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Century-long timelines of herbarium 
genomes predict plant stomatal response to 
climate change

Patricia L. M. Lang    1,2,11 , Joel M. Erberich1, Lua Lopez    3,4, Clemens L. Weiß5, 
Gabriel Amador6, Hannah F. Fung    1, Sergio M. Latorre    7,8, Jesse R. Lasky    4, 
Hernán A. Burbano7,8, Moisés Expósito-Alonso1,9,10,12,13 & 
Dominique C. Bergmann    1,2

Dissecting plant responses to the environment is key to understanding 
whether and how plants adapt to anthropogenic climate change. Stomata, 
plants’ pores for gas exchange, are expected to decrease in density following 
increased CO2 concentrations, a trend already observed in multiple plant 
species. However, it is unclear whether such responses are based on genetic 
changes and evolutionary adaptation. Here we make use of extensive 
knowledge of 43 genes in the stomatal development pathway and newly 
generated genome information of 191 Arabidopsis thaliana historical 
herbarium specimens collected over 193 years to directly link genetic 
variation with climate change. While we find that the essential transcription 
factors SPCH, MUTE and FAMA, central to stomatal development, are 
under strong evolutionary constraints, several regulators of stomatal 
development show signs of local adaptation in contemporary samples from 
different geographic regions. We then develop a functional score based on 
known effects of gene knock-out on stomatal development that recovers 
a classic pattern of stomatal density decrease over the past centuries, 
suggesting a genetic component contributing to this change. This approach 
combining historical genomics with functional experimental knowledge 
could allow further investigations of how different, even in historical 
samples unmeasurable, cellular plant phenotypes may have already 
responded to climate change through adaptive evolution.

Ongoing drastic increases in atmospheric CO2 concentrations (subse-
quently [CO2]) and the resulting changes in global temperatures and 
drought severity are altering our environment1. Dissecting whether 
and how plants respond to this will be key to understanding plants’ 
potential for adaptation to climate change, and to developing strate-
gies to increase their chances of survival. Several phenotypic trends 
observed in large numbers of plant species and across continents are 
being reported, including the acceleration of flowering2,3 and other 

life history events4, the increase in photosynthesis5 and the decrease in 
the number of stomatal pores in plant leaves6. However, it has thus far 
been difficult to resolve whether these trends reflect plastic phenotypic 
changes or result from evolutionary genetic change7. Stomata are one 
of the plant structures that are most directly relevant to multifactorial 
climatic changes, as these surface pores, essential for survival and 
productivity, are major contributors to plants’ water-use efficiency 
(WUE): the ratio between CO2 uptake for photosynthesis (A) and the 
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stomata involvement in climate adaptation. It allows selective study 
of genetic variants in already-validated causal genes and can comple-
ment genome-wide association ‘discovery’ approaches, which so far 
have yielded highly polygenic signals elsewhere in the genome that 
explain part of the observed phenotypic variation but are not easily 
connected to specific effects on phenotypes or functions16,33. We can 
start accounting for this polygenic complexity by integrating genetic 
information and a functional understanding of the entire genetic devel-
opmental pathway and directly ask whether and how known stomatal 
development genes may promote adaptation.

In this Article, we use historical specimens as ‘witnesses’ of the 
ongoing climate change together with molecular genetics knowledge 
to ask: Can herbaria reveal climate change adaptation in the genetic 
pathways of essential plant features such as stomata? Can combina-
tion of historical and modern genomes with genes’ known phenotypic 
effects circumvent currently lacking historical phenotyping to predict 
plant change?

Results and discussion
Stomata genes show a purifying natural selection signal
To investigate how stomata, or stomatal development, has responded 
to climatic change, we created a new temporal dataset34,35 of 191 
broadly geographically distributed historical samples, covering the 
time period from 1817 to 2010 (Supplementary Fig. 1a and Supplemen-
tary Table 1), and paired it with the contemporary A. thaliana 1,001 
genomes resource36. So-called ancient DNA, retrieved from the his-
torical herbarium specimens, was authenticated following the field’s 
standards (for example, ref. 28). Samples show the expected patterns 
of age-related DNA fragmentation (merged fragments’ median size of 
98 bp; Supplementary Fig. 1b,c) and damage, that is, cytosine deami-
nation (reflected as C-to-T substitutions in sequencing data; 0.7–4%; 
Supplementary Fig. 1d), accumulated particularly at DNA molecules’ 
termini. As previously shown, deamination of a fragment’s first base is 
highly correlated with the year of sample collection (one-sided Pear-
son’s correlation test, correlation coefficient r = -0.589, P = 1.693 × 10−15; 
Supplementary Fig. 1e), a pattern that reflects post-collection ageing of 
the specimens as a primary cause of DNA damage but whose strength 
depends on multiple additional factors such as plant specimen collec-
tion and storage conditions37,38.

Because stomatal density differences have been observed across 
geographic regions of A. thaliana and these changes are partially her-
itable16,33 we aimed to depict genetic variation in known genes of the 
stomatal pathway, which could constitutively alter stomatal densities. 
We surveyed the literature and defined a set of 43 genes experimentally 
validated to be involved in stomata development (Supplementary 
Table 2) that focuses on genes mediating the cell divisions and fate 
transitions central to stomatal development (Fig. 1a). Aiming to specifi-
cally inquire whether the central developmental pathway itself creates 

release of O2 and loss of water vapour with transpiration (E; reviewed 
in ref. 8). Optimizing WUE to environmental conditions can improve 
plant fitness and yield when plant growth and cooling through transpi-
ration are balanced with minimal water loss. WUE is partially fine-tuned 
through variation in stomatal size and density (that is, the amount of 
stomata per plant surface area9–11). This stomatal variation can repre-
sent temporary plastic responses or result from evolutionary genetic 
change over generations that produces local adaptation12–14.

A powerful way to differentiate between plastic and evolutionary 
plant responses to climate is to study different populations of a single 
species collected across geographic climatic gradients in combina-
tion with genetic analyses and common gardens15. Both stomatal size 
and density of natural populations of Arabidopsis thaliana measured 
in controlled environments correlate with climate variables of the 
populations’ geographic origin, indicating a potential genetic basis for 
their climate responses16. In Arabidopsis, lower stomatal density typi-
cally follows increasing [CO2] and temperature, while higher stomatal 
densities and drought-adjusted higher WUE result from decreased 
humidity. Stomatal size is generally anti-correlated with stomatal 
density16–20. Given this connection of stomatal variation with climate 
gradients within a species, we would expect the past ~200 years of 
anthropogenic global change to have impacted such plant stomatal 
variation in complex unknown ways. Collections of pressed and dried 
specimens of different species are witnesses of plant responses to the 
[CO2] increase from ~280 parts per million (p.p.m.) in 1750 to 419 p.p.m. 
in 2022 (August measurement; see trends at www.climate.gov and cli-
mate.nasa.gov), or the current global maximum temperature anomaly 
of approximately +1 °C (climate.nasa.gov), and, with that, we can track 
adaptation to climate change as it happens (reviewed in ref. 21).

