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Analysis of progress curves for enzyme-catalysed reactions
Automatic construction of computer programs for fiffing integrated rate equations

Ronald G. DUGGLEBY* and Chris WOOD
Department of Biochemistry, University of Queensland, St. Lucia, Queensland 4067, Australia

The computer analysis of progress curves for enzyme-catalysed reactions involves a series of mathematical
and computational tasks. The three most daunting of these are the derivation of an integrated rate equation,
solving this equation so that the amount of product formed by the reaction at any time can be calculated,
and incorporating this solution into a non-linear-regression computer program. This paper describes the
basis of a computer program that greatly simplifies the problem. The proposed mechanism is specified in the
familiar kinetic constant form, which is automatically translated into a program capable of fitting this
mechanism to a series of experimental progress curves. The approach is illustrated for a reversible reaction
with one substrate and one product, and tested with some data obtained for the fumarase reaction. A copy
of the program has been deposited as Supplementary Publication SUP 50148 (13 pages) at the British
Library Document Supply Centre, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom
copies can be obtained on the terms indicated in Biochem. J. (1989) 257, 5.

INTRODUCTION

The application of progress-curve analysis to an

enzyme-catalysed reaction requires that a number of
tasks be completed successfully. The most obvious of
these tasks, although hopefully not the first that would
be attempted, is the experimental one; the experiments
must be performed and the data collected.

Next comes the mechanism task; given a particular
kinetic mechanism, the differential form of the steady-
state rate equation must be obtained. Fortunately, rate
equations have been catalogued for a variety of cases
[1-4] and it is not difficult to find the appropriate equation
in most instances.
A much more difficult task is the integration of this

differential rate equation. Until fairly recently, this was
one of the major impediments to progress-curve analysis.
Integrated equations for selected cases have been
published [5-7], but no general equations capable of
being tailored to all specific cases have been described.
Duggleby & Morrison [8,9] published a general equation
for most irreversible reactions involving one substrate
and up to two products, which can also be applied to
reactions with two substrates in some circumstances.
Boeker [10,11] has gone considerably further and has
described general equations that are applicable to most
mechanisms with two or fewer substrates and products,
and both reversible and irreversible reactions.
Even in the very simplest case ofan irreversible reaction

with only one substrate and that is not inhibited by its
products, the integrated rate equation cannot be solved
algebraically. That is to say, the integrated rate equation
expresses time (t) as a function of the maximum velocity
(kVm), the Michaelis constant (Ka), the initial concentration
of substrate (A,), and amount of product (z) formed by
the reaction (eqn. 1):

t = z/ V.-(Ka/ V.) ln ( -z/A0) (1)

Given that time is known with little uncertainty whereas
z would normally have an associated experimental error,

the proper way to proceed is to fit the integrated equation
to the data in such a way that some function of the
difference between the experimental and predicted value
of z is minimized. This in turn requires that the predicted
value of z at any time is calculated. The application of the
Newton-Raphson method to this solution task has been
discussed elsewhere [12].
The fifth, and final, task is that of regression: fitting

the integrated rate equation to the experimental data.
Since this is impractical except by using a computer
program, the solution to the integrated rate equation
must be coded appropriately and incorporated into a
suitable non-linear-regression computer program.

Except for the experimental task, all the remaining
operations must be repeated for each mechanism to be
tested, an intimidating prospect that has undoubtedly
contributed to the fact that progress-curve analysis has
not found wide acceptance.

In the present paper we describe the basis of a

computer program that removes virtually all of the
work involved in translating a presumed kinetic mechan-
ism into a functioning non-linear-regression-analysis
program. The program (AGIRE) accepts a differential
rate equation in kinetic constant form and produces the
code necessary to fit the integrated form of that equation:
it is a computer program that writes a computer program.
The procedure is illustrated for a reversible reaction with
one substrate and product, and tested with progress-
curve data for the reaction catalysed by fumarase. A
copy of the program has been deposited as Supple-
mentary Publication SUP 50148 at the British Library
Document Supply Centre, Boston Spa, Wetherby, West
Yorkshire LS23 7BQ, U.K., or may be obtained from
the authors.

