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Abstract

Time course single–cell RNA sequencing (scRNA-seq) enables researchers to probe
genome–wide expression dynamics at the the single cell scale. However, when gene
expression is affected jointly by time and cellular identity, analyzing such data — in-
cluding conducting cell type annotation and modeling cell type–dependent dynamics
— becomes challenging. To address this problem, we propose SNOW (SiNgle cell flOW
map), a deep learning algorithm to deconvolve single cell time series data into time–
dependent and time–independent contributions. SNOW has a number of advantages.
First, it enables cell type annotation based on the time–independent dimensions. Sec-
ond, it yields a probabilistic model that can be used to discriminate between biological
temporal variation and batch effects contaminating individual timepoints, and provides
an approach to mitigate batch effects. Finally, it is capable of projecting cells forward
and backward in time, yielding time series at the individual cell level. This enables gene
expression dynamics to be studied without the need for clustering or pseudobulking,
which can be error prone and result in information loss. We describe our probabilis-
tic framework in detail and demonstrate SNOW using data from three distinct time
course scRNA-seq studies. Our results show that SNOW is able to construct biologi-
cally meaningful latent spaces, remove batch effects, and generate realistic time–series
at the single–cell level. By way of example, we illustrate how the latter may be used
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to enhance the detection of cell type–specific circadian gene expression rhythms, and
may be readily extended to other time–series analyses.

1 Introduction

Gene expression is shaped by intrinsic cellular identities and extrinsic environmental condi-
tions. Today, single-cell RNA sequencing (scRNA-seq) technologies enable us to probe how
gene expression changes across cell types under various experimental conditions [1–5], with
applications ranging from organ development [6, 7] to cancer progression [8, 9] and more
recently to the circadian rhythm [10, 11]. To understand the dynamics of these processes,
studies have started to directly observe how gene expression profiles change over time via
time–coures scRNA-seq profiling [7, 12–14] and a number of methods have been developed
to characterize and model scRNA-seq time-series data. For example, Waddington-OT [6]
applies unbalanced optimal transport to compute the likelihood of cell state transitions. To
gain mechanistic insights, PRESCIENT (Potential eneRgy undErlying Single Cell gradI-
ENTs) [15] constructs a global potential function, ψ(x), and uses ∆ψ(x) to estimate how
gene expression, x, changes over time via the Euler scheme x(t + δt) = x(t) − ∆ψ(x) δt.
However, this potential function is constructed on the PCA space, which may not represent
the relevant geometry and cannot be mapped back to the original gene expression space
after the dimensionality is reduced. To overcome this limitation, scNODE [16] uses a varia-
tional autoencoder [17] to construct a lower dimensional space with which to find governing
equations that recapitulate the observed dynamics.

All the aforementioned methods are some variant of parameterizing a flow that satis-
fies the optimal transport constraint. This approach is useful in contexts were temporal
variation affects all cells, such as in during development where cells move smoothly on a
lower dimensional space along the same paths (Figure 1A, top). However, this may not be
the best description for systems where cells can act in a highly cell type–specific manner
over time. In these cases, the paths they take may not be immediately obvious (Figure 1A,
bottom), and may even prevent us from correctly annotating cell types. As a result, in this
latter situation, it is desirable to remove the effect of time to facilitate cell type annotation,
which is usually achieved by integrating and batch–correcting the time points. Since the
removal of temporal effects also removes biologically meaningful dynamics that one may
wish to study, further analyses use non-integrated data to study the average expression for
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each cell type over time. While data integration remains an active field of research [18–21],
conclusions drawn from such analyses will depend on the quality of the integration and cell
type annotation from the first stage.

To address these problems, we sought to simultaneously decompose gene expression
into time–dependent and time–independent components (Figure 1B). By doing this, we
can conduct cell type annotation using the time–independent component, study dynamics
without requiring cell type annotation, and project cells forward and backward in time
to generate time–series for each individual cell (Figure 1C, top). When cell type labels
are provided, one can combine time series generated from individual cells to mitigate the
impact of batch effects (Figure 1C, bottom panel). Here, we describe SNOW (SiNgle cell
flOW map), an unsupervised probabilistic approach for the annotation, normalization and
interpolation of single cell time series data. Our approach parameterizes a zero-inflated
negative binomial distribution using latent coordinates computed from the count data. To
demonstrate its utility, we show that the latent space constructed by SNOW can capture
biologically meaningful structure and map cells collected at one time point to past and
future states. By constraining the second derivative of generated time series, SNOW also
indirectly removes potential batch effects contaminating the time–series. To our knowledge,
SNOW is the only method focusing on the analysis of time series of differentiated cells, in
which the effects of time and cell state may be mixed in the data (Figure 1A, bottom).

