0.039±0.004, p=0.110, Fig. 2D right). This indicates that WM-induced 149 

oscillations can facilitate the spiking activity in visual areas, consistent with what other groups have shown 150 

regarding the role of oscillations as a boost for passing the spiking threshold 26. Similar results were 151 

observed for preferred versus nonpreferred orientations (Fig. S4).  152 
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The idea that a WM-induced oscillation can change the timing of spikes also suggests the possibility 153 

that the timing of spikes relative to that oscillation could convey information, referred to as a neural phase 154 

code. We used the mutual information (MI) to quantify visual information conveyed by either the phase or 155 

rate of spikes to have a side-by-side comparison of a neural phase vs. rate code (see Methods). Figure 2E 156 

left shows the average population MI measured based on phase coding across time for both the IN and OUT 157 

conditions. The presence of the WM cue reduced both phase and rate coding of background information 158 

during the visual period (Phase MIIN=0.007±0.001 bits, Phase MIOUT=0.014±0.002 bits; p=0.012; Rate 159 

MIIN=0.019±0.002 bits, Rate MIOUT=0.031±0.003 bits; p=0.012). However, maintenance of WM information 160 

during the delay period increased the phase coding capacity of the V4 neurons to represent information 161 

about the stimulus in their RF, but did not alter their rate coding. Figure 2F shows the capacity of V4 neurons 162 

to encode the background stimulus during the IN vs. OUT conditions under phase (left) and rate (right) 163 

coding schemes. Phase MI during the delay period of the IN condition was 0.019±0.002 bits, significantly 164 

greater than the 0.012±0.002 bits during the OUT condition (p<10-3). However, delay period rate MI was 165 

not significantly different between the IN and OUT conditions (MIIN=0.024±0.003 bits; MIOUT=0.022±0.003 166 

bits, p=0.261). We also found that the WM-dependent enhancement of phase-dependent visual 167 

representation was limited to the β range oscillations (Fig. 2G) It is imperative to note that despite the 168 

seemingly small values of MI (e.g., 0.019 bits), an increase of 54% in phase MI between the IN and OUT 169 

conditions means a huge boost in coding capacity due to WM.  The MI value can be interpreted as a measure 170 

of the rate of statistical learning from incoming data through which sensory decisions can be made. For 171 

example, with 0.012 bits per 100 ms phase MI available in the OUT condition, for a population of 100 172 

neurons firing independently it would take 294 ms to fully differentiate 12 stimuli. WM-induced 173 

enhancement of phase MI means that the same discriminatory capacity can be achieved within 190 ms with 174 

the same number of neurons, or within the same amount of time but with only 65 neurons. Altogether, 175 

consistent with the finding that WM mainly modulated oscillations within the β range (Fig. 1I, J), we found 176 

that WM mostly improves the phase coding in V4 within the same β range. Thus, WM specifically enhanced 177 

β range phase coding in V4, without altering rate coding. 178 

 179 

FEF activity is necessary for the phase-dependent representation within V4 during WM.  180 

The FEF sends direct projections to V4 carrying the content of spatial WM7. To causally test whether 181 

the observed WM-driven phase coding in V4 depended on signals received from the FEF, we recorded from 182 
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V4 neurons before and after pharmacologically inactivating a portion of the FEF using a small-volume 183 

injection of the GABAa-agonist muscimol (Fig. 3A). Localized FEF inactivation is known to impair 184 

performance on the MGS task in a spatially-specific manner27,28. As shown for an example inactivation 185 

session in figure 3B: prior to inactivation, the animal performed well at all locations, and after FEF 186 

inactivation performance was disrupted for conditions in which the cue appeared in the left hemifield, 187 

contralateral to the inactivated FEF. Figure 3C shows average MGS performance over time at various 188 

locations across 33 inactivation sessions: performance for the IN condition and neighboring locations 189 

decreased over time following FEF inactivation. For the IN condition, the performance dropped from 190 

90.32±2.62 percent correct before to 68.49±5.39 percent correct three hours after inactivation (p<10-3). 191 

Across the same 33 sessions, saccade error during the IN condition compared to the OUT condition was not 192 

different prior to FEF inactivation (ScatterIN=1.012±0.022 dva, ScatterOUT=0.989±0.023 dva, p=0.520; Fig. 193 

3D), but was significantly greater for the IN condition after FEF inactivation (ScatterIN=1.192±0.042 dva, 194 

ScatterOUT=1.033±0.032 dva, p=0.001; Fig. 3D). Similarly, reaction time (RT) increased following FEF 195 

inactivation for the IN condition compared to the OUT condition (before inactivation: RTIN=1.015±0.003, 196 

RTOUT=1.023±0.007, p=0.741; after inactivation: RTIN=1.075±0.015, RTOUT=1.014±0.006, p<10-4, Fig. 3E).  197 

We recorded from 66 V4 neurons before and after FEF inactivation. Both the V4 LFP power spectrum 198 

and SPL showed a reduction in the β range following FEF inactivation (Fig. S5). In these 66 neurons, prior to 199 

inactivation, the impact of WM on phase coding was evident: during the delay period there was significantly 200 

stronger phase coding of information in the β range for the memory IN condition (Fig. 2E-G; Phase 201 

MIIN=0.023±0.004 bits, Phase MIOUT=0.018±0.003 bits, p=0.039). Consistent with figure 2E, WM did not alter 202 

the strength of rate coding (Rate MIIN=0.022±0.005 bits, Rate MIOUT=0.020±0.005 bits, p=0.446). 203 