Plant responses themselves can help infer historical climate 
trends. Measurements of stomatal densities in fossils indicate [CO2] 
changes over geological time22–25, and over the recent anthropogenic 
climate change, decreases in stomatal densities preserved in herbaria 
already reflect the industrialization-related increases in [CO2] (ref. 6). 
Such analyses have thus far never extended beyond phenotypic quan-
tification to also assess genetic changes underlying these potentially 
adaptive responses, mainly because fossil records lack quantifiable 
DNA. Now, sequencing of herbarium specimens can address this gap 
by directly exploring joint timelines of phenotypic and genotypic 
responses to climate change (for example, refs. 26–30).

Stomata are a unique system to use such timelines to understand 
plants’ adaptive potential and its mechanisms, as their genetic pathway 
is dissected in minute detail in A. thaliana (for example, reviewed in 
refs. 8,31,32): From the sequential interactions of indispensable tran-
scription factors that regulate cell production, fate and patterning to 
external regulators that fine-tune stomatal development in response 
to environmental and physiological stimuli. This knowledge provides 
a crucial advantage when investigating a genetic basis of potential 

Fig. 1 | Conserved core stomata genes and regulatory genes show local 
adaptation signals. a, Stomatal development in A. thaliana (simplified, example 
regulators in grey, central (core) transcription factors in black. Stomata false-
coloured in magenta. Cotyledons imaged at 3, 4 and 5 days post germination.  
b, Genetic diversity in stomatal genes is significantly lower than in length-
matched control genes (gene names mark outliers; nucleotide diversity π per 
gene, empirical Pmod = 0.004, Phist = 0.046). c, Significantly fewer SNPS in stomatal 
genes are putative LOF or non-synonymous than in the control genes (empirical 
Pmod

non-syn = 0, Phist
non-syn = 0.002, Pmod

LOF = 0, Phist
LOF = 0.047; Supplementary 

Table 3). Ctrl, control; Non-syn, non-synonymous. d, Mean per-gene Tajima’s D 
indicates selection signals. Stomatal gene group is not significantly different 
(Pmod, Phist > 0.1) from the control, but several genes are outliers (labelled). 
Significance tests for panels b–d asked whether means of the group of stomatal 
genes were outliers compared with the means of 1,000 control gene groups. 
Purple for historical, green for modern datasets, horizontal line indicates full 
control dataset’s mean. Magenta circles for stomatal genes, large dark circles 

for stomatal gene group mean. e, LOF (black) and non-synonymous (grey) SNPs 
in the 43 focus genes in historical (bottom, purple) and modern (top, green) 
dataset. f, Mean per-gene values for nucleotide diversity π, Tajima’s D and FST

kgroup 
values for outlier genes, compared with conserved stomatal factors SPCH, MUTE 
and FAMA (for all 43 genes, see Supplementary Figs. 2 and 3 and Supplementary 
Table 2). FST

kgroup is calculated for populations defined by whole-genome genetic 
variation (from ref. 49). Gene values are displayed as transparent pink circles 
on violin plots representing distribution of values for the respective length-
matched control genes, vertical line indicating distribution’s 0.5 quantile. Solid 
pink circles indicate that the gene mean value lies within the 1st/10th decile of the 
control distribution. g,h, Stomatal gene differentiation as mean FST per gene, with 
FST

kgroup (y-axis), compared with FST for populations clustered by climate of origin 
(precipitation, temperature, BIO4 and BIO15, Bioclim dataset; ref. 50) (g) and life-
history traits (data; ref. 51) (h). Genes with the highest FST values across the three 
analyses are labelled.
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constitutive stomatal density differences that can undergo positive 
selection, we excluded genes that are predominantly characterized as 
environmental sensors affecting stomatal stress responses.

We hypothesized that if there was an increased genetic diversity 
in these 43 stomatal genes, it might reflect broad variation in stoma-
tal size and density (the number of stomata per plant surface area) 
that may have allowed local adaptation to the different environments 

encountered by the species across its geographic range. To investigate 
this, we examined our modern and historical genomes as ‘snapshots’ 
of the species’ current and past ~200 years of global genetic diver-
sity (Fig. 1b,c). Overall, expectedly, we found fewer single-nucleotide 
polymorphisms (SNPs) in the 191 historical than the 1,135 modern 
samples. This is consistent with the historical dataset’s much smaller 
size and stringent SNP-calling that has to account for characteristics 