2 SNOW algorithm

We aim to achieve a number of things with SNOW. First, we wish to construct a time-
independent characterization of the cell state to facilitate cell type annotation. This is
achieved by minimizing the Wasserstein distance between the prior, p(z), and the latent
distribution conditioned on sampling time, q(z|t). Second, we wish to map cells forward
and backward in time such that their model–generated gene expression time series matches
that of the population average (Figure 1C, top). To increase the smoothness of the inter-
polated trajectories, we incorporated in the loss function the second derivative of generated
time series to penalize high curvature (see Methods for more detail). As a consequence
of this second derivative loss, batch effects in the form of a sudden increase/decrease in
expression will be simultaneously removed (Figure 1C, bottom). Third, we wish to infer
the sample collection time for an untimed sample, which is an active field of research in
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chronobiology [22–24]. To do this, we incorporated two additional terms in the loss func-
tion: one related to predicting the actual sampling time of each cell, and another related
to predicting the sampling time of a cell after being mapped to another time by the model.

To achieve this, SNOW models the observed count of gene g from cell c collected at time
t as a sample from a zero-inflated negative binomial (ZINB) distribution P (xgc|lc, zc, t) that
is dependent on the observed library size of the cell (lc), time (t), and cell state (zc). The
cell state zc is a low–dimensional vector computed by an encoder network that represents
the time–independent biological variation contributing to x. To remove the effect of time,
we constrain the variational posterior conditioned on time q(z|t) to be close to the prior
z ∼ N (⃗0, I). The resulting time–independent representation of the cell state can, if desired,
be used to conduct cell type annotation (Figure 1B). In the process of computing the log
likelihood, zc and t are used to construct ρcg(t), which represents the expected percentage
of all reads in cell c that originate from gene g at time t. By changing t as an input to the
decoder, we can generate a gene expression profile of a cell collected at past or future times.
In other words, we create an object similar to a flow map, in which the expected expression
of the past/future state of a cell can be generated without time integration, which will be
required if the system is parameterized by a system of ordinary differential equations.

Details of the algorithm are given below.

2.1 General probabilistic framework

We model the count matrix X ∈ RC×G with a zero-inflated, negative binomial (ZINB)
distribution [25, 26], where C and G are the number of cells and genes in the sample,
respectively. Without zero-inflation, a given entry within X, Xcg, is modeled as:

P (Xcg = y|zc, t) =
Γ(y + θcg)

Γ(y + 1)Γ(θcg)

(
θcg

θcg + ρcglc

)θcg ( ρcglc
θcg + ρcglc

)y

, (1)

where Γ(·) is the standard gamma function, zc the (time-independent) encoded state of Xc

sampled at t, θcg the gene– and cell–specific inverse dispersion, lc the library size of cell c,
and ρcg the count fraction of gene g in cell c such that

∑
i ρci = 1. θ and ρ are optimized

using neural networks fθ and fρ respectively.
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Zero-inflation is added with the following form:

P (Xcg = 0|zc, t) = 1− (fh(Xc))︸ ︷︷ ︸
observing zero count

due to dropout

+ fh(Xc)

(
θcg

θcg + ρcglc

)θcg

︸ ︷︷ ︸
observing “true” zero

(2)

P (Xcg = y|zc, t) = fh(Xc)
Γ(y + θcg)

Γ(y + 1)Γ(θcg)

(
θcg

θcg + ρcglc

)θcg ( ρcglc
θcg + ρcglc

)y

, (3)

where fh(·) is parameterized with a neural network. Since elements of Xc ∈ RG are con-
ditionally independent of each other given z and t (∀i ̸= j, P (Xci|z, t,Xcj) = P (Xci|z, t)),
we can compute the probability of observing the count profile of a particular cell as:

P (Xc = y⃗|zc, t) =
∏
i

P (Xci = yi|zc, t). (4)

Or equivalently:

log (P (Xc = y⃗|zc, t)) =
∑
i

log (P (Xci = yi|zc, t)) . (5)

Our framework allows the generation of “virtual” cells by assuming a Gaussian prior, a
commonly used prior for building variational auto-encoders, as follows:

zc ∼ N (0, I)

ρc = fρ(zc, tc)

θc = fθ(zc, tc)

wc ∼ Gamma
(
θc,

ρc
θc

)
yc ∼ Poisson(lcwc)

hc ∼ Bernoulli
(
fh(zc, tc)

)
xcg =

ycg, if hcg = 1

0, otherwise

where zc is the time-independent latent representation of a cell; ρc ∈ [0, 1] is the normalized
expression profile (or count fraction) enforced by using a softmax activation function in the
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last layer of fρ; xc ∈ NG is the count profile of the virtual cell; and lc is the observed the
library size. The Gamma-Poisson process generates yc ∈ NG following a negative binomial
distribution with mean ρclc, while hc is a binary vector that represents dropouts. fρ, fθ,
and fh are neural networks that map the latent space and time back to the full gene space,
RD × R1

+ → NG.