Importantly, the phase coded information within the β range during the delay period of the task dropped 204 

following FEF inactivation (Fig. 3F). Figure 3G shows the cross section of figure 3F at the β frequency, 205 

depicting the dynamics of phase MI over the course of a trial before and after FEF inactivation. The MI 206 

values for individual neurons during the delay period of the IN condition for each session are shown in figure 207 

3H; following FEF inactivation, phase-coded MI in the β range dropped from 0.023±0.004 bits to 208 

0.014±0.003 bits (n= 66 neurons, p=0.005; Fig. 3H). Rate coding, in contrast, was unaffected by FEF 209 

inactivation (IN condition: Rate MIPre=0.022±0.005 bits, Rate MIPost0.020±0.004 bits, p=0.880). Thus, WM’s 210 

enhancement of phase coding in V4 depended on activity within the FEF. 211 

 212 
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Primacy of a phase code 213 

The finding that WM mainly modulates phase coded information within extrastriate areas 214 

fundamentally shifts our understanding of how the top-down influence of prefrontal cortex shapes the 215 

neural representation, suggesting that inducing oscillations is the main way WM recruits sensory areas. 216 

However, while this side-by-side comparison of rate and phase coding shows the strength of the latter, 217 

several studies have reported an impact of WM on the firing rate of visual neurons7,14,29-31. One can argue 218 

that a slight increase in firing rate at each stage of visual processing can gradually accumulate to eventually 219 

emerge in the form of a robust firing rate change11, and that this will be sufficient to support WM. In order 220 

to determine the primary means by which WM alters neural representations, we constructed a neural field 221 

network model of visual areas during WM. In order to examine the impact of WM on oscillatory and firing 222 

rate changes in visual areas, we designed the model to consist of interconnected excitatory and inhibitory 223 

units (Fig. 4A, e-cells and i-cells) capable of generating oscillatory activity. To modulate this oscillatory 224 

activity, these neural field units received bottom-up and top-down type input. The units were tuned to 225 

different stimulus ‘features’ of the bottom-up input (analogous to orientation tuning of V4 neurons in the 226 

experimental data, with input strength analogous to contrast). The top-down input was not feature 227 

selective, providing a uniform input across the network, with stronger connections to e-cells than i-cells, 228 

consistent with what is known about the FEF-V4 circuitry and anatomy7,32. A higher strength of WM signal 229 

in the model corresponds to the memory IN condition, in comparison to the absence of WM input in the 230 

memory OUT equivalent. The model replicates several key features of the experimental data: units reflect 231 

sensory information in their phase and rate, WM-enhanced β power, and locking of units’ activity to this 232 

oscillation under the influence of WM (Fig. S6). The model’s phase coding of visual stimuli is evident in the 233 

relative timing of responses of differently tuned e-cells to an input stimulus (Fig. 4B). Using this model, we 234 

can directly compare the magnitude of information encoded by the phase and rate of model units, 235 

quantified via information gain (see Methods). We found that not only was information encoded by phase 236 

much greater than that encoded by rate, but also that phase and rate information were oppositely affected 237 

by changes in WM strength: phase information increased and rate information decreased as the WM signal 238 

increased (Fig. 4C). We also found this same divergent pattern between phase and rate codes when 239 

measuring coding performance using mutual information (see Fig. S7). Therefore, the quantification of 240 

information within a tangible network model revealed that in an oscillating network, a top-down induced 241 

oscillation can be detrimental to the rate-dependent representation of information.  242 
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The model revealed that stronger WM input increased both oscillation strength and peak frequency 243 

(Fig. S6), and we hypothesized that this change in frequency could explain changes in firing rate. We tested 244 

this idea both in the model and in the experimental data. In the model, we varied the strength of the WM 245 

signal across 4 levels of stimulus input strength (resembling various levels of stimulus contrast). We then 246 

divided oscillatory cycles occurring in the respective stimulus input levels into deciles based on their 247 

oscillation frequency, and measured information encoded by phase and rate as a function of oscillation 248 

frequency (Fig. 4D). Phase information increased with increasing oscillation frequency while rate 249 

information decreased at higher oscillation frequencies, for all non-zero contrast levels (Model utility t-test 250 

for contrasts 0-3 respectively; phase code: p>0.05, >0.05, <0.01,0.001; and rate code: p>0.05, 251 

<0.05,0.01,0.0001). Importantly, we found that the network replicating the oscillatory and representational 252 

characteristics of V4 during WM shows an increased firing rate as oscillation frequency increases. Figure 4E 253 

shows how small variations in the strength of the WM signal resulted in correlated changes in oscillation 254 

frequency and firing rate (r = 0.901; linear model utility t-test significant: p<0.0001). Thus, firing rate is 255 

positively correlated with oscillation frequency, but information encoded by that rate is negatively 256 

correlated (Fig. 4C vs. 4E). To confirm that such a relationship exists in the experimental data, for each 257 

neuron we measured the peak LFP frequency and average firing rate across subsamples of trials, allowing 258 

us to test the relationship between peak β frequency and evoked firing rate within a single condition. As 259 

shown for two sample V4 neurons, such a relationship between peak frequency and average firing rate 260 

existed between the IN and OUT conditions (for a single background stimulus; Fig. 4F & G). For the first 261 

sample neuron, in which the peak frequency changed from 18.81 to 15.84 Hz between the IN and OUT 262 

conditions, the firing rate changed from 1.084 to 0.869, and peak frequency and firing rate were correlated 263 

across subsamples of trials (Pearson correlation, r=0.716, p<10-32; Fig. 4F). Results from the second sample 264 

neuron show that this relationship remains the same even in cases where WM reduces the peak frequency 265 