g

M
ea

n 
kg

ro
up

 F
ST

pe
r g

en
e

0.3

0.2

0.1

M
ea

n 
kg

ro
up

 F
ST

pe
r g

en
e

0.3

0.2

0.1

EPF1

SCRM2

MKK5

MPK6
ERL2

Mean climate FST per gene Mean life-history FST per gene

0 0.005 0.010 0.015 0.01 0.02 0.03

EPF1

SCRM2

MPK6
HDG2

ERL2

h

Control gene Stomata gene mean Stomata gene mean in ctrl’s 1st / 10th decile

0 0.
1

0.
2

0.
3

0.
4

Mean FST based on kgroup

–1 0 1 2–2 –1 0 1 2

Mean Tajima's D

SCRM2
ERL2
ICE1
EPF1

CYCD7;1
MUTE
SPCH
FAMA
TMM

0 0.
01

0.
02

0 0.
01

0.
02

0.
03

0.
04

Mean πf

Non-synonymous
Loss-of-function

Functional SNPs

Modern
Historical

CYCD7;1

SOL1 TCX2 PPD1

CLE9 MYB88 ATMKK7

EPF2 POLAR TMM

ATMKK9 ATBRXL3 STOMAGEN

PPD2 SDD1 ARR17

CYCA2;3 CYCD5;1 SCRM2

SCAP1 ERL2 BASL

ICE1 ERL1 ARR16

ER CYC3B EMB71

AML1 EPF1 ATMKK5

ATMKK4 MUTE FMA

ATMPK3 E2F1 CLE10

SPCH MYB60 ATBRXL2

ATMPK6 CDC2B HDG2e

3

0

1

2

–1M
ea

n 
Ta

jim
a’s

 D
 p

er
 g

en
e

d
ERL2
ICE1

SCRM2

STOMAGEN

–2

0

1

2

M
ea

n 
Ta

jim
a’s

 D
 p

er
 g

en
e

–1

STOMAGEN
SCRM2

ICE1
ERL2

c

SN
Ps

 fr
ac

tio
n

LOF Non-syn Syn Intron UTR

1.00 ctrl historical
ctrl mean

0

0.50

0.75

1.00

0.25

SN
Ps

 fr
ac

tio
n

0

0.50

0.75

0.25

LOF Non-syn Syn Intron UTR

Ctrl modern
Ctrl mean

Stomata gene
Stomata mean

Ctrl historical

b

0

0.02

0.03

π 
pe

r g
en

e

0.01

0

0.02

0.03

π 
pe

r g
en

e

0.01

CYCD7;1

ERL2
SCRM2

STOMAGEN

CYCD7;1

ERL2
SCRM2

STOMAGEN

SPCH MUTE FAMA

ICE1/SCRM2

cotyledon, 3 dpg 5 dpg4 dpg
EPF1

TMM, ERL2

CYCD7;1

a

http://www.nature.com/natecolevol


Nature Ecology & Evolution | Volume 8 | September 2024 | 1641–1653 1644

Article https://doi.org/10.1038/s41559-024-02481-x

and sequencing challenges intrinsic to historical DNA (Supplementary 
Fig. 1b–d; for example, ref. 28). In addition, a modern increase in SNP 
numbers is also consistent with a recent human-linked population 
expansion of the species39,40. To compare genetic diversity in these 
genes in the context of the broader genome, we generated 1,000 sets 
of 43 randomly drawn control genes, with a gene length distribution 
matched to that of the 43 stomatal genes. In comparison to this con-
trol, stomatal genes harbour drastically reduced genetic diversity, as 
estimated by Watterson’s θ (Supplementary Fig. 2; ref. 41; Pmod = 0.006, 
Phist = 0.069) and lower nucleotide diversity π (Fig. 1b and Supplemen-
tary Fig. 2; ref. 42, Pmod = 0.004, Phist = 0.046). This would be expected if 
purifying selection is purging genetic variation in the developmentally 
important stomatal genes.

Analyses of non-synonymous and synonymous SNPs in stomata 
and control genes further show that in stomata genes there are sig-
nificantly fewer variants annotated as potentially affecting protein 
function, which we expect to be generally detrimental (partial or 
full loss of function (LOF) from missense, frameshift or gain of stop 
codon), compared with likely neutral variants (located in introns, 
untranslated regions (UTRs) or degenerate codons; annotation with 
SnpEff43; Pmod

non-syn = 0.011, Phist
non-syn = 0.003, Pmod

LOF = 0.003, Phist
LOF =  

0.049; Fig. 1c and Supplementary Table 3). Despite the overall low 
variation, in the modern data all but one stomatal genes do har-
bour non-synonymous variation (from 4 (CLE10, AT1G69320) to 124 
(CYCD7;1, AT5G02110)), and some even contain LOF variants at low 
frequency (from 1 to 4, in 23 out of 43 genes; Fig. 1e and Supplemen-
tary Table 2). We hereafter refer to non-synonymous and LOF variants 
jointly as putatively functional variation. As expected, the transcrip-
tion factors that are essential for stomatal development are among 
the genes with the lowest genetic variation (SPCH = 0.006 SNPs per 
bp, MUTE = 0.008 SNPs per bp, FAMA = 0.008 SNPs per bp; Fig. 1e, 
genes ordered by modern data-based SNPs per bp, from left to right, 
top to bottom). We concluded that stomata genes generally seem to 
be under purifying selection—especially master transcription factor 
regulators that lack variation and are unlikely involved in local adapta-
tion—although some genes still harbour non-synonymous variants at 
low frequency that could have strong phenotypic effects.

This led us to think of the stomatal pathway as composed of two 
main groups of genes. One group represents highly conserved essential 
core genes, where the functional loss of any single gene drastically affects 
stomatal morphology and density or is even lethal44–46. Here, examples 
are the above-mentioned non-redundant master transcription factors 
SPEECHLESS (AT5G53210), MUTE (AT5G53210) and FAMA (AT3G24140). 
The second group consists of their direct and indirect regulators that 
fine-tune the core pathway’s activity and outcome, including duplicated, 
redundant genes in the pathway that as pairs—but not individually—are 
similarly essential (Fig. 1a). As loss or functional changes of single ‘regu-
lator’ genes have on average less impact on overall plant development, 
they are under less evolutionary constraint and thus may be more likely 
to harbour genetic variation available for positive selection.

Local adaptation signals in stomata regulator genes
If any of the functional natural variation in stomatal genes is adaptive, 
population genetics statistics might detect potential signals of selec-
tion and population differentiation. We used a battery of Tajima’s D 
and FST statistics among populations grouped by population history, 
phenotypes or climates. Tajima’s D, which aims to distinguish between 
neutrally evolving polymorphic sites and those that may be under 
positive or balancing selection47, does not significantly differ between 
the groups of stomatal and control genes (Fig. 1d; Pmod, Phist > 0.1). How-
ever, when comparing each individual stomatal gene with its specific 
control distribution, we saw a negative Tajima’s D value for the genes 
encoding essential core transcription factors SPCH, MUTE and FAMA 
(Fig. 1f, Supplementary Fig. 2 and Supplementary Table 2). This fits 
with their key roles as necessary and sufficient drivers of stomatal 

development44–46,48. By contrast, we identified several outliers among 
the regulatory genes with both high π, high positive Tajima’s D and 
high population differentiation measured by Wright’s FST between 
geographically separated A. thaliana populations (FST

kgroup, based on 
k = 11 groups49). The combination of high species-wide Tajima’s D and 
high cross-population FST may reflect above-average differentiation of 
alleles between populations relative to within-population differentia-
tion, and maintenance of multiple alleles of the same gene that may 
be involved in local adaptation. We find indications of this in several 
genes, all among the 10% highest values of the control distribution for 
either one or both Tajima’s D and FST

kgroup (Fig. 1f and Supplementary 
Fig. 2): EPF1 (AT2G20875), ERL2 (AT5G07180)—which also has the second 
highest π after CYCD7;1, ICE1 (AT3G26744), SCRM2 (AT1G12860) and 
STOMAGEN/EPFL9 (AT4G12970).

If these outlier genes are indeed involved in local adaptation, the 
distribution of their genetic variation might follow environmental 
(climate) gradients such as variability in temperature and humid-
ity16,19. We tested this by grouping samples into populations either 
based on their collection locations’ precipitation and temperature 
seasonality (BIOCLIM 4 and BIOCLIM 15; ref. 50) or based on plant life 
history traits typically aligned with climate, such as the timing of ger-
mination or flowering for optimal survival and reproductive success 
in a given environment (Fig. 1g,h and Supplementary Fig. 3; ref. 51). 
Using FST statistics, we then assessed genetic differentiation between 
the resulting populations. Despite variation in the absolute FST values, 
there is clear overlap in the genes that are most differentiated between 
populations, independent of using population ancestry groups to 
compute a traditional FST, or climate or life history to delineate said 
populations, with SCRM2 and EPF1 among the top four climate dif-
ferentiators (Fig. 1g and Supplementary Fig. 3) and SCRM2 and ERL2 in 
the top four life-history genes (Fig. 1h and Supplementary Fig. 3; see 
also Supplementary Text 1 and Supplementary Fig. 6b–d for stomatal 
gene differentiation over time). A single LOF of the top four adaptation 
candidates SCRM2, ERL2, EPF1 and ICE1 tends to minimally affect plant 
development beyond the stomatal context52–54, with the exception 
of ICE1’s role in endosperm breakdown and embryo development55. 
Interestingly, the basic Helix-Loop-Helix transcription factors and 
paralogs ICE1 (SCRM) and SCRM2, both involved in cold tolerance, act 
redundantly as direct interaction partners and expression regulators 
of SPCH, MUTE and FAMA54. This fits the expectation of strong purifying 
selection acting in indispensable master transcription factors and local 
adaptation through contribution of flexible regulators.