2.2 SNOW loss function

A number of methods have used variational autoencoders (VAEs) [17] to model count data
from single-cell RNA seq [16, 25, 27]. All have used loss functions reminiscent of the evidence
lower bound (ELBO), which constrains the shape of the latent space q(z) indirectly via the
KL-divergence term:

ELBO = Ez∼q(z|x) log p(x|z)−DKL (q(z|x)||p(z)) . (6)

(See derivation of ELBO in Supplement.) In the above expression, p(z), the prior distri-
bution of the representations z, has been chosen for convenience to be N (⃗0, I) and q(z) is
the variational posterior distribution of z constructed by the encoder network. The KL-
divergence term provides the model some level of robustness, as it essentially requires points
near z in the latent space to be decoded into similar objects. However, as the dimensionality
of the data grows, the log-likelihood term of the ELBO will dominate over the regularizing
KL-divergence term. While this is unaccounted for in SCVI [25], both scNODE [16] and
SCVIS [27] incorporate scaling factors to maintain the strength of the regularization of
the latent space. By definition, maximizing ELBO can lead to the maximization of the
marginal likelihood (p(x)),

log p(x) = ELBO +DKL (q(z|x)||p(z|x)) . (7)

When DKL (q(z|x)||p(z|x)) = 0, or equivalently q(z|x) = p(z|x), the ELBO will be equal
to the marginal log likelihood of x and p(z) =

∫
q(z|x)p(x)dx = q(z). However, when the

ELBO is not tight, its optimization can lead to an enlargement of the approximation error,
DKL(p(z|x)||(q(z|x)). To account for this, SNOW regularizes the latent space directly
by minimizing the distance between the latent distribution (q(z)) and the prior (p(z))
as measured by the Wasserstein distance. Briefly, in addition to the log likelihood term,
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the SNOW loss function begins with two main regularization terms, the former of which
regularizes the latent space and the latter of which enables predictions of the sampling time:

− log (p(x|z)) + λzLz + λt||t− t̂||2︸ ︷︷ ︸
predicting

sampling time

. (8)

In the above expression, Lz regularizes the latent space q(z) and enforces time–independence
via:

Lz =W2

(
q(z),N (⃗0, I)

)
︸ ︷︷ ︸
regularizing the shape

of the latent space

+
∑
i

W2

(
q(z|t = i),N (⃗0, I)

)
︸ ︷︷ ︸

ensuring latent–space time–independence

, (9)

where W2(q, p) denotes the Wasserstein-2 distance between distributions p and q. This
regularization enableS the generation of a “virtual” cell when z is sampled from N (⃗0, I).
To ensure our model can generate proper “synthetic” cells sampled from different time
points, we enforced two things. First, the time–independent components of the “synthetic”
cells should follow the same distribution as that of the real cells (a Gaussian distribution).
Second, the sampling time of the “synthetic” cells should remain predictable. To achieve
this, we therefore impose:

Lt̃ = λz,t̃W2

(
N (⃗0, I), q(z|x(t̃)

)
︸ ︷︷ ︸

latent space preservation

+λt̃||t̃− t̂||2, (10)

where t̃ is the sampling time of the “synthetic” cells. And finally, we constrain the second
derivative of the generated time series to enforce smoothness:

Ls =
G∑
i=1

1

x̄i

∣∣∣∣∣∣∣∣d2xidt2

∣∣∣∣∣∣∣∣
∞
. (11)

where G is the number of genes and x̄i is the average of xi over all generated time points.
In practice, we find that computing Ls for a randomly selected gene, r, in each training
loop to be computationally cheaper and sufficient to generate smooth time series, giving
the final form of our loss function:

L = − log (p(x|z)) + λzLz + λt||t− t̂||2 + Lt̃ + λs
1

x̄r

∣∣∣∣∣∣∣∣d2xrdt2

∣∣∣∣∣∣∣∣
∞
, (12)
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which preserves the latent space distribution, its time independence, and ensures the
smoothness of the generated time series.

In practice, we simplify the calculation by replacing the Wasserstein-2 distance W2 with
a more computationally tractable form, the sliced Wasserstein distance (Ŵ2) [28], defined
as:

Ŵ2(p, q) =

∫
ω∈Ω

W2

(
p(ω), q(ω)

)
dω, (13)

where the distributions p(ω) and q(ω) can be generated by first sampling from p and q

directly before projecting them in a random direction, ω, sampled uniformly from the unit
sphere Ω̂. Given a set of data points {xi}ni=1 with an unknown underlying distribution q(x),
the sliced-Wasserstein distance with respect to a known distribution, such as the standard
normal, can be easily computed as:

Ŵ2(N (⃗0, I), q(x)) =
1

|Ω̂|n

∑
ω∈Ω̂

||ω⊤X − ω⊤Y ||2, (14)

where y ∼ N (⃗0, I) and we assume the columns of X and Y are sorted such that elements
of both ω⊤X and ω⊤Y are arranged in ascending/descending order.