THEORY

The problem of taking a differential rate equation for
an enzyme-catalysed reaction and converting this into a

computer program for fitting the integrated form of this
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equation to a set of experimental progress curves can
conveniently be considered in three stages. These are the
integration, solution and regression tasks described in
the Introduction.

Integration
According to Boeker [10,11], unbranched kinetic

mechanisms for enzyme-catalysed reactions involving
two substrates and products obey a general equation that
is no more complex than eqn. (2):

dz V'JAB(AB-PQ/Keq.)
dt JO+JAA+JBB+ JpP+JQQ+ JABAB+JApAP

+ JAQAQ+JBpBP+JBQBQ + JpQPQ+ JABpABP
+ JABQABQ + JApQAPQ + JBpQBPQ
± JABPQABPQ (2)

In this equation V' is the maximum velocity in an
arbitrarily chosen 'forward' direction and A, B, P and Q
represent the concentrations of the substrates and
products. Keq is the overall equilibrium constant and the
remaining symbols (JO, JA, JB and so on) represent
combinations of kinetic constants. As noted by Boeker
[10], there is a redundancy in eqn. (2) and not all the J
terms are independent. For example, division by JAB will
eliminate one parameter and reduce eqn. (2) to a form
consistent with Cleland's [1] notation. We have retained
the form used by Boeker [10,11] as the equations
presented below are contingent on this form.

Eqn. (2) describes a great variety of reactions, and the
difference between various mechanisms is the absence of
particular terms. Similarly, one or more of these terms
will be missing for simpler reactions having fewer
reactants, or those that are irreversible. Except for the
unusual situation where the concentrations of A and B
are exactly equal, eqn. (2) and its simpler variants
integrate to the general form given as eqn. (3):

C t = Cl- C-z+ C2- C.z2/2
+ C3 C z3/3-C, C-ln(l- Z/Zeq.)
+Cs -C In[l-Z/(Zeq-+ D)] (3)

Boeker [10,1 1] then gives expressions for the coefficients
of eqn. (3) in terms of the J symbols of eqn. (2) and the
initial concentrations of the reactants. It should be noted
that ref. [10] contains some errors, and corrections are
given in the Appendix of the present paper. Definitions
of Zeq. and D have also been given by Boeker [13].
To go from a particular kinetic mechanism to an

integrated rate equation requires two rounds of
substitution. First, the J terms of eqn. (2) are replaced
with the groups of kinetic constants that define the
mechanism. In the second round of substitution, the
definitions of the variables of eqn. (3) are converted into
kinetic constants.
For example, a simple reversible reaction with one

substrate and one product in which there is no
isomerization of the free enzyme is defined by the
relationships given as eqns. (4)-(15), where all terms not
explicitly defined are taken to be zero:

Keq. = V Kp/VrKa (4)

Jo = VrKa (5)

JA =Vr (6)

JP = V,Ka/Kp (7)

JAP = 0

C = VfJA(1+ /Keq.)
Cf-C = Jo+JAAeq. +JPPeq. +JApAeq. Peq.

C1.C= JA-JP+JAp(PO -Aeq*)
C2 C = JAP

Zeq. = (Keq. AO-PO)/(1 +Keq.)
Aeq. =AO-Zeq.
Peq. Po + Zeq.

(8)
(9)

(10)
(11)

(12)

(13)

(14)

(15)

These substitutions are entirely mechanical in nature,
requiring a great deal of care but almost no thought. This
type of symbol manipulation, once correctly pro-
grammed into a computer, can be done quickly and
without error. This task is the first of two functions of the
AGIRE program.