(peak-frequencyIN = 15.041 Hz, peak-frequencyOUT = 16.827 Hz, FRIN=0.630, FROUT=0.816): the correlation 266 

between firing rate and peak frequency remains positive (Pearson correlation, r=0.671, p<10-26; Fig. 4G). At 267 

the population level, we looked at firing rate during the delay period across subsamples of trials for all 145 268 

V4 neurons, sorted according to their peak frequency (Fig. 4H).  As shown in Figure 4H left, this relationship 269 

between peak frequency and firing rate was present across both IN and OUT conditions; more importantly, 270 

this relationship remained the same between the two memory conditions (FCondition=9.649, p=0.003; 271 

FFrequency=399.566, p<10-31; FInteraction=2.935, p=0.091, ANCOVA), suggesting that the frequency of WM-272 

induced oscillations can account for firing rate changes. Critically, a similar analysis for the visual period of 273 
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the task revealed that the presence or absence of a visual stimulus (IN vs. OUT condition) creates a much 274 

larger change in firing rate, which cannot be accounted for by changes in β frequency (FCondition=5.113x103, 275 

p<10-72; FFrequency=103.220, p<10-15; FInteraction=71.427, p<10-11, ANCOVA) (Fig. 4H right). In other words, 276 

changes in rate during the delay period may be a consequence of changes in phase locking frequency. We 277 

also examined the relationship between peak frequency and firing rate as a function of stimulus efficacy. 278 

Both firing rate and peak frequency vary with stimulus efficacy (Fig. S8A; two sample neurons), but there 279 

was no difference for this relationship between the IN and OUT condition (Fig. S8B). Figure S9 shows that 280 

this relationship between firing rate and peak frequency is specific to the β frequency range. While there 281 

was no overall change in average firing rate due to WM across the V4 population (see Fig. 1, Fig. S1, and 282 

related statistics), this analysis further suggests that any WM-related changes in the firing rates of individual 283 

V4 neurons could be primarily driven by changes in oscillatory frequency. 284 

Discussion 285 

Prefrontal cortex modulates sensory and motor signals in order to guide our actions based on goals and 286 

priorities maintained in WM3,4,33,34. Within prefrontal areas, FEF sends direct projections to extrastriate 287 

visual areas carrying the content of WM7. We designed a paradigm in which neurons in extrastriate area V4 288 

are provided with bottom-up input while the top-down signal carrying WM content can be directed to the 289 

part of space represented by these neurons or elsewhere. This allowed us to examine which aspect of the 290 

sensory representation within V4 is influenced by a top-down WM signal, and to causally test the role of 291 

FEF activity in this WM-driven modulation. We found that a neural phase code representation of sensory 292 

stimuli was strongly modulated by top-down WM signals coming from the FEF, while firing rates were 293 

relatively unaffected, leading us to conclude that representations based on the average firing rate of 294 

neurons are not the primary way that top-down signals enhance sensory processing. Using a combination 295 

of computational modelling and experimental data analysis, we provided evidence that any changes in the 296 

average firing rate of individual neurons might be a byproduct of small changes in the frequency of the WM-297 

induced oscillation.  298 

The long35 and growing36-38 list of neural signatures of attention begs a unifying theory describing 299 

the exact mechanisms involved in generating this plethora of neural signatures. Many of these signatures 300 

are seen in both attention and WM, including enhanced visual responses7,39, changes in inter-neuronal 301 

correlations40,41, decreased variability7,42, and shifts in RFs7,43,44. In light of the present findings, we suggest 302 

that by inducing an oscillation, top-down signals allow expression of sensory representations in the form of 303 
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a neural phase code: neurons emit action potentials in response to this induced oscillation with a relative 304 

timing that reflects their sensitivity. Slight changes in the frequency of the oscillation might then account 305 

for changes in the average firing rate of neurons in sensory areas, and one can imagine coherent oscillations 306 

altering the dependent and independent variability of the neurons as well. Understanding whether the β 307 

oscillations observed in our study function in the same way as the mostly gamma oscillations reported in 308 

attention studies will require a more complete understanding of the characteristics of oscillators operating 309 

in the presence and absence of visual information (see also 40). 310 

A framework in which top-down signals primarily alter the phase of the spikes faces an important 311 

challenge: in communication between brain areas, LFP oscillations are not carried along with spikes down 312 

axonal projections. A phase code without its oscillatory reference frame is likely unreadable. However, 313 

studies in our lab and others have provided growing evidence that there are coherent oscillations between 314 

brain areas during WM, which could provide the shared oscillatory frame of reference required to transfer 315 

phase-coded information. For example, oscillatory coherence between FEF and inferotemporal cortex 316 

exists and predicts performance on an object WM task45; similarly, synchrony between PFC and V4 is also 317 

correlated with WM performance46. Oscillatory coherence between prefrontal and parietal areas also 318 

reflects the content of WM47-49. For a more complete review of findings of inter-areal coherence during 319 