2.3 Neural network optimization

By default, SNOW uses a 3–layer encoder neural network with 256 fully connected neurons
per layer and ReLU activation to project count data onto a 32 dimensional latent space
(zc). Subsequently, zc and t were used as input to individual neural networks (fρ, fθ
and fh) with the same structure as the encoder network to generate the count fraction,
inverse dispersion and dropout probability. To ensure that fh generates probabilities, its
last layer is activated by a sigmoid function so that its output ranges from 0 to 1. We
further clamped the dropout probability between 0.01 and 0.99 to prevent the appearance
of log(0). As mentioned above, the last layer of fρ is activated by a softmax function to
enforce the sum of its output. During each training loop, we focus only on a randomly
selected small subset of the data, by default 300. Everything within the loss function is
computed from information contained within this subset of 300 cells, which enables our
method to be applied to larger datasets in a memory efficient manner.

In all test cases, the optimization of the model parameters was done with the ADAM [29]
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optimizer as implemented by pytorch [30] with a learning rate of 0.0005, β1 = 0.8, β2 = 0.9,
and a weight decay of 0.0001. No scheduler was used to change the learning rate during
the training process.

3 Materials and Methods

3.1 Datasets

The circadian drosophila clock neuron dataset The drosophila clock neuron dataset [10]
(mean UMI/cell = 20060) was collected from Drosophila clock neurons every four hours
with two replicates (12 time points in total) under both light-dark (LD) and dark-dark
(DD) cycles. We focused our analysis on cells subject to the LD cycle, which contains 2325
cells. Count data was downloaded from the Gene Expression Omnibus under the acces-
sion code GSE157504 and the relevant metadata from https://github.com/rosbashlab/

scRNA_seq_clock_neurons. Data integration was conducted using the IntegrateData func-
tion from Seurat [18] with ndim = 1:50, and k.weight=100. The resulting counts were used
as input to the model.

The circadian mouse aorta dataset The mouse aorta dataset [31] (mean UMI/cell =
14181) was collected every 6 hours (4 time points in total) under LD conditions, with a total
of 21998 cells. H5ad files of the smooth muscle cells (SMC) and fibroblasts were downloaded
from https://www.dropbox.com/sh/tl0ty163vyg265i/AAApt14eybExMMPK7VVDmfvga. Raw
counts were used as input to the model.

The lung regeneration dataset The lung regeneration dataset [32] (mean UMI/cell =
1585) was collected every day for two weeks (day 1 through day 14), and on day 21, 28 36
and 54. We used AT2 cells, cilliated cells and club cells because they are activated after
bleomycin treatment, resulting in a total of 24383 cells. Gene expression data were down-
loaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE141259 along
with the associated metadata. Raw counts were used as input to the model.
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3.2 Identifying batch effects

To identify genes potentially affected by batch effects, we looked for two types of patterns:
spurious expression and spurious detection. We consider a gene to have spurious expression
if its maximum normalized expression at one time point is five times higher than its average
over all time points; and we consider a gene to have spurious detection if its maximum
capture rate (number of cells that contain a said gene over the total number of cells collected
at this time point) at one time point is five times greater than its mean capture rate over
all time points. Here, we used the empirical ρ as normalized expression. To exclude genes
that are almost never detected, we only used those with an average normalized expression
(across all time points) greater than 0.00001 and an average capture rate (across all time
points) over 5%. In the clock neuron dataset, this analysis identifies 124 genes with unusual
capture rates and 24 genes with unusual expression, with zero intersection.

3.3 Detecting circadian behavior on a single cell level

To conduct cycling detection for each individual cell, we generated de novo time series by
concatenating the time independent representation of the cell state, z, with time, t. We
generated time series comprising 24 time points spanning 48 hours. We then conducted har-
monic regression on these time series, resulting in a p value, phase estimate and amplitude
estimate for each gene from each cell.

4 Results

4.1 SNOW constructs biologically meaningful latent spaces

Time could have a profound impact on single cell data when it contributes to gene expression
together with cell state. To illustrate this, we used UMAP [33] to create lower dimensional
embeddings of time–series sc-RNAseq data collected from the fly clock neurons [10] and the
mouse aorta [31], both with existing cell type annotations (see Supplement for details re-
garding cell type annotation). We observed that the effect of time strongly drove clustering
in the UMAP space (Figure 2, left column). As illustrated in the top row of Figure 2, while
the UMAP space can separate the smooth muscle cells (SMCs) and fibroblasts, the SMC
cluster contains subclusters, each corresponding to different sampling times. This effect is
even stronger in the fly clock neurons, where the UMAP projection separates into small,
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disjoint clusters where each contains cells sampled at a particular point in time, and each
such cluster contains cells of different cell types.