Solution
The solution of eqn. (3) involves finding a value of z

that satisfies the equality, for given values of all the
remaining variables. Most authors [14-18] have
employed the Newton-Raphson method, which involves
the use of eqn. (16) and its first derivative with respect to
z, eqn. (17):

F(z) = -C t+qCz+C2 C z2/2
+ C3 * C-*z3/3-Cr - C -ln (I -Z/zeq.)
+ C C ln [ -Z/(zeq-+ D)] (16)

F'(z) = C1-C+C2-C-Z+C3-C.Z
+ C, * C/(zeq. -z) C C/(zeq. +D-z) (17)

By using an initial estimate of z, F(z) and F'(z) are
calculated and a refined estimate of z is calculated by
subtracting F(z)/F'(z) from the initial estimate. Provided
the first estimate of z falls within certain limits, this
refining process yields successive values of z that
approach the solution of eqn. (3).
Duggleby [12] has discussed the numerical difficulties

that can arise in this process, and these are here
summarized briefly. If the initial estimate is below the
solution, the first refinement is above the solution and
may exceed Zeq. In these circumstances, the first of the
logarithmic terms in eqn. (16) becomes undefined and the
Newton-Raphson method fails. Conversely, if the initial
estimate is above the solution, the first refinement is also
above, but closer to, the solution and the Newton-
Raphson method must succeed. However, if the initial
estimate is too close to Zeq. F'(z) is so large that many
refinement cycles are required to reach the solution.
Ideally, then, the initial estimate should be just above the
solution; but how is such a value to be chosen when the
solution is unknown?
A robust version of the Newton-Raphson method has

been described [12] that largely avoids these numerical
problems, but this technique is not sufficiently general
that it can be applied to the cases considered by Boeker
[10,11], in which both logarithmic terms of eqn. (3)
occur. More recently, Boeker [14] has described a hybrid
method that appears useful. Taking a cue from this
work, the following procedure was adopted. First F(z) is
calculated at z = 0 and at 99.9990 of Ze . The solution
must lie between 0 and Zeq. so if it is found that these two
values of F(z) have the same sign then z exceeds 99.9990
of Zeq and this value is taken as the solution. Otherwise,
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successive z values at 500, 75 °/, 87.50, 93.750 etc. of
Zeq. are tried until a value of F(z) is found that differs in
sign from that at z = 0. The estimate of z found in this
way must be above the solution and is used to start the
Newton-Raphson method.
The second function of the AGIRE program is to

generate a series of BASIC statements that accomplish
both the location of a suitable initial estimate and its
refinement by the Newton-Raphson method. These
statements are formulated so as to be consistent with the
requirements of the DNRP53 program [19], which is
mentioned in the following subsection.

Regression
Cox & Boeker [20] have used non-linear regression to

fit a simplified form of eqn. (3) (containing only C1, C2
and Cf) to each of a series of progress curves obtained for
the reaction catalysed by arginine decarboxylase. A
secondary analysis using the known definitions of C1,
C2 and Cf then allowed values for the various J terms to
be determined. Finally, the usual kinetic constants were
calculated from the J values.

This three-stage approach can be condensed into a
single regression problem by performing an overall fit to
the entire collection of progress curves, with the usual
kinetic constants as the parameters to be estimated
[8,17]. This overall fitting method is the one adopted
here.
The DNRP53 computer program [19] is a general non-

linear-regression program that is written in BASIC and
is suitable for most microcomputers. Although any non-
linear regression program can be adapted to progress-
curve analysis, the advantage of the DNRP53 program
from the present authors' standpoint is familiarity. It
requires that the equation to be fitted is inserted at a
predefined place and with appropriate syntax. For
example, the fitted parameters are referred to as B(1),
B(2) and so on. The AGIRE program takes care of all
this by generating a series of BASIC statements of
exactly the syntax required, and which can be incorpo-
rated directly into DNRP53.