WM and their relationship to performance, see 50. The significance of enhancing the efficacy of signals by 320 

generating a coherent signal 51 has previously been presented in the context of communication through 321 

coherence (CTC)52-55, as has the idea that phase in the receiving area can influence sensitivity to incoming 322 

signals56,57. In addition to gating of efficacy by phase of the receiving area (as in CTC, where this gating can 323 

make a downstream area more sensitive to input from one source than another58), the precise timing of 324 

spikes relative to oscillations even within a coherently oscillating site (i.e. phase coding) could also be crucial 325 

when this timing is going to be gated back into signal strength using a coherent oscillation in the receiving 326 

area.  327 

We found that WM signals allow expression of visual representations in the form of a neural phase 328 

code, indicating that prefrontal cortex can recruit sensory areas using a WM-induced oscillation. This new 329 

finding, along with the abundant evidence of coherent oscillations across brain areas during WM50, lead to 330 

a working hypothesis about how WM can recruit sensory areas. Consistent with sensory recruitment 331 

theories of WM33,59-61, these results suggest that sensory and memory signals can be preserved in sensory 332 

areas without being expressed in their average firing rate. This latent information is expressed in the form 333 

of a phase code in response to a WM-induced oscillation, and is potentially readable by other areas that 334 
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have oscillations coherent with the oscillatory frame of reference induced by WM. This proposed 335 

recruitment through coherence framework of working memory62 offers an explanation for how WM can 336 

recruit highly feature-sensitive sensory areas in the absence of robust firing rate changes within them. 337 

  338 
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Materials and methods 339 

 340 

Experimental model details 341 

We recorded from two male rhesus monkeys (Macaca mulatta, 12 and 16Kg). All experiments and animal 342 

procedures in this study were in accordance with the National Institutes of Health Guide for the Care and 343 

Use of Laboratory Animals and the Society for Neuroscience Guidelines and Policies. Protocols for 344 

experimental and behavioral procedures were approved by the University of Utah Institutional Animal Care 345 

and Use Committee.    346 

 347 

General and surgical procedures 348 

All surgeries were performed under aseptic conditions, using standard techniques and gas anesthesia, with 349 

appropriate peri-surgical analgesia and monitoring. After the study's conclusion, both animals remained 350 

healthy and were subsequently utilized in other research endeavors. Stereotactic surgery coordinates for 351 

the PFC and V4 chambers (20mm diameter) were performed for monkey 1, right hemisphere, at (AP 25+(2), 352 

ML 15 (±0)) and (AP -5(-1), ML 20+(2)), and for monkey 2, left hemisphere, at (AP 30+(1-2), ML 15-(1-2)) and 353 

(AP -5-(1-2), ML 20+(1-2)).  354 

 355 

Behavioral tasks 356 

We programmed all behavioral tasks using the NIMH Monkeylogic toolbox (ML2) 55, on 64-bit Matlab 357 

software (The MathWorks, Inc., Natick, MA). We monitored eye position with an infrared optical eye-358 

tracking (EyeLink 1000, SR Research, Ottawa, Canada). Visual tasks were presented on a VG248 ASUS LED 359 

monitor with a refresh rate of 144 Hz and resolution of 1920 x 1080 pixels. 360 

 361 

V4 RF mapping 362 

On a daily basis, we first identified V4 RFs using audible responses to oriented bars. Second, we presented 363 

a series of visual stimuli on a black background, to quantitatively estimate V4 RFs based on the neuron’s 364 

firing rate response. Visual stimuli were white circles (1dva diameter), 100ms on, 100ms off, 365 

pseudorandomly presented in a 7x7 grid spaced 2.5 dva between stimuli. The monkeys fixated on a central 366 

white circle (1dva diameter) throughout the trial. 367 

 368 
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FEF RF mapping 369 

We estimated FEF RFs using electrical stimulation within the anterior bank of the arcuate sulcus, in biphasic 370 

microcurrent pulses (50μA) using a S88 Grass stimulator. Stimulation was performed via tungsten 371 

microelectrodes (FHC, Bowdoin, ME). FEF sites were identified based on the landing point of the evoked 372 

eye movement following stimulation with currents ≤50μA. 373 

 374 

Memory guided saccade tasks 375 

To assess the influence of WM on the representation of sensory stimuli, we used a variant of MGS task with 376 

a background stimulus (Fig. 1A). The MGS-background task is similar to classic MGS task with a task-377 

irrelevant full field stimulus in the background. The background stimulus was an oriented grating, which 378 

could appear in one of four orientations and 4 contrasts (0% contrast is just a classic MG task). The WM cue 379 

was placed either within the overlapping RF of FEF and V4 (IN condition) or 180 degrees away (OUT 380 

condition). During FEF inactivation experiments, a classic 8 location MGS task with no background was used 381 

to assess the behavioral consequences of drug injection over space and time (Fig. 3B-E).  382 

 383 

Neurophysiological recording 384 

We recorded the activity of 145 V4 neurons across 88 recording sessions (55 sessions Monkey E, 33 sessions 385 

Monkey O), including 66 V4 neurons during 33 FEF inactivation sessions (29 sessions Monkey E, 4 sessions 386 

Monkey O). We recorded neurophysiological activity using Neuralynx and Blackrock data acquisition 387 

systems. We digitized spike waveforms at 32 KHz, and performed offline spike sorting manually. We used 388 

single tungsten microelectrodes of 200μm diameter, with epoxylite insulation (FHC, Bowdoin, ME), and 389 

linear 16-channel arrays (Plexon, Dallas, TX). Electrodes were inserted using a hydraulic microdrive 390 

(Narishige, Japan).  391 

V4 recordings: We simultaneously recorded from FEF (single electrode) and V4 (single or linear array 392 

electrodes). In this paper we only present the data from the V4 recordings.  393 

FEF inactivation with V4 recording: FEF was pharmacologically inactivated through infusion of 0.5-1μL of 394 

the GABA-a agonist muscimol, using a custom microinjectrode system (described in 63,64). Muscimol 395 

concentration was 5mg/ml (pH 6.5 to 7). V4 activity was recorded from a site with RFs overlapping the 396 

estimated FEF RF, before and after FEF inactivation. Performance on the memory guided saccade task was 397 

used to verify FEF inactivation. 398 
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 399 