To construct a representation of the cell state that is independent of time for cell type
annotation, we regularized the probability distribution of the latent coordinates (q(z)) con-
ditioned on the sampling time, q(z|t), by minimizing its sliced Wasserstein distance with
respect to the prior (see details in Methods). This approach is in principle more efficient
than minimizing the maximum mean discrepancy [34] described in previous work [25] be-
cause fewer computations are needed (O(N) vs O(N2)). With our approach, we were able
to create latent representations of the cells that capture the original cell type annotation
while remaining independent of their sampling times (Figure 2, right column).

Close examination of the SNOW latent space generated from the drosophila data (Fig-
ure 2, bottom row) revealed that we have retained variation attributable to cell type.
Adding the original cell-type annotations to the UMAP plot of the SNOW–processed data
(Figure 2 bottom right), we find dorsal neurons (‘DN’s) located on the top and right side,
and lateral neurons (‘LN’s) on the left (Figure 2C). Interestingly, we observed that a group
of dorsal neurons (6:DN1p, 18:DN1p, 19:DN2) and lateral neurons (9:LNd_NPF, 12:LNd)
merged into two larger clusters in our latent space (Figure 2 bottom right and Figure S2).
On the other hand, we also observed that cluster 14 breaks into at least two smaller clusters
(Figure S2). To identify the origin of this discrepancy, we conducted data integration with
Seurat [35] (see details in Methods) with the features used to train our model, and made
similar observations (Figure S2, S3). This result suggests that the merging and breaking
of clusters in our embedding can be attributed to the small feature set used in the original
annotation of cell types. Additionally, we applied SNOW to a time series dataset charting
the regeneration of mouse lungs subjected to bleomycin-mediated injury [32] and observed
that cells significantly affected by bleomycin in the original gene expression space are now
embedded closer to their untreated counterpart in the UMAP space generated from SNOW
(Figure S4).

4.2 SNOW maps cell forward and backward in time

SNOW generates a latent space that is independent of time and contains a decoder that
reconstructs the transcriptome when the latent state and time are both supplied. In prin-
ciple, then, it is possible to provide the latent space and an unsampled time to generate an
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expression profile of a specific cell at another timepoint. To test whether we can produce
expression dynamics for each cell that resembles the average of its cell type, we generated
de novo time series by concatenating the latent representation of a cell, z, with time, t.
Because the concatenated t can be different from the sampling time of the cell, we refer to
this as the “pseudo” sampling time. We generated time series using latent representations of
the mouse aorta, which is sampled every six hours for one day, by using 100 equally spaced
pseudo sampling times. One might then reasonably ask: if the generated data had in fact
been observed data, would the encoder network have correctly identified the time that was
used to generate the pseudo sample? By supplying the generated expression profile back to
the encoder network, we observed that we are capable of re-inferring the pseudo sampling
time of each cell accurately (Figure 3A), with a mean absolute error (|t̃− t̂|) of 0.80 and 0.79
hours for the smooth muscle cells and the fibroblasts respectively (Figure 3B). Overlaying
the mean absolute error on its UMAP projection identified no regions with particularly
large errors (Figure 3C).

To further validate our approach, we averaged the generated time series for all cells from
the same cell type and compared this population average to the experimental data (red lines
in Figure 3D). Using the well–characterized circadian genes as examples, we observed that
the population average of the generated time series exhibit clear oscillatory dynamics and
match closely with empirical observation (Figure 3D). It is worth noting that no constraint
was imposed during the training process to shape the generated population average. This
observation suggests that the agreement between the observed and the generated dynamics
is consequent of a successful deconstruction of the gene expression into time–dependent and
time–independent components.

We next repeated this test on the clock neuron dataset, sampled every 4 hours for two
days, and observed that our model remained competent at “predicting” pseudo sampling
times (Figure S5A), with an mean absolute error ranging from 1.5 hours to less than 3 hours.
Similar to before, we observed SNOW–generated oscillations in known circadian markers
in concordance with experimental observation (Figure 3E, F). Despite the proximity of the
1:DN1p_CNMa cluster and the 2:s_LNv cluster in the UMAP space (Figure 2, bottom
left), we observed the mean expression level of the generated expression time series of CNMa
to differ by ten fold, suggesting our usage of a fixed latent space standard deviation did not
prevent the model from learning the distinctiveness of each cell type.

Interestingly, we found that the quality of the generated time series ties closely with the
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size of the latent standard deviation (σz). In the clock neuron dataset, we observed that
small σz leads to dampened oscillation in the long run (Figure S5B). However, this effect is
not apparent in the mouse heart data (Figure S5B), potentially because of its larger sample
size, simpler cell type composition, and fewer sampling times.