EXPERIMENTAL

Fumarase catalyses the reversible hydration of
fumarate to malate. Progress curves for this reaction
were collected by monitoring the decline in absorbance
at 240 nm when the pig heart enzyme (0.09-0.22 unit)
was added to 3 ml of solutions containing between
0.05 mm- and 0.75 mM-fumarate. Reactions were carried
out at 30 °C and pH 7.5 in a mixed buffer containing
50 mM-Tris acetate and 25 mM-sodium phosphate,
conditions under which the enzyme was shown to be
stable by the use of Selwyn's [21] test.
Absorbance data were digitized by using a device

constructed by Mr. H. R. Johnson, connected to the
analogue output of a Perkin-Elmer Lambda 3
spectrophotometer. The digitized data were collected
with the use of a Custom Computer Services personal
computer running a data-logging program written in this
laboratory.
The absorbance at zero time was determined by general

progress-curve extrapolation [22], and the concentration
of formed malate at each time point was calculated from
the change in absorbance, by using a molar absorption
coefficient of 2384 M'1 cm-'. From each of ten progress

curves, 18 or 19 points were selected so as to be
approximately evenly spaced in concentration. Some
representative data are illustrated in Fig. 1; these 73
experimental points and 112 points from the remaining
six progress curves were normalized to a common
enzyme concentration by adjusting the time axis and
then combined for the analysis.

RESULTS AND DISCUSSION
Except at high concentrations of fumarate, where

substrate inhibition is seen (above 3 mm under the assay
conditions described above; results not shown), the
kinetics of the fumarase reaction may be described by
four parameters, namely a maximum velocity and a
Michaelis constant for each of the forward and reverse
directions. The integrated rate equation is defined by
eqns. (3>-{15).

In order to fit this model to experimental data it is
necessary to create a suitable computer program. This is
a relatively simple task, as can be seen from Fig. 2, which
reproduces part of the dialogue with the AGIRE
program. After establishing the type of reaction (one
substrate, one product, reversible), the user then needs
only to define the equilibrium constant and the various J
terms as combinations of the parameters to be estimated.
The particular parameterization illustrated here corre-
sponds to that shown in eqns. (4)-{8).
The BASIC code generated by this run is shown in Fig.

3. After setting the some constants in lines 5100-5105,
Boeker's [10] C, C, - C, C, C and C2 C are defined in
lines 5106-5109 by the variables BC, BCF, BCl and
BC2. A suitable initial estimate of z is located by lines
5170-5178, and the Newton-Raphson iteration is per-
formed by lines 5180-5182. Values for F'(z) and F(z) are
calculated in line 5180 and lines 5185-5187 respectively.
Because the AGIRE program is rather general, some
unnecessary code may be generated. For example, for
this particular model there is no JA, term (Fig. 2), and
C2 C is zero. Hence the definition of BC2 in line 5109
and the inclusion of BC2 in lines 5180 and 5185 is
superfluous and can be removed manually if this is
thought to be desirable.

This program segment, when merged with the
DNRP53 program, gives a non-linear regression program
that will fit the model to the combined data from several
progress curves, and this was used to analyse the data
obtained for the fumarase reaction. Each experimental
point was given a weight inversely proportional to the
square root of the initial fumarate concentration,
although the results were very similar when all points
were equally weighted.
The fit is shown in Table 1. Although approximate

values for the kinetic parameters were known from
initial-velocity measurements (V, = 500 units/mg,
Vr = 300 units/mg, Ka = 0.3 mm and Kp = 1 mM), start-
ing estimates for the fit were deliberately chosen so as
to be somewhat different from these expected values, and
the initial sum of squares was rather high (see the column
labelled SSQ in Table 1). Despite this, the program
smoothly approached the final values within a few
non-linear iterations. The fitted curves are illustrated in
Fig. 1.
The final values of the maximum velocities correspond

to turnover numbers of VK = 9.68 x I04+0.18 x I04 min-1
and V' = 6.99 x 104 + 1.48 x 104 min-1; bearing in mind
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Fig. 1. Progress curves for the fumarase reaction

Data were collected as described in the Experimental section with the following fumarate and fumarase concentrations: (a)
0.744 mM-fumarate, 73 munits of fumarase/ml; (b) 0.398 mM-fumarate, 52 munits of fumarase/ml; (c) 0.199 mM-fumarate,
41 munits of fumarase/ml; (d) 0.050 mM-fumarate, 32 munits of fumarase/ml. In each panel the points represent the
experimental data and the lines show the overall fit to these four, and six other, progress curves.