Data analysis 400 

Quantification and statistical analysis 401 

For all analyses of V4 responses (main Figs. 1,2,4), we pooled V4 data from simultaneous FEF-V4 recording 402 

sessions with data from FEF inactivation sessions (using the V4 data prior to FEF inactivation). For the results 403 

of Figure 3, we assess the role of FEF on V4 coding using inactivation data in which we recorded from V4 404 

before and after FEF inactivation. Evaluations of neural responses to background stimuli of varying contrast 405 

or orientation include the three non-zero contrast values. Wherever a statistical test is not specified it is 406 

Wilcoxon sign rank. P values are reported up to three decimal digits, and p values less than 0.001 are 407 

reported as p<10-x. The β range here is 14-22 Hz. 408 

 409 

LFP power spectrum, spike-phase locking, and STA 410 

The power spectral density of the local field potentials (LFPs) was calculated using the multitaper method, 411 

employing three tapers (discrete prolate spheroidal (DPSS)-Slepian sequences) for each trial and channel. 412 

For population LFP power statistics, LFP power spectrums were normalized, [(X-min)/(max-min)]. In 413 

sessions with array recordings (51/88 sessions) power calculations were performed for each channel and 414 

then averaged across all channels in that session before calculating population statistics. To quantify the 415 

reliability of spike timing relative to the LFP of the same channel, we employed the Spike-phase locking 416 

(SPL) method 65, which measures the consistency or locking strength of spike phases to the LFPs. This is 417 

achieved by calculating the angular summation between phases of LFPs and spike times. The amplitude of 418 

the SPL indicates the strength of spike locking to LFP phase, while the angle reflects the phases of LFPs when 419 

spikes occurred. For the spike-triggered average (STA) of the LFP, we first normalized the LFP by taking the 420 

z-score of the LFP across timepoints within 100ms of a spike for each trial, then averaged those values 421 

across trials. 422 

 423 

Rate and phase coding capacity 424 

Our primary means of measuring coding capacity was the method developed by Panzeri and colleagues, 425 

which allowed us to quantify and compare information contained in rate and phase codes 66,67. This 426 

calculation of coding capacity was done in four steps. 1) First, using the FIR filter, LFPs were filtered into ten 427 

different frequency bands (1-4; 4-8; 8-12; 12-17; 17-22; 22-27; 27-35; 35-55; 65-90; 90-120). 2) Next, based 428 
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on Hilbert transform, the phase of filtered LFPs were extracted. 3) Subsequently, the average of phases at 429 

the time of spike occurrence were estimated for a window of 100ms duration with 100ms shift. 4) Finally, 430 

mutual information (MI) was calculated between these average phases (phase code) or average spike rate 431 

(rate code) and different stimuli. The MI was calculated across all stimulus contrasts and orientations. For 432 

full mathematical details see 66. The configuration we used was: direct method, biased naive estimates and 433 

20 bootstraps 67.  434 

 435 

Mathematical modelling methods 436 

Details of this model were previously published in Frontiers in Computational Neuroscience 68. 437 

Neural field model 438 

 Our neural field model is defined by be a periodic orientation tuning domain parameter 𝜃 ∈  [0, 𝜋). 439 

This neural field model is intended to represent a hypercolumn-like population with a subset of cells within 440 

the neural field preferentially responsive to a 𝜃-oriented stimulus. This model has been studied in detail in 441 

a previous article by our group 68.  The neural field model is described by 𝑢(𝜃, 𝑡), 𝑣(𝜃, 𝑡), the e- and i-activity 442 

for every 𝜃-location on the ring, that solves the integro-differential equation: 443 

𝜏𝑒

 𝜕𝑢

𝜕𝑡
  =  −𝑢 +  𝑓𝜎(𝑊 ∗ [𝑤𝑒𝑒𝑢 −  𝑤𝑒𝑖𝑣]  +  𝐼𝑒), 444 

𝜏𝑖

𝜕𝑣

𝜕𝑡
  =   −𝑣 + 𝑓𝜎(𝑊 ∗ [𝑤𝑖𝑒𝑢 −  𝑤𝑖𝑖𝑣]  +  𝐼𝑖),   445 

The integral convolution “*” in the above, is over the 𝜃-domain, with 𝑊(𝜃) being the von-Mises periodic 446 

weight kernel  447 

𝑊(𝜃) =  
1

𝜋𝐼0 (𝜅)
𝑒𝑥𝑝 (𝜅𝑐𝑜𝑠 (2𝜃) ) . 448 

A mass-model at 𝜃 and 𝜃′ will be connected with weight 𝑊(𝜃 − 𝜃′)𝑑𝜃′. The parameter 𝜅 is the inverse-449 

variance-like scale parameter that shapes the broadness/tightness of the distribution, and 𝐼_0(𝜅) is the 450 

order-zero modified Bessel function of the first kind, which serves as the normalization constant. Note that 451 

the half-circle orientation tuning domain 𝜃 ∈  [0, 𝜋) necessitates a “2” factor in the weight function to be 452 

𝜋-periodic. The same spatial scale 𝜅 is used for both e- and i-cell populations.  453 

 The 𝑓𝜎(𝐼) function defines the output firing rate of each population as a function of its input 𝐼---an 454 

F-I curve. We have used a sigmoidal-shaped F-I curve defined as the inverse mean first passage time, plus a 455 

5ms refractory period, of a leaky integrate an fire LIF model neuron driven by uncorrelated Gaussian white 456 

noise 𝜎𝜉(𝑡) with standard deviation 𝜎 (see for example 68,69: 457 
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𝐶
𝑑𝑉