4.3 SNOW corrects batch effects

While batch effects can be difficult to identify and correct, the fact that samples are related
in time provides us a potential route of correction by prohibiting abrupt changes of expres-
sion, formally achieved by constraining the second derivative of the generated time series.
To test whether SNOW can reduce the impact of batch effects in time–course data, we
first identified genes that have been potentially affected. We consider a gene to be severely
impacted by a batch effect if it is mostly detected only at a single time point. For those that
are consistently detected across time points, we assume they are affected if their expression
level at a particular time point is much higher than that of the rest (see Methods). With
these two criteria, we identified 148 genes within the 1:DN1p_CNMa cluster from the clock
neuron data and observed that 117 of them are considered to be features by Seurat [35]. As
Seurat identifies features by looking for outliers on a mean–variance plot, it is expected, and
alarming, that genes satisfying our criteria will be considered as features. By constructing
time series using all sampled 1:DN1p_CNMa cells to span the entirety of the experiment,
we observed that the generated signal is unaffected by the outlier samples (Figure 4A).

Interestingly, we observed that a large proportion of the selected genes appear to be
impacted by a batch effect at time ZT38. Direct visualization of the expression level of
putative batch–affected genes on the UMAP space implies that these genes, which were
not originally used as features, may contribute to the disagreement between the original
cell type assignment and our latent space. For example, Figure 4B illustrates that cells
annotated as 1:DN1p_CNMa neurons that had an elevated expression of batch–affected
genes are located away from the main cluster. This suggests that what appears to be batch
effect may simply be an artifact of bad cell type annotation. Since we can compute the
likelihood of making an observation, if cells considered to be 1:DN1p_CNMa neurons at
ZT38 were, in fact, of some other origin, cells collected at ZT38 would stand out from
the rest of the time series, but the log–likelihood would not. To test this, we computed
the log likelihoods of observing the experimental data and observed that gene-wise log
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likelihood also shows a sharp drop at the time when gene expression peaks (Figure S6),
indicating that the observed expression level has a low probability of occurrence under our
statistical model. Computing the log likelihood of observing the entire cell by summing up
the probabilities of observing each gene, we noticed a drop at ZT38 for almost all cell types
(Figure 4C, S6C), in agreement with our observation that a large fraction of the identified
genes were impacted at ZT38. Additionally, this drop of log likelihood at ZT38 remained
even when all cells were pooled together (Figure S6B), suggesting that the expression peaks
we observed at ZT38 cannot solely be attributed to cell type assignment.

To summarize, we showed that SNOW can generate time series that are unaffected
by outlier samples and that our underlying statistical framework is capable of detecting
batch–affected genes.

4.4 SNOW allows unsupervised identification of circadian rhythms in
gene expression

The discovery of tissue–specific circadian regulation [36] and advances in single cell tech-
nologies have led to studies that report cell-type specific circadian oscillation [10, 11]. While
circadian time series conducted on the tissue level can be directly supplied to a number of
readily available cycling detection algorithms [37, 38], single cell data requires some spe-
cial considerations. First, proper cell type annotation requires the removal of all temporal
effects. While this can be achieved via data integration, integrated data cannot be used
for cycling detection, forcing users to conduct cell type annotation with integrated data
but perform cycling detection with “raw” data. Moreover, one needs to choose whether
to consider each cell as a replicate or to construct pseudobulk data for each time point.
However, considering cells as replicates can be highly computationally inefficient, and it has
been shown that constructing pseudobulk profiles can generate false positives, especially for
genes with low expression [39].

With SNOW, we can generate a transcriptome-wide time series for all cells by projecting
them forward and backward in time, thus enabling us to conduct cycling detection at the
single cell level. For each cell, we are now able to obtain a p value, phase estimate, and
estimated amplitude for each gene using harmonic regression. To test if these p values are
biologically meaningful, we first took their average across all cells and observed that known
circadian genes vri and tim had the lowest p values among all genes. Next, we compared
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our results to the published list of per–cell–type cycling genes [10]. As demonstrated in
Figure S7, genes that were reported to have rhythmic expression in multiple cell types had
smaller average (across all cells) p values and larger average (across all cells) amplitudes.

We then investigated the biological interpretation of the cell–level statistics. Overlaying
harmonic regression p values on the UMAP space showed that vri and tim are highly
cyclic in all cells (Figure 5A). Additionally, known circadian genes such as Clk and per
were also considered highly cyclic in most of the annotated clusters (Figure 5A). To ensure
that SNOW can capture cell/cell type specific features, we also overlayed the estimated
oscillation amplitude and phase for each cell (Figure 5A). Interestingly, we observed high
oscillation amplitudes of vri and tim in all labeled clusters. By contrast, cluster 16, an
unnamed cluster, stood out for having a much lower amplitude despite its close proximity
to the high–amplitude dorsal neurons on the UMAP space. Additionally, despite the fact
that the phases of vri, tim and Clk were reported to be largely identical across cell types [10],
we observed that SNOW is capable of discerning fine phase differences between clusters on
a single cell level(Figure 5A).