Functional score recovers phenotype changes across 
geography
Although the stomatal development pathway at first glance may appear 
relatively simple, leaf stomatal density is a complex trait (Supplemen-
tary Text 2). It is likely affected by a combination of (environmental) 
factors and complex fine-tuning of the aforementioned core and regu-
latory genes and likely many others. Genome-wide associations of 
stomatal density thus far yielded moderate heritabilities across many 
genomic regions, explaining only small fractions of the variation with 
high uncertainty on specific causal variants16. As numerous previous 
studies provide causal evidence that well-known stomatal genes affect 
the trait, we study these genes’ SNPs located in coding regions where we 
infer protein amino-acid composition change, that is, non-synonymous 
changes leading to loss or gain of function. If such putatively functional 
SNPs are then under climate-driven natural selection, we should expect 
them to follow geographic and historical climate gradients and that the 
non-reference functional variants in multiple genes appear in concerted 
fashion56. Indeed, when visualizing the distribution of such variants 
in six genes with the most putatively functional SNPs, they appear 
geographically segregated (Fig. 2a).

In our set of 43 stomatal development genes, 24 have confirmed 
phenotypes in increasing or decreasing abaxial leaf stomatal density 
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(mostly shown by knock-out mutant analysis; see exemplary pheno-
types in Fig. 2b; refs. 44–46,48,54,57–69). We combined this informa-
tion on functional variation in the 24 stomatal density genes in our 
historical and modern samples with the genes’ putative effects on 
increasing or decreasing stomatal density. With this genetic and phe-
notypic information, we devised a simple cumulative ‘stomatal density 
score’ to indicate increasing (positive) or decreasing (negative score) 
stomatal density compared with the baseline accession Col-0 (in which 
functional variation is typically characterized). This functional score is 
conceptually similar to polygenic scores but is based on summing over 

putatively functional variation of genes with known increase/decrease 
effects on a trait (for distinction from genome-wide association (GWA), 
see also Supplementary Text 3). Putatively functional SNPs are assigned 
a ‘−1’ in genes whose knock-out decreases stomatal density (10 genes) 
and a ‘+1’ in genes whose knock-out increases stomatal density (14 
genes; Supplementary Table 4), where genes with multiple SNPs are 
only counted once (Fig. 2c). This recovered a gradient of ‘stomatal 
density scores’ (Fig. 2d–f).

We found that this density score significantly correlates with 
modern samples’ latitude of origin, which in turn dictates life cycle 
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Fig. 2 | Functional score predicts stomatal density patterns. a, Geographic 
distribution of functional (non-synonymous, LOF) SNP accumulation in historical 
and modern samples for six genes with the overall highest amounts of putatively 
functional SNPs, overlaid on a continental map. Colour gradient from grey to 
dark red indicates samples with 1 to over 10 functional SNPs. b, Gradient of 
stomatal density differences resulting from loss of major stomatal development 
genes visualized with confocal microscopy. Stomata are false-coloured in 
magenta; scale bars, 100 µm. Black frames around three example genes used in c. 
c, Schematic overview detailing the generation of the experimentally informed 
stomatal density score. Of 24 genes with known effect on stomatal density, loss of 
14 increases and loss of 10 decreases stomatal density. Putatively functional SNPs 
are assigned a ‘−1’ when located in genes whose loss decreases density and a  
‘+1’ in genes whose loss increases density. Density scores for each historical  
and modern sample are calculated as the sum of these values across the  
24 genes, counting a single functional SNP per gene. d, Linear regression (±s.d.) 

of the stomatal density score with paired samples’ latitude of origin, separated 
into historical (purple) and modern (green) samples (for each n = 126, one-
sided Pearson’s correlation test Pmod = 1.743 × 10−4, Phist = 5.615 × 10−2, correlation 
coefficient rmod = 0.314, rhist = 0.142). Analyses exclude samples from North 
America and the African continent. e, Correlation (±s.d.) of the density score 
with the δ13C measurement, a proxy of WUE, in 261 A. thaliana accessions. This 
is based on isotope amount ratios of stable carbon isotopes 13C/12C, expressed 
as ‰ against the Vienna Pee Dee Belemnite (VPDB; ref. 111) standard (one-sided 
Pearson’s correlation test P = 2.678 × 10−3, correlation coefficient r = 0.172; 
δ13C (stable carbon isotope ratio) data from ref. 16). f, Correlation (±s.d.) of the 
stomatal density score with genome-wide association-based traditional PGS 
for stomatal density (one-sided Pearson’s correlation test, positive correlation 
997/1,000 re-trainings, 141/1,000 significant one-sided Pearson’s correlation 
tests with P < 0.05, correlation coefficient rmedian = 0.092; stomatal density data 
from ref. 16).
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length (Fig. 2d; one-sided Pearson’s correlation test Pmod = 1.743 × 10−4, 
Phist = 5.615 × 10−2, correlation coefficient rmod = 0.314, rhist = 0.142; cor-
relation consistently significant upon population structure correction; 
Supplementary Text 4). In fact, experimentally measured stomatal den-
sity also follows a latitudinal trend attributed to A. thaliana’s ecological 
and life-history adaptations to latitudinal climate gradients (Fig. 2d and 
Supplementary Fig. 4a,b; refs. 16,51,70). Despite the score being derived 
from simple functional single-gene knock-out experiments, we found 
that the score correlates positively with a measure of integrated life-time 
WUE based on CO2 exchange and water loss (Fig. 2e; δ13C, difference in 
the ratio of 13C to 12C compared to a standard; one-sided Pearson’s cor-
relation test P = 2.678 × 10−3, correlation coefficient r = 0.172). A positive 
trend was found with stomatal density measured in modern A. thaliana 
populations (Supplementary Fig. 4c; δ13C and stomatal density data 
from ref. 16). Permuting the functional (positive or negative) effects of 
the 24 genes and recomputing the density score removed all significant 
relationships above (Supplementary Fig. 4d,e), indicating that the 
density score is not a result of internal dataset biases or population 
structure. Finally, we compared our functionally derived density score 
with a traditional GWA-based polygenic score (PGS; refs. 71,72) based 

on published stomatal density data16. PGS trained on 80% of the data 
explain on average 9.2% of the variance in the reserved 20% of phenotype 
data (positive correlation in 1,000 out of 1,000 re-trainings, 745 out of 
1,000 significant one-sided Pearson’s correlation tests with P < 0.05, 
correlation coefficient rmin–max = 0.010-0.561, rmedian = 0.304; Supple-
mentary Fig. 5a,b). They also correlated with the functionally derived 
density score (on average 0.9% of the density score’s variance explained; 
positive correlation in 997 out of 1,000 re-trainings (genome-wide), 141 
out of 1,000 significant one-sided Pearson’s correlation tests, P < 0.05, 
correlation coefficient rmin–max = −0.020–0.204, rmedian = 0.092; Fig. 2f 
and Supplementary Fig. 5c (only stomata genes); correlations with 
experimentally measured density and density score lost upon randomi-
zation of the phenotype–genotype associations in the training dataset; 
Supplementary Fig. 5d,e and Supplementary Table 5).