𝑑𝑡
= 𝑔𝑙(𝑉𝑙 − 𝑉) + 𝐼 +  𝜎𝜉(𝑡), 458 

with capacitance 𝐶 = 1 micro-Farads, spike threshold voltage 𝑉𝑡 =  −50mV, and reset and leak voltages 459 

𝑉𝑟 = 𝑉𝑙 =  −65mV (all parameters are listed in Table S1). With these parameters, 𝐼 = 1nA of current 460 

induces the membrane voltage to approach spike threshold in the absence of noise. Increasing noise 461 

parameter 𝜎 has the effect of reducing the overall gain of the F-I curve (see 68, for more details on this 462 

model). 463 

 Three types of external inputs were given to the neural field: working memory inputs, stimulus 464 

inputs, and random inputs. WM inputs are uniform current inputs, added to 𝐼𝑒 and 𝐼𝑖, over the entire neural 465 

field (equal for all 𝜃-values). These uniform inputs raised very slightly the mean firing rate and oscillation 466 

frequency and represent an WM-like or attentional-like enhancement of hypercolumn activity. Stimulus 467 

inputs are orientation-tuned given by Von Mises-like distribution functions 468 

𝑆(𝜃)  =  𝑒𝜅𝑠𝑐𝑜𝑠 (2(𝜃−𝜃0))−𝜅𝑠   469 
in which the peak strength (set to unity) of the stimulus located at orientation 𝜃0. We fix 𝜃0  = 𝜋/2--a 90-470 

degree (vertical) orientated stimulus, without loss of generality. Finally, to capture the temporal variations 471 

in network oscillations observed in real cortical tissues, on simulations in which we assessed sensory coding 472 

(see below), we included slow-timescale Ornstein-Ulenbeck noise  𝑦(𝑡) to both e- and i-cell input currents 473 

𝐼𝑒  and 𝐼𝑖 globally to the entire network (uniformly across all 𝜃-values).  The dynamics of 𝑦 are given by the 474 

stochastic differential equation 475 

𝜏𝑧  
𝑑𝑦

𝑑𝑡
  =   −𝑦  +    𝜎𝑧  √𝜏𝑧 𝜉(𝑡), 476 

where 𝜉(𝑡) is uncorrelated zero-mean unit-variance gaussian white noise. This equation results in a normal 477 

stationary distribution of 𝑦-values, with zero-mean, and standard deviation 𝜎𝑧, and a temporal 478 

autocorrelation decay timescale 𝜏𝑧  =  50ms, so that the network oscillations, which were typically in the 479 

20 Hz range (50 ms oscillation cycles), showed robust cycle to cycle variability but little long-timescale multi-480 

cycle correlation. 481 

 In the absence of any external input, we set neural field model to be very near the a supercritical 482 

Hopf instability (see 68) in which additional current above a current threshold 𝐼∗, elicited oscillations with 483 

amplitude emerging continuously from zero, and oscillation frequency in the 𝛽-band around 18-20 Hz. From 484 

this 𝐼∗ parameter starting point we ran simulations from over four levels of WM input (uniform current) 485 

and four levels of orientation-selective stimulus input (contrast levels), starting from zero. We call these 486 

WM 0,1,2,3 levels, and contrast levels 0,1,2,3. Altogether, the input to cells can be represented by 487 

𝐼𝑒(𝜃, 𝑡) =  𝐼𝑒0 + 𝑎 𝛥𝑠𝑡𝑖𝑚𝑆(𝜃) + 𝑏 𝛥𝑊𝑀 + 𝑦(𝑡), 488 
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𝐼𝑖(𝜃, 𝑡) = 𝐼𝑖0 + 𝑎 𝛥𝑠𝑡𝑖𝑚𝑆(𝜃) +  𝑏 𝛥𝑊𝑀 + 𝑦(𝑡), 489 
where 𝛥𝑠𝑡𝑖𝑚 and 𝛥𝑊𝑀 are the current increments for the respective input levels of stimulus 𝑎 = 0,1,2,3 490 

and WM 𝑏 = 0,1,2,3. In addition to the input current changes that occur for our model, it is common to 491 

accept that increased stimulus input comes with increased input current fluctuations. We modeled this by 492 

adjusting the 𝜎 -parameter the F-I curve as a function of contrast input: 493 

𝜎 = 𝜎0  +  𝑎𝛥𝜎 . 494 
Coding performance 495 

 The phase- and rate-based responses of the neural field model can be used to discriminate the input 496 

stimuli. We have chosen to discriminate the neural field model responses at the neural field locations 𝜃 =497 

𝜋/2 and 𝜋/4. We computed the coding performance for two competing codes: a rate code (i.e., a spike 498 

count code) and a phase code. To define the phase variable in the phase code, we examined the proxy LFP 499 

signal formed by averaging e-cell rate responses over the entire field domain. We derived a phase angle 500 

𝜑(𝑡) ∈ [−𝜋, 𝜋] of oscillation via the Hilbert transform of this LFP signal. After segmenting the simulation 501 

run time into oscillation cycles 𝜑(𝑡) ∈ [−𝜋, 𝜋], for 𝑡 ∈ [0, 𝑇], where 𝑇 = 1/𝑓 is oscillation period. The mean 502 

rate response is simply 𝜆𝜃 =
1

𝑇
∫ 𝑢(𝜃, 𝑡)𝑑𝑡

𝑇

0
, from which we assume Poisson-distributed 𝑛 number of spikes 503 

are emitted: 504 

𝑝𝜃(𝑛) =
(𝜆𝜃𝑇)𝑛𝑒−𝜆𝜃𝑇

𝑛!
,  505 

which constituted the rate code distribution.  506 

 The phase code distribution is obtained from the rate response 𝑢(𝜃, 𝑡) , by using a change-of-507 

variables between time and phase 𝑡 = 𝑔(𝜑), where 𝑔(𝜑) is the inverse of the Hilbert phase angle:  508 