Program AGIRE

Automatic generation of integrated rate equations

Please specify the type of reaction catalyzed.

Enter the number of substrates (1 or 2): 1
Enter the number of products (1 or 2): 1
Reversible/Irreversible reaction (R/I): R

The differential form of the rate equation is taken to
be

VfJa(A-P/Keq)
v=-

Jo + JaA + JpP + JapAP

You must supply the combinations of kinetic constants
which go to make up these J terms and the Haldane
relationship.

Term

( 1) Jo
( 2) Ja
( 3) Jp
( 4) Jap
( 5) Keq

Combination

:VrKa
:Vr
:VrKa/Kp

:VfKp/VrKa

Fig. 2. Dialogue with the AGIRE program

This example shows how a reversible reaction with one substrate and one product, with no isomerization of the free enzyme,
would be specified. Responses from the user follow the colon (:) on the lines indicated with an arrow (-+).

the sensitivity of fumarase to variations in pH and
phosphate concentration [23], these values, as well as the
two Michaelis constants, are similar to values reported
by other workers [16,23,24]. The equilibrium constant
calculated from the Haldane relationship (eqn. 4) is 4.1 1,
which agrees well with a directly measured value from
three determinations of 3.87 + 0.12.

The results shown in Table 1 were achieved by using
the program described above run with a BASIC
interpreter, and it must be admitted that the running
time was rather long, taking a little over 2 h on an IBM-
compatible personal computer. Although this may seem

excessive, we do not regard this time as disproportionate
to the time taken to perform the experiment, which was
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5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5170
5171
5172
5175
5176
5177
5178
5180
5181
5182
5185
5186
5187
5190

KEQ=B(1)*B(4)/(B(2)*B(3))
AO=X (2)
PO=X (3)
ZEQ=(KEQ*A0-P0)/(1+KEQ):ZZ=ZEQ
AEQ=AO-ZEQ
PEQ=PO+ZEQ
BC=(B(1))*(B(2))*(1+1/KEQ)
BCF=0+B(2)*B(3)+AEQ*B(2)+PEQ*B(2)*B(3)/(B(4))
BC1=0+B(2)-B(2)*B(3)/(B(4))
BC2=0
ZO=0:Z1=0.99999*ZZ
Z=ZO:GOSUB 5185:GO=G:IF G=0 THEN 5190
Z=Z1:GOSUB 5185:G1=G:IF G*GO>=0 THEN 5190
Z=(ZO+Z1)/2:IF (Zl-ZO)/ZZ<lE-5 THEN 5190
GOSUB 5185:IF G=0 THEN 5190
IF G*G1>0 THEN 5180
GO=G:ZO=Z:GOTO 5175
Gl=BC1+Z*BC2+BCF/(ZEQ-Z)
Zl=G/Gl:IF ABS(Zl/ZZ)<lE-5 THEN 5190
Z=Z-Z1:GOSUB 5185:GOTO 5180
G=Z*(Z*BC2/2+BC1)
G=G-BCF*LOG(1-Z/ZEQ)
G=G-BC*X(1):RETURN
G=Z:RETURN