Functional score predicts reduction of stomatal density
Ultimately, we aim to understand how stomatal variation in A. thaliana 
may have changed over the past centuries of climate change. For this, we 
calculated our stomatal density score on historical genomes. To avoid 
geographical biases past and present, we made comparisons within a 
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Fig. 3 | Stomatal density decrease over time fits climate change expectations. 
a, Map with historical and modern sample pairs as used for stomatal density 
change analyses (in b and c). Connecting lines between sample pairs are coloured 
by the precipitation change in the sample locations; red indicates a significant 
decrease in precipitation from 1958 to 2017 in both the historical and modern 
sample location, blue indicates a significant increase in precipitation, and black 
no significant change or different changes in paired locations. Background 
colour gradient indicates change in the mean annual precipitation between 
1958–1962 and 2012–2017, with colours as above. Inlay shows sample pairs 
located on the North American East Coast. b, Distribution of per sample-pair 
calculated difference in stomatal density scores (deltascore = modern − historical) 
for original data (black) and 100 permutations (grey) between genes and their 
assigned effect (decrease/increase) on stomatal density, with genetic variation 
itself remaining un-permuted; mean deltascore = −0.730, Wilcoxon signed rank 
test, P < 2.2 × 10−16. Density distribution means are marked by solid black and 

grey vertical lines. Violin plot of the distribution means, with the non-permuted 
mean deltascore lower than 92/100 permutations. c, Expected effects of climate-
change-related shifts in [CO2], temperature and water availability on stomatal 
density (based on published experiments, for example, refs. 17–20). Change in 
the stomatal density score (deltascore = modern − historical) in sample pairs with 
significantly increased (blue, n = 48) or decreased (red, n = 26) precipitation 
in geographic locations of origin (excluding sample pairs where precipitation 
did not change significantly or where a pair’s locations did not change in the 
same way). Horizontal lines indicate 0.25, 0.5 and 0.75 distribution quantiles. 
Increased, but not decreased, precipitation is significantly associated with 
decreased deltascore (linear regression, deltascore ≈ precipitationdirectionality,  
Pincr_precipitation = 0.024, Pdecr_precipitation = 0.889, Pmodel = 0.045; Supplementary Table 9).  
Analyses include samples from North America and exclude samples from the 
African continent as well as pairs between island and mainland samples.
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subset of historical and modern samples, paired based on geographic 
proximity (126 pairs, minimum–maximum distance = 0.5–495 km, 
mean = 139 km; median = 61 km; Pearson’s correlation of sample pairs’ 
latitudes of origin, r = 0.990, P < 2.2 × 10−16; Fig. 3a, Supplementary 
Fig. 6a and Supplementary Table 6). The historical set for these com-
parisons ranged between 1817 and 2002 (mean collection year 1923) 
and the modern set between 1992 and 2012 (mean 2001), with a mean 
age difference of 79 years in historical–modern sample pairs (from 1 
to 182 years). Analyses included only shared SNPs across historical and 
modern data, to avoid biases related to dataset-specific ‘private’ SNPs.

Before calculating temporal trends, we established that the sto-
matal density score correlation with latitude remains consistent also 
in the historical dataset, suggesting patterns of local adaptation have 
long been established in the species (see historical trends in Supple-
mentary Fig. 4a,b,d,e). We then calculated the difference in density 
score (deltascore) for each individual historical–modern geographic 
sample pair (Fig. 3a). The resulting distribution of score changes cor-
roborates previous results that suggest a decrease in stomatal den-
sity in modern samples (black distribution, mean deltascore = −0.730, 
Wilcoxon signed rank test, P < 2.2 × 10−16; Fig. 3b and Supplementary 
Fig. 7d). This decrease was robust to reanalyses with population group 
subsampling by removal of samples along a latitudinal gradient or of 
modern samples with uncertain collection dates (mean deltascore

noUS =  
−0.433, deltascore

noUS_noSpain = −0.423, deltascore
noScandinavia = −0.745,  

deltascore
noUncertainty = −0.717, Wilcoxon signed rank test, all P < 1.25 × 10−15; 

Supplementary Fig. 7a–c, Supplementary Table 7 and 8 and Supplemen-
tary Text 5). Recalculated temporal trends using permuted positive and 
negative stomatal density gene effects did not recover the originally 
predicted decrease in stomatal density. This suggests that the trend is 
not due to confounding structure of the data or population history but 
rather results from the coordinated gain or loss of non-synonymous 
nucleotide variation in positive and negative stomatal density regula-
tor genes (Fig. 3b and Supplementary Fig. 7a–d, grey distributions).

Such a putative decrease in stomatal density over the past century 
would fit the expectation based on experimental evidence showing 
that increases in [CO2] and temperatures lead to leaves with lower sto-
matal density6,17,20,23,25,73,74. However, while [CO2] and temperature have 
mostly increased, climate change has also altered weather patterns and 
heterogeneously increased or decreased precipitation depending on 
the region on Earth1. Because experiments simulating decreased water 
availability show directly opposite stomatal responses (that is, density 
increases with less water availability; refs. 18,75), we wondered whether 
we could use the differential changes in precipitation as a ‘natural coun-
terfactual’ experiment to validate our genetic prediction of stomatal 
changes over time. We thus conducted a sensitivity analysis, grouping 
sample pairs based on their temperature and precipitation trajectories 
and magnitudes of change over the past 60 years (Fig. 3a,c). Sample 
pairs from locations with increased precipitation are significantly more 
likely to have decreased stomatal density scores over time (Fig. 3c, 
Supplementary Table 9 and Supplementary Fig. 7e; almost 2.5-fold 
odds of stomatal decrease with Fisher’s exact test, oddsppt_high = 2.291 
(ppt = precipitation), Pppt_high = 0.05, and consistent results for the same 
analysis with less stringent filters in Supplementary Fig. 7f; ref. 76; 
Supplementary Table 10 and Supplementary Text 5). Locations with 
decreased precipitation, a change counteracting the expected effects 
of increased [CO2] and temperature, showed a (non-significant) trend 
of stomatal density increase (Fisher’s exact test, oddsppt_low = 0.589, 
Pppt_low = 0.283, Supplementary Table 10; for example, refs. 18,75). This 
observation is consistent with the hypothesis that A. thaliana under 
drought would favour more and smaller stomata, as these open and 
close more rapidly.

Despite the spatial sample pairing and climate splits in our analy-
ses, temporal trends in stomatal density score changes might still 
contain residual biases such as population structure. We therefore 
conducted a series of analyses including fitting the first three main 

genomic principal components (PCs) to capture population structure 
and describe the consistent stability of various estimates (Supplemen-
tary Text 5). The signal of lowering average stomatal density remains 
after population structure correction (Pmodel2 = 0.001; Supplementary 
Text 5 and Supplementary Table 9), and also the more pronounced 
decrease in stomatal density in regions with increased precipitation is 
mostly consistent after corrections for each genomic PC axis (P = 0.034, 
0.081, 0.019, after PC1, PC2, PC3 corrections, while no variable is sig-
nificant with a full model; Supplementary Text 5 and Supplementary 
Table 9). Taken together, despite the noise inherent to naturally evolv-
ing structured populations and the counteracting effects of [CO2] and 
temperature versus precipitation, there is a consistent signal-to-noise 
ratio in the identified trends of decreasing stomatal density. These 
trends correspond well with both experimental and historical observa-
tions of stomatal density responses to the climate variation connected 
with global change.