𝑞𝜃(𝜑) =
1

𝜆𝜃𝑇
 𝑢(𝜃, 𝑔(𝜑))𝑔′(𝜑).  509 

 Using the spike count and phase distributions as the basis of the rate and phase codes, respectively, 510 

we computed two different measures of coding performance. First, to measure the amount of information 511 

gained from the code at 𝜃 = 𝜋/2, given one assumes the data are distributed according to 𝜃 = 𝜋/4, we 512 

computed the information gain rate (IG)--the Kullback Libler divergence (in natural units of information, 513 

nats):  514 

𝐼𝐺𝜑 =  𝐷𝐾𝐿 (𝑞𝜋
4

  || 𝑞𝜋
2

),     515 

𝐼𝐺𝑛 =  𝐷𝐾𝐿 (𝑝𝜋
4

  || 𝑝𝜋
2

), 516 

where 𝐷𝐾𝐿(𝑝||𝑞) =  ∫ 𝑝 𝑙𝑛 𝑙𝑛 (
𝑝

𝑞
) 𝑑𝑥.    Second, we computed the mutual information (MI) between 517 

stimulus feature 𝜃 = 𝜋/2 or 𝜋/4, and the phase data 𝜑. We assumed the two stimuli were equally likely 518 
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on a given ``trial" in which case the probability of each stimulus was 1/2. The phase mutual information 519 

𝑀𝐼𝜑 is then defined as the Kullback Libler divergence 𝐷𝐾𝐿 (using log-base-two, in this case) between the 520 

pooled distributions 
1

2
𝑞𝜋/2  +

1

2
𝑞𝜋/4 to the product distribution 𝑞𝜋/2𝑞𝜋/4; and similarly, for the rate codes: 521 

𝑀𝐼𝜑 =  𝐷𝐾𝐿 (
1

2
𝑞𝜋

2
 +

1

2
𝑞𝜋

4
  ||𝑞𝜋

2
𝑞𝜋

4
),     522 

𝑀𝐼𝑛 =  𝐷𝐾𝐿 (
1

2
𝑝𝜋

2
 +

1

2
𝑝𝜋

4
  || 𝑝𝜋

2
𝑝𝜋

4
). 523 
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Data availability 526 

The code for mathematical modelling are publicly available at https://osf.io/dhcr2/. Further information for 527 

data and resources should be directed to Lead Contact, Behrad Noudoost (behrad.noudoost@utah.edu). 528 
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Figure legends  542 

Figure 1. WM alters β oscillatory power but not firing rates in V4.  543 

A) Memory-guided saccade with background (MGS-background) task. The monkey fixated and a peripheral 544 

visual cue appeared (Cue). The monkey maintained fixation while remembering the cue location (~1s; 545 

Delay), and after the fixation point disappeared, executed a saccadic eye movement to the remembered 546 

location (Response) to receive a reward. Throughout the task, there was a task-irrelevant, full-field oriented 547 

bar background; the background contrast ranged from 0-64%, in one of 4 orientations. The memory location 548 

was either inside the extrastriate RF (IN condition, shown) or 180 degrees away (OUT condition). 549 

Neurophysiological recordings of spiking and LFP activity were made from extrastriate visual area V4, with 550 

linear array or single electrodes.  551 

B-C) Mean firing rate of a sample neuron over time for three different contrasts (B) or orientations (C) of 552 

the background stimulus, for the IN (left) and OUT (right) conditions. Shaded areas in all panels show 553 

standard error of mean (SEM). 554 

D-E) Mean firing rate of the population of 145 neurons over time for three different contrasts (low, medium, 555 

and high contrast, D) and four different orientations (preferred, nonpreferred, and middle 1 & 2 556 

orientations, E) for the IN condition (left) and OUT (right) conditions.  557 

F) Time course of mean F-statistic values across 145 neurons, based on a one-way ANOVA for discrimination 558 

between 12 stimulus conditions for the IN (red) and OUT (black) conditions.  559 

G) Scatter plot of F-statistic averaged in the last 700ms of the delay period for each session, for the IN vs. 560 

OUT conditions. Histogram in the upper right shows the distribution of change in F-statistic (OUT-IN) across 561 

sessions.  562 

H) Mean power spectrum of the LFP recorded from the same channel as the sample V4 neuron in (B), during 563 

the delay period for the IN (red) vs. OUT (black) conditions. Inset panel shows 8-25 Hz. Asterisk indicates a 564 

significant difference (p<0.05) in the range shown. 565 

I) Mean power spectrum of population of the V4 LFPs (88 sessions) during the delay period for the IN (red) 566 

vs. OUT (black) conditions. Inset shows the power spectrum between 14-22 Hz. 567 

J) Scatter plot of power spectrum averaged in the β range for each session, for the IN vs. OUT conditions. 568 

Histogram in the upper right shows the distribution of change in power (OUT-IN) across sessions (***, p 569 

<0.001). 570 
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 571 

Figure 2. WM alters the sensory representation in extrastriate cortex.  572 

A) The distribution of spikes generated by a sample V4 neuron across various phases of β oscillations during 573 

the delay period. Arrows show the average of phase distributions for the IN (red) and OUT (black) 574 

conditions.  575 

B) Scatter plot of SPL in the β range for each neuron, for the IN vs. OUT conditions. Histogram in the upper 576 

right shows the distribution of change in SPL (OUT-IN) across neurons.  577 

C) Spike-triggered average of the normalized LFP of a sample neuron during the delay period, for the high 578 

contrast (red) and low contrast (blue) background stimuli, for the IN (left) and OUT (right) conditions. 579 