Fig. 3. Output from the AGIRE program

These BASIC statements are the results from the dialogue
shown in Fig. 2. A functional non-linear-regression
program for progress-curve analysis ofa reversible reaction
with one substrate and one product is produced when
these statements are combined with the DNRP53 program
[19]. The variables B(l), B(2), B(3) and B(4) are the fitted
parameters and correspond to V, Vr, Ka and Kp respectively.
Time, AO and Po are represented by the symbols X(l), X(2)
and X(3), and G symbolizes the fitted variable, z. All other
variable names are not used elsewhere in the DNRP53
program and their meaning should be evident from the
context.

about 8 h. Moreover, the analysis time can be shortened
substantially by compiling the program, and some
representative results obtained with various compilers is
shown in Table 2. With either the Microsoft QuickBASIC
(version 2.0) compiler or the IBM BASCOM (version
2.0) compiler, neither of which can use a math co-
processor, the run time was shortened by approx. 7-fold.
When compilers that can use a math co-processor were
used, the time required became quite short: 4.1 min' for
Borland Turbo Basic (version 1.0) and 2.9 min for
QuickBASIC (version 4.0). Thus the analysis can be
completed in a few minutes, allowing ample opportunity
for evaluating alternative kinetic models.

CONCLUSIONS
The AGIRE program described in this paper represents

a significant advance in the analysis of progress curves
for enzyme-catalysed reactions. The burdensome tasks of
deriving an integrated rate equation and creating the
computer code necessary to solve and fit this equation
have been completely overcome. Instead, the user can
work directly with the form that is familiar to enzyme
kineticists, the differential rate equation.
The program has been tested and found to produce the

correct computer code for both reversible and irreversible
reactions involving either one or two substrates and one
or two products.

Table 1. Analysis of fumarase data

Vf VI' Ka Kp SSQ
Iteration (units/mg) (units/mg) (/LM) (QM) (4aM)

Initial 300.0 200.0 200.0 200.0 1313.18
1 398.2 159.3 163.5 293.9 36.14
2 458.4 222.9 229.8 468.8 10.54
3 495.8 300.3 281.4 694.5 5.34
4 499.1 347.9 287.2 822.6 4.62
5 498.8 359.6 287.0 851.0 4.60

Final* 498.8 360.3 287.0 852.5 4.60
S.E. 9.1 76.2 8.5 140.3
* Converged after eight iterations.

Table 2. Run times for the analysis of fumarase data

Environment Time (min) Acceleration

Interpreter
Microsoft GWBASIC 3.10

Compilers
No math co-processor

Microsoft QuickBASIC 2.0
IBM BASCOM 2.0

With math co-processor
Borland Turbo Basic 1.0
Microsoft QuickBASIC 4.0

121.1

20.8
14.8

4.1 29.8
2.9 42.0

This work was supported by the Australian Research Grants
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APPENDIX

The work described in the main paper hinges upon the
relationships given by Boeker [1]. Regrettably, that paper
contains some typographical errors that we take this
opportunity to correct. Dr. Boeker (personal communi-
cation) has confirmed these corrections.
The most important for the present purposes is that,

for a reversible reaction with one substrate and two
products, the definitions given by Boeker [1] in her Table
I for C1 Cand C2 Chave the wrong sign. The expressions
for a and , (Boeker's [1] Appendix), which apply to all
reactions irrespective of whether they have one or two

21. Selwyn, M. J. (1965) Biochim. Biophys. Acta 105, 193-195
22. Duggleby, R. G. (1985) Biochem. J. 228, 55-60
23. Alberty, R. A., Massey, V., Frieden, C. & Fuhlbrigge,

A. R. (1954) J. Am. Chem. Soc. 76, 2485-2493
24. Frieden, C., Wolfe, R. G. & Alberty, R. A. (1957) J. Am.

Chem. Soc. 79, 1523-1525

substrates and one or two products, also contain some
errors. Although these expressions are not used in the
present work, they are also corrected here. The definition
of a contains a term 'JBBJPP,', which should be changed
to read 'J,BB+JpP,', and a term 'JABPeQ', which should
be 'JABAeBe + JPQPeQe '. The expression for , contains a
term ' +AeBQe', which should be removed.
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