Conclusions and outlook
Global change has led to rapid and drastic changes of multiple climate 
parameters—atmospheric CO2 concentration, temperature, precipita-
tion—that have a strong impact on plant development. Here we studied 
responses of A. thaliana leaf stomatal development to anthropogenic 
climate change, using historical herbarium genomes as witnesses of 
this multi-factorial ‘global change experiment’ (for example, refs. 6,77). 
Despite the overall high conservation of stomatal development genes, 
our integrative approach allowed us to identify evolutionary signals in 
several of these genes that are consistent with local adaptation across 
A. thaliana’s geographic range, suggesting that the well-described sto-
matal development pathway itself could also evolve to climate change 
conditions. We developed a novel functional score based on functional 
and experimental molecular knowledge of stomatal development 
genes that agrees with a historical trend of stomatal density decrease in  
A. thaliana, classically observed across species but of unknown genetic 
basis6,24. This trend is consistent with experiment-based expecta-
tions and climate counterfactuals but may certainly be influenced 
by additional factors beyond climate change itself. While evolution-
ary processes can be fast (for example, refs. 40,78,79), our analyses 
show that even with hundreds of historical genomes, the described 
trends of putative adaptive evolution are significant yet close to the 
detection limit above the noise of genetic drift, phenotypic plasticity, 
counteracting climatic factors and methodological idiosyncrasies, 
as seen with the re-analyses of different geographical subsets of the 
data. Our discovery will stimulate follow-up investigations such as 
studying the molecular mechanisms of how these genes promote 
adaptation—now enabled, for instance, by single base-editing with 
CRISPR (clustered regularly interspaced short palindromic repeats) 
to recreate historical variants80,81—characterizing cellular phenotypes 
directly from historical specimen tissues using customized microscopy 
techniques (for example, ref. 82) and generating denser timelines of 
historical genomes possible with high-throughput ancient DNA tech-
nologies29,83. The functional historical genomics approach presented 
here adds an exciting avenue to leverage the power of genomics to 
reconstruct phenotypic impacts of climate change on species, even 
for those phenotypes that are cellular or sub-cellular. Ultimately, our 
approach could help uncover complex responses involving WUE, pho-
tosynthetic capacity or drought resistance that are not preserved or 
measurable in historical collections. Disentangling this will be key to 
understanding plants’ past and future adaptive potential and design 
targets for engineering plants for the future.

Methods
Sequence data
Contemporary data. Published43 A. thaliana SNPs36 were annotated 
(TAIR10_GFF3_genes_transposons.gff; ref. 84). We extracted ‘genic’ 
SNPs using bash, BCFtools v1.10.285, PLINK v1.90b6.16 64-bit71,86 and R87 
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within RStudio v1.2.1335 (ref. 88). Samples lacking geographic origin 
coordinates or collection year were excluded as indicated.

Herbarium data. Sample processing and sequencing. African (n = 9), 
North American (n = 33), German (n = 34) and broadly geographically 
distributed (n = 204) A. thaliana historical whole-genome sequences 
were downloaded34,35,40,89.

Historical sequencing was processed as described28,90. We mapped 
the merged reads(Adapterremoval v2.3.1; ref. 91; BWA v0.7.15-r1140; 
ref. 92) to TAIR10 (ref. 84), filtered for mapping quality ≥20 (Samtools 
v1.9; ref. 85), removed PCR duplicates (DeDup v0.12.8; ref. 93) and 
confirmed the authenticity of historical samples with fragmenta-
tion (Samtools v1.9; ref. 85; median merged fragment length of 98 bp, 
insert sizes for sheared, unmerged fragments of 234 bp) and deamina-
tion patterns (MapDamage v2.2.1; ref. 94; Supplementary Fig. 1). For 
double-processed (sheared and unsheared) broadly geographically dis-
tributed samples35, we concatenated the merged fraction of unsheared 
samples with the merged and unmerged fractions of sheared samples.

Based on sequencing and mapping statistics from Samtools 
(stats), DeDup and MapDamage, we defined quality thresholds. We 
retained samples with >1,000,000 bp or > 10,000 reads sequenced, 
>95% of reads mapped, a duplication rate <0.3 and an error rate <0.02 
for de novo SNPcalling and excluded samples with >0.5 missing geno-
types, resulting in a total of 191 samples with an ~1.5–39× genome 
coverage (mean 7.1×, median 5.9×). We did not differentiate between 
‘regular’34,35 and UDG-treated libraries40,89. Samples lacking geographic 
origin or collection year were excluded as indicated.

De novo SNPcall. For genome-wide de novo calling of SNPs in the histori-
cal dataset, we created and indexed a reference dictionary with TAIR1084 
using Picard’s CreateSequenceDictionary (Picard v2.18.29-0; ‘Picard 
Toolkit.’ 2019. Broad Institute, GitHub Repository. https://broadinsti-
tute.github.io/picard/; Broad Institute) and samtools faidx (Samtools 
v1.9,85). We called variants across our herbarium samples by calling 
haplotypes for individual samples (GATK HaplotypeCaller), combin-
ing .gvcf files into a single input file (GenomicDBImport) and calling 
variants de novo (not based on an existing SNPs set, GenotypeGVCF) fol-
lowing GATK best practice recommendations (gatk4-4.2.0.0.-0; ref. 95). 
Keeping only SNPs (vcftools --remove-indels, VCFtools/0.1.16; ref. 96), 
we either included only or excluded all sites present in the published 
1001G vcf file (vcftools --positions36). To determine parameters for 
quality-based SNP filtering, we compared quality parameters in the two 
subsets and the full dataset (vcftools --gzvcf <infile.vcf.gz > --get-INFO 
QD --get-INFO FS --get-INFO ReadPosRankSum --get-INFO MQRankSum 
--get-INFO BaseQRankSum–out <outfile>) using R. Assuming that the 
distributions of quality parameter values of the 1,001-only dataset are 
representative for high-quality SNPs, we defined cut-offs for SNP filter-
ing with vcflib (vcffilter -f DP > 22 & FS < .2 & ReadPosRankSum>(0–2) 
& ReadPosRankSum<2; vcflib/20161123-git,97). Briefly, DP refers to the 
combined depth of a site across all samples; FS indicates strand bias 
as estimated by Fisher’s exact test; and ReadPosRankSum compares 
the positioning of reference versus alternative alleles within a read, 
allowing to filter alleles biased to read ends. Subsequently, we excluded 
samples with missing call frequencies >50% and filtered for biallelic 
positions with PLINK (plink --mind .5; PLINK v1.90b6.16 64-bit71,86). We 
used PLINK to remove variants where <3 individuals carried the alterna-
tive allele (--mac 3) and samples with site missingness >15% (--geno .15; 
Supplementary Fig. 8). We used variant-based PCAs to visualize filters’ 
effects on samples’ genetic diversity and identify outliers (PLINK --pca 
<sample_number>). The resulting vcf files were annotated using SnpEff 
v5.0e43 and the TAIR10 A. thaliana reference genome84 and further 
annotated and subset as described above for contemporary data.