Shaded bars indicate the slopes in the falling phase. 580 

D) Histogram of the distribution of STA slopes (abs (Vpeak – Vtrough)/(timepeak – timetrough)) across neurons, for 581 

high contrast (red) and low contrast (blue) stimuli, for the IN (left) and OUT (right) conditions.  582 

E) Population phase (left) and rate (right) coding over time, for the IN (red) and OUT (black) conditions, 583 

based on mutual information (MI) between 12 stimulus conditions. MI was measured in 100ms windows 584 

with steps of 100ms. Shaded areas show standard error of mean (SEM). 585 

F) Scatter plot of MI using a phase code in the β range (left) and rate code (right) for each neuron, for the 586 

IN vs. OUT conditions. Red crosses indicate population mean. Histograms in the upper right show the 587 

distribution of differences in MI (IN-OUT) across neurons.  588 

G) Phase coding, measured by MI (colorbar), as a function of frequency and time, for memory IN (left) and 589 

OUT (right). Black rectangle shows the time and frequency range selected for phase code analysis. (*, p 590 

<0.05; **, p <0.01; ***, p <0.001; ns, p>0.05) 591 

 592 

Figure 3. FEF inactivation alters WM behavioral performance and phase coding in visual areas.  593 

A) V4 recordings were made before and after infusion of muscimol into FEF. Muscimol injections into FEF 594 

were made with a custom microinjectrode, at sites with stimulation-evoked saccade endpoints overlapping 595 

with simultaneous V4 recording site RFs.  596 

B) Eye traces for 8 MGS target locations, before (left) and after (right) FEF inactivation, for an example 597 

session where 0.5 microliter of muscimol was injected into the FEF; performance deficits were localized to 598 

the infusion hemifield.  599 
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C) Average behavioral performance across sessions, at different locations over time following FEF 600 

inactivation (red pre-inactivation; green, blue, and black, 1, 2, and 3 hours after inactivation, respectively). 601 

Data from each session is aligned so that 0 degrees corresponds to the FEF RF.  602 

D-E) Normalized saccade error (D) and reaction times (E) for the memory IN (red) and OUT (black) 603 

conditions, over time relative to the FEF inactivation. Black bar indicates times with a significant difference 604 

between IN and OUT. Shaded areas show SEM across sessions. 605 

F) Heatmap shows phase coding (MI, colorbar) over time and frequency for 66 V4 neurons, for the IN 606 

condition, before (left) and after (right) FEF inactivation. Black rectangle indicates time and frequency range 607 

considered in (G-H): 14-22Hz, 200-800ms after start of delay period.  608 

G) Strength of β phase coding over time, for memory IN, before (red) and after inactivation (blue). The 609 

phase-code MI is averaged in the β range. Shading shows SEM across neurons. Gray area indicates time 610 

window plotted in (H).  611 

H) Scatter plot of β phase MI during the delay period (shaded area in G) of the IN condition for each V4 612 

neuron, before vs. after FEF inactivation. Red square shows population mean. The histogram in the upper 613 

right shows the distribution of difference in MI (Pre-Post) across neurons. (*, p <0.05; **, p <0.01; ***, p 614 

<0.001; ns, p>0.05)  615 

 616 

Figure 4. Experimental and computational dependence of firing rate, phase-coded information, and rate-617 

coded information on changes in peak oscillation frequency.  618 

A) Schematic of dynamical neural field network architecture. Excitatory and inhibitory units are 619 

interconnected and organized to respond to different input stimuli (theta). Units also receive a global WM 620 

input (not shown); see Methods for description of connectivity weights.  621 

B) Example activity of excitatory units in the model over time, in response to an input at π/2. Excitatory 622 

units are plotted along the y-axis according to their input tuning, which ranges from 0 to π. Activity reflects 623 

both a beta-frequency oscillation across the entire population, and an earlier and stronger response of units 624 

whose preference matches the input feature (i.e., phase and rate coding).  625 

C) Information about the input stimulus feature coded by phase and rate (left and right y-axes; see 626 

Methods) in the neural field model, as a function of WM input strength.   627 

D) Phase information (shades of orange) and rate information (shades of blue) as a function of contrast 628 

levels and oscillation frequency, for the neural field model. Data for each contrast is divided into deciles 629 
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based on oscillation frequency, variability in which comes from noise in the WM input strength. Note that 630 

rate code values are several orders of magnitude smaller than phase code values (left vs. right y-axis). Error 631 

bars show standard deviation. 632 

E) Correlation between oscillation frequency and firing rate in the neural field model under conditions of 633 

noisy WM input strength.  634 

F) Relationship between frequency of peak LFP power and firing rate during the delay period for the 635 

memory IN (red) and OUT (black) conditions, for two example neurons with increased (left) or decreased 636 

(right) firing rate during the IN condition. Each dot shows the average frequency of max power and 637 

normalized firing rate for a subsample consisting of 50% of trials (n=100 subsamples per neuron).  638 

G) Average normalized response as a function of peak frequency, pooled across subsamples of trials from 639 

each of 145 V4 neurons (100 subsamples/neuron), during the IN (red) and OUT (blue) conditions, during 640 

the delay period (left) and the cue period (right). Plot shows mean±SE for all subsamples with the peak 641 

frequency indicated on the x-axis.  642 

  643 
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