We observed that there are cases where the harmonic regression p values from flat
genes are low, which leads to disagreement between our analysis and the published cy-
cling genes. By looking at the estimated amplitudes, we found that these disagreements
can be resolved by using amplitude criteria that exclude cells/clusters with low oscillation
amplitudes (Figure S8). We also observed that sky, which was reported to be cycling in
the 2:s_LNv and 1:DN1p_CNMa clusters, also appeared to be cycling in two other DN1p
clusters (Figure 5B, left panel). While the estimated amplitudes of sky from the two DN1p
clusters are smaller than that of the 1:DN1p_CNMa cluster, they are similar to that of
2:s_LNv neurons (Figure 5B, right panel). A closer look at the time series generated from
the two DN1p groups revealed expression dynamics distinct from that of 1:DN1p_CNMa
but similar to that of 2:s_LNv, suggesting sky may be cycling in a larger population of
dorsal neurons than previously believed. Another gene, Ddc, which was also reported to
cycle in the 2:s_LNv neurons, showed high p values and low amplitudes in our analysis
(Figure S9A). Comparing SNOW–generated time series to the experimental observations
(Figure S9B) suggests that this may have been a false positive in the original analysis. On
the other hand, we observed that two dorsal neuron groups (7:DN1p, 20:DN3) in which
Ddc was not reported to be cycling originally showed low p values and high amplitudes in
the SNOW generated data (Figure S9B), possibly suggesting a false negative (Figure S9B).
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In summary, we showed that SNOW may be used to help the identification of rhythmic
genes by first generating time series for each cell, and then conducting cycling detection on
a single cell level. By doing this, cycling detection analysis does not depend on the accuracy
of cell type annotation. This suggests that it can be used in combination with traditional
analyses that first assign cell types prior to pseudobulking for cycling detection. For ex-
ample, it can increase the confidence in the identification of cycling genes by confirming
that they are rhythmic in the majority of individual cells; detect potential false negatives
in the pseudobulk analysis (especially for rare cell types that may not be sampled at all
time points); and avoid false-positives by removing potential batch effects. It can also po-
tentially identify subsets of cells of a single type (or a single cluster) that are differentially
cycling, an effect that may be missed in analysis where cells of the same type are treated
as replicates or pseudobulked for cycling detection.

5 Discussion

We presented SNOW (SiNgle cell flOW map), a deep learning framework for the annotation,
normalization, and generation of single–cell time scRNA-seq data. SNOW computes and
maximizes the log likelihood of the experimental observations by taking the raw count data
as input. The count data is modeled to follow a zero-inflated negative distribution, similar
to previous works [25, 26]. SNOW then deconvolves the data internally into time-dependent
and time-independent components by minimizing the sliced Wasserstein distance between
relevant distributions. The time–independent component can be used readily for cell type
annotation, and the time–dependent component can be used to generate artificial time
series for individual cells. We demonstrated the utility of SNOW by applying it to multiple
single cell datasets with vastly different cell numbers, sampling frequencies, and sequencing
depths.

SNOW has a number of advantages. First, most methods for analyzing single cell time
series data focus on developmental processes, in which the effect of time and cell type are
associated. These methods largely rely on finding an optimal transport map between cells
sampled at distinct time points [15, 16, 40]. While such methods are appropriate when cells
are gradually transitioning from one state to another following the same general trajectories
(as illustrated in Figure 1A, top), it is difficult to apply them to time series from mature
cells where expression changes with time in a cell type–specific manner. SNOW addresses
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this issue by deconvolving the effect of time and cell–type.
Second, we demonstrate that SNOW can be used to identify and eliminate batch effects.

By modeling count data with a zero inflated negative binomial distribution, we were able to
identify samples from the clock neuron dataset that are likely to be batch-affected by using
the estimated probability of observing their gene expression profiles. From these samples,
we observed an interesting association between aberrant gene expression and the drop of log
likelihood, empirically confirming the validity of our approach. As illustrated in Figure 4A,
by generating time series on a single cell level and constraining their second derivatives, the
effect of a batch-affected time point can be mitigated.

Third, SNOW is capable of generating time–series data for individual cells. We demon-
strated how this capability can be used to enhance the analysis of circadian signals by
conducting cycling detection on individual cells. Our approach does not rely on the cor-
rect identification of clusters or the construction of pseudobulk expression profiles, and is
therefore less sensitive to outlier time points or the correct identification of cell types. By
looking for genes exhibiting rhythmic patterns across many cells, our approach can increase
the confidence of detected cycling genes and potentially identify false positive/negative
cyclers from traditional analyses.