Joined historical and modern data. Before merging, the historical 
and modern datasets were individually filtered with PLINK for alleles 

with a minimum minor allele count of 3 and for samples with <15% 
site missingness (‘De novo SNPcall’). Datasets were then intersected 
using BCFtools (bcftools isec -n = 2, v1.10.285) and filtered for shared 
SNPs (PLINK --extract <shared_SNPs>) to avoid dataset-specific biases. 
Gene-specific and control subsets were generated as described above.

For direct comparisons of historical and modern samples, we 
subset the datasets to 126 geographically matched sample pairs 
(‘Geographic-distance based sample pairing’) and re-filtered (PLINK 
--keep–geno .15 --mac 3).

Gene-specific subsets. Stomatal gene list. From the literature31,98,99 
and lab-internal experience, we generated a list of 43 genes that are 
central to stomatal growth, development and the stomatal lineage 
(Supplementary Table 2).

Control gene lists. The majority of our analyses focus on per-gene sta-
tistics and are sensitive to differences in the number of SNPs, which is 
strongly correlated with gene length. Control genes were thus selected 
to match the gene length distribution of the original dataset. For each 
stomatal focus gene, we subsampled all genes of the same length (±2.5%), 
randomly picked one gene and generated a list of 43 control genes for 
each stomatal focus gene (up to 1,000 re-samplings per analysis).

Subsetting. SNPs were extracted from vcf files based on stomata-specific 
and control gene lists using bash and PLINK v1.90b6.16 64 bit. We fil-
tered annotations for the first and second splice isoforms of the focus 
genes. SNP types (synonymous, non-synonymous, LOF and so on, based 
on TAIR/SnpEff annotation) were assessed based on the first splice 
isoform, grouping several SNP-types together: ‘loss-of-function’ (dis-
ruptive_inframe_deletion, disruptive_inframe_insertion, inframe_dele-
tion, inframe_insertion, frameshift, start_lost, stop_lost, stop_gained), 
‘non-synonymous’ (missense), ‘synonymous’ (synonymous), ‘UTR’ 
(5_prime_UTR_premature_start_codon_gain, 3_prime_UTR, 5_prime_
UTR), ‘intron’ (intron) and ‘other’ (none, splice_region, splice_donor, 
splice_acceptor, intron, stop_retained, non_coding_transcript_exon, 
upstream_gene, downstream_gene).

Population genetics statistics
Population genetics analyses were conducted per focus group and per 
gene to assess whether stomatal development genes individually or as 
a group are outliers. To compare stomatal developmental genes (focus 
genes) as a group against the control genes (‘Control gene lists’), we calcu-
lated mean values for each of the 1,000 × 43 control groups and assessed 
whether the stomatal gene group value was higher or lower than the 
majority of control group means. For per-gene assessments, we calculated 
mean values for each focus gene and each of 1,000 gene-specific control 
genes. For comparing, we calculated whether the focus gene lies outside 
of the 0.1 or 0.9 quantile of the control value distribution. All summary 
calculations, statistical analysis and plotting were done in R/RStudio.

Genetic diversity—π and SNPs per gene. We summed SNPs for each 
gene and calculated raw SNPs/bp (that is, per gene length) and Wat-
terson’s θ. To estimate nucleotide diversity π per polymorphic site, we 
used VCFtools default settings (<--site-pi > ; VCFtools/0.1.16,96) and 
extracted the maximum per-site π value per gene. We also calculated 
Π

bp
 by dividing the sum of all π values for a single gene by the gene 

length (bp), assuming that positions lacking a π value are invariant.

Tajima’s D. To identify signals of selection in our genes of interest, 
we calculated Tajima’s D47 on the full 1001G vcf file (--TajimaD 100; 
VCFtools/0.1.16; ref. 96). We then associated these values to our bial-
lelic SNPs of interest and summarized them using R and RStudio. We 
calculated the mean Tajima’s D value per gene for both length-matched 
control and focus gene sets.
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For comparison of Tajima’s D between historical and modern sam-
ples, we calculated Tajima’s D for the independent subsets present in 
the geographically paired dataset (‘Joined historical and modern data’).

Population fixation index FST. Population differentiation (fixation 
index FST) was estimated with Plink (plink --fst–within <groups>; PLINK 
v1.90b6.16 64 bit; refs. 71,86). Population subdivisions for the (‘mod-
ern’) 1001G dataset were based on either published, genetics-based 
global A. thaliana population structure (11 groups49), on accessions’ 
life strategies51 or on experienced (micro-)climates50. For the for-
mer, admixed individuals as defined in ref. 36 were excluded. For the 
latter two, accessions were grouped by temperature and precipita-
tion seasonality of their geographic origins (WorldClim.org) or by 
their environment-independent germination rate and cold-induced 
dormancy (see refs. 51,100, excluding accessions with imputed phe-
notypes). Based on accessions’ silhouette scores (cluster R-library, 
silhouette, https://CRAN.R-project.org/package=cluster; ref. 101;  
R package version 2.1.0.) for 2 through 15 clusters, we identified 
and used the number of clusters with the highest score (6 and 4, 
respectively) in a single k-means clustering. Environmental and life 
history-based FST was calculated as described for stomatal genes and 
1,000 control re-samplings.

Using FST to assess the genetic differentiation between populations 
not across (geographic) space but over time, we also calculated FST for 
the paired dataset (‘Joined historical and modern data’), with the sam-
ples’ identity as ‘modern’ or ‘historical’ defining the two populations.

Matching historical and modern samples
Geographic-distance-based sample pairing. Historical samples 
were matched to the geographically closest modern sample from the 
1001G A. thaliana dataset36. For each historical sample, we calculated 
pairwise distances to the geographic origin of all modern samples 
(geosphere R-library, distVincentyEllipsoid; ref. 102; R package version 
1.5-10; https://CRAN.R-project.org/package=geosphere). We selected 
the closest modern sample and removed it from subsequent pairwise 
distance calculations. Historical–modern pairs >500 km apart were 
removed, generating a final dataset of 126 pairs. Historical samples 
from Africa and pairs between islands and mainland or matched across 
bodies of water or mountain ranges were excluded (Supplementary 
Table 6). For some analyses, samples from North America (originating 
west of longitude −25°) were removed, retaining 116 sample pairs. Only 
sample pairs with the historical collection date predating the modern 
one were considered.

Climate change trajectories. Despite this close pairing, sample pairs’ 
geographic origins may still be sufficiently far apart to have experi-
enced diverging climatic changes between historical and modern 
sampling. This may translate into differing selection pressures and 
genetic makeups already in the past, which complicates attributing 
genetic differences between historical and modern samples to tem-
poral (adaptive) processes alone. We reduced these confounders by 
modelling the directionality of climate change between 1958 and 2017 
(TerraClimate dataset, resolution ~4 km; ref. 76). For the geographic 
location of each sample, we extracted precipitation and the maximum 
monthly temperatures (raster R package; ref. 103; R package version 
3.4-10; https://CRAN.R-project.org/package=raster). Temperatures 
were then subset to one value per year, the month with the highest (tmax) 
recorded temperature. To extract monthly precipitation trends, we 
transformed records into a time series and decomposed it to separate 
the gradual trend over time from the periodic seasonal precipitation 
variation (R/Rstudio, stats-package). With the annual values for tmax 
and precipitation per sample location, we assessed directionality 
(increase or decrease) of climate change by extracting the slope of a 
linear regression of the climate parameter over time. Using Spearman 
correlation, we calculated the P values of these climate change trends, 

corrected for multiple testing (Benjamini–Hochberg), and assigned 
trends of PBH < 0.01 as significant. Sample pairs were then classified 
as matching (same significant increase or decrease in temperature or 
precipitation), not showing any significant change, or not matching 
(opposing directionalities of change, or only one sample showing a 
significant change in either direction).

Stomatal density
Experimentally informed genetics-based stomatal density proxy. 
To reconstruct phenotypes from genotypes, we generated a proxy 
for stomatal density by summing over variants of involved genes with 
known functional effect. We defined the effects of mutation in the 43 
stomatal genes: higher stomatal density (14 genes), lower stomatal 
density (10 genes) or none (18 genes; Supplementary Table 4). We then 
used as protein function affecting (non-synonymous, putative LOF; 
referred to as putatively ‘functional’) assigned SNPs (‘Gene-specific 
subsets’) to calculate a stomatal density proxy for each historical and 
modern sample. We refer to this as a ‘functional score’ to distinguish 
it from a traditional GWA-based polygenic risk score (‘Traditional 
polygenic score model’).

Accessions that carry the reference allele for a functional SNP were 
assigned a value of ‘0’ (no stomatal density effect). The alternative allele 
translates into ‘+1’ in a gene whose mutation increases, and ‘−1’ in a gene 
whose mutation decreases stomatal density. To calculate a density 
score per sample, we summed these values across all density-affecting 
genes, taking one functional SNP per gene into account.

The functional score correlated with published experimentally 
measured stomatal densities and δ13C (ref. 16). Assessment of the score’s 
correlation with latitude was performed on the full set of 191 historical 
samples. To account for geographical sampling bias, the modern 1,135 
accessions were subsampled 100 times without replacement to mirror 
the size of the historical dataset. Linear regression was calculated for 
all sample sets. To avoid extrapolation beyond the geographical space 
covered by samples, we re-calculated the intercept using the median 
latitude of the historical and modern sample set, respectively. To assess 
the contribution of A. thaliana’s global population structure to the 
score, we permuted the association of density phenotypes (increase/
decrease) with stomatal genes 100 times. This aimed to validate the 
stomatal density score’s latitudinal trajectory and the density shift over 
time. For the latter, we subtracted the historical sample’s score from 
its modern match within each geographic distance-based historical–
modern sample pair (‘Matching historical and modern samples’). This 
aims to reduce population structure differences between historical and 
modern samples, increasing the probability that identified differences 
result from change over time (Supplementary Text 5).

We further subset the sample pairs by their experienced climate 
change (‘Climate change trajectories’). Only locations where the change 
from 1968 to 2017 is significant were included. With Fisher’s exact test 
for count data (stats::fisher.test(), R) we calculated the odds of stomatal 
density decrease in modern samples under certain climate conditions, 
identifying density score changes for each sample pair individually.

Traditional polygenic score model. For each of 1,000 iterations, 
phenotypes16 were randomly split 4:1 into training and test sets 
(scikit-learn sampling104). With GEMMA (v0.89.1; ref. 105), we calcu-
lated genome-wide associations and associations with the 43 stomata 
genes as described above, using a univariate linear mixed model on the 
training phenotypes and the joined historical and modern genotypic 
datasets.

We then generated an additive polygenic score (PGS, Plink (v1.9)) 
model on the genome-wide/stomata gene associations with the sto-
mata phenotypes, using a P-score threshold <0.05 to select the most 
predictive SNPs. Plink and R scripts for PGS analysis followed pub-
lished methods72. Phenotypes predicted by the PGS model were com-
pared with the test set or with the functional stomatal density score 
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(‘Experimentally informed genetics-based stomatal density proxy’) 
using one-sided Pearson’s correlation tests. To test whether the PGS 
models capture the phenotypes’ genetic signatures, we ran 1,000 
iterations where the phenotypic data were permuted and reassigned 
to random genotypes in the training set and subsequently performed 
GWA and Plink modelling as above. For all comparisons from the 1,000 
iterations, we calculated the mean predicted PGS phenotype per acces-
sion and tested these phenotypes’ correlation with measured stomatal 
density or the stomatal density score with one-sided Pearson’s tests.

Plant growth and conditions. A. thaliana mutant line seeds were 
sterilized with chlorine gas (50 ml bleach with 2.5 ml 37% hydrochloric 
acid) and stratified on MS plates (1/2 MS (Caisson Labs), 1% agar (w/v), 
pH 5.7) for 2 days at 4 °C before transfer to a 22 °C chamber with 16 h 
light/8 h dark cycles (110 µmol m−2 s−1).

The following mutants and transgenic lines were reported previ-
ously: basl-2 (ref. 106), epf1-1 (ref. 53), epf2-1 (ref. 107), ice1-D (scrm-D; 
ref. 54), ice1-2 (ref. 54), mute (ref. 45), scrm2-1 (ref. 54), sdd1-1 (ref. 58), 
spch-3 (ref. 44), tmm-1 (ref. 108), fama (ref. 46), epf1-1;epf2-1 (ref. 107) 
and ice1-2;scrm2-1 (ref. 54). Natural A. thaliana accessions were pub-
lished previously (Col-0; for example, ref. 36).

Microscopy and image analysis. To visualize cell outlines, we stained 
9 days post germination seedlings of A. thaliana mutant lines with 
FM4-64 (N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino)
phenyl)hexatrienyl)pyridinium dibromide, ThermoFisher catalogue 
number T13320). The spch-3 mutant (ref. 44) contains a plasma mem-
brane marker, pATML1::mCherry-RCI2A, and was not FM4-64 stained. 
Cotyledons were imaged on a Leica SP5 confocal microscope with 
HyD detectors using a 40× NA1.1 water objective at a resolution of 
1,024 × 1,024 pixels. Images were post-processed (contrast enhance-
ment and noise reduction) using Fiji (V2.1.0/1.53c; ref. 109) and Adobe 
Illustrator V26.3.1.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
A. thaliana 1001 variant data were published in ref. 36 and respective 
kgroups in ref. 49. Historical sequencing data are publicly available 
(North American accessions40, African accessions89, German acces-
sions34, broadly geographically distributed accessions35). Supplemen-
tary tables are available online via figshare at https://doi.org/10.6084/
m9.figshare.25996414 (ref. 110).
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