Several existing methods bear some similarities to SNOW, with important differences.
SCVI [25], DCA [26], and many other methods [27, 41–43] are all built on variational au-
toencoders [17], which are typically trained via the optimization of the evidence lower bound
(ELBO). However, as the ELBO only constrains the latent space via the KL divergence
term(eq 6), it may generate correlated latent dimensions and fail to enforce the assump-
tion that the prior distribution has an identity covariance, enlarging the difference between
ELBO and the actual log likelihood, log(p(x)). In this situation, one would fail to generate
“realistic” virtual gene expression profiles by passing samples drawn from the prior distri-
bution through the decoder network. While having an “irregular” latent space that fails to
match the prior distribution may not impact the performance of the model in other tasks
such as clustering and identifying cell types, enforcing independence between the latent di-
mensions is known to improve model interpretability [44, 45]. To address this, scNODE [16]
and SCVIS [27] introduced a scaling factor added to the KL divergence term (similar to
β-VAEs [44]) to enforce a stronger constraint on the latent space, thereby encouraging a
more efficient representation of the data. More recently, various methods have been pro-
posed [45–48] to directly enforce independence between latent dimensions via minimizing
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DKL (q(z)||
∏

d q(zd)). In SNOW, we enforced independence between latent dimensions and
alignment with respect to the prior distribution simultaneously by minimizing the sliced
Wasserstein distance.

As mentioned in previous sections, we developed SNOW to solve the following problem:
in the situation where both cell state and time affects gene expression, removing temporal
effects to facilitate cell type annotation also removes biologically meaningful gene expression
dynamics. This problem is related to what MrVI [41] attempts to solve by constructing a
sample-unaware representation (u) and a sample-aware representation (z), where u is used
to conduct cell type annotation and z is used to model how sample related covariates (such
as a batch or a time–point) affect gene expression. In some sense, SNOW and MrVI are
designed to solve the same problem, except that SNOW specializes in continuous covariates
(time) and MrVI in discrete covariates. Our explicit enforcement of statistical independence
between the latent space and time, which is absent in both MrVI and SCVI, naturally
defines cell state as a time–invariant quantity. By supplying the decoder with time and
the time independent representation of cell type, SNOW can generate data “sampled” from
intermediate time points, which cannot happen if time is simply treated as batch label, as it
is in MrVI. SNOW also has the additional benefit of enforcing smoothness by constraining
the second derivative with respect to time, which is not possible if time is treated as a
categorical variable.

We made a few assumptions during the construction of our framework. First, we built
the latent representation of each cell as a time–invariant object. For mature cells, we
observed that this time invariant object corresponds to cell type. Biologically speaking,
this assumption can hold as long as cells of the same cell type constantly express reliably
detectable type–specific marker genes. In developmental systems, this time invariant object
should in turn capture the lineage of each cell if lineage–specific markers are being expressed.
However, when gene expression undergoes substantial changes and no lineage or cell type–
specific markers are present, our first assumption will be violated. Second, we assumed that
gene expression is predominantly affected by two components, namely cell type (or lineage)
and time. This assumption implies that our framework is not applicable to developmental
systems where bifurcations are present. For example, if a stem cell population differentiated
into three distinct cell types at t = 5, all expressing the same lineage specific markers, the
decoder cannot generate three distinct set of gene expression profiles when the input lineage
(stem cell) and time (t = 5) is fixed. In the situation when gene expression of each cell
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changes along the same non-bifurcating trajectory but with different speed, given our second
assumption, the input time for the model should be replaced by the estimated pseudotime
of each cell in order to to correctly identify lineage. As SNOW is thus only applicable to
a small subset of developmental processes, we recommend using SNOW to analyze mature
systems.

Nonetheless, we expect our work to be of interest to those studying dynamic processes
in complex tissues. Additional features can be easily added into our method to handle
more complex datasets, and approaches employed in our work, such as data integration or
the enforcement of statistical independence, can also be extracted and adopted for other
analyses.
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Figure 1: SNOW overview. A: Two possible scenarios of temporal effects in scRNA-seq
time–series data. Top: Cell states and time are related, as earlier cell states transition into
new cell states (such as during development). Bottom: Discrete cell states exhibit cell type–
specific dynamics (such as circadian dynamics in mature cells). B: Simplified architecture of
employed neural network. Count data is compressed and deconvolved into time–dependent
and time–independent components. C: Top: Generation of synthetic per–cell time series by
sampling from the time–independent latent space and then modifying the time–dependent
component to project cells forward and backward in time. Bottom: Batch effect correction
by constraining the second derivative of generated time series.
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Figure 2: SNOW removes temporal effects while preserving biologically meaningful struc-
ture. Shown are UMAP plots of a mouse aorta dataset (top) and a drosophila neuron
data dataset (bottom) using unprocessed (left) and SNOW-processed (right) data. Within
each panel, the UMAP plots are colored according to annotated cell type (right image)
and sampling time (left image). In the mouse aorta data without correction (top left),
time separates the smooth muscle cell (SMC) cluster (orange) into subclusters. In the
SNOW embedding of the same data (top right), the temporal effect has been removed and
the SMCs and fibroblasts remain separated (top right). In the drosophila neuron dataset,
UMAP shows clusters strongly dominated by time in the unprocessed data (bottom left),
but by cell type in the processed data (bottom right). Cell type annotations by Ma et
al. [10] are shown.
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Figure 3: SNOW generates cell–level expression time series. A: Relationship between ob-
served and predicted time for mapped cells from the mouse aorta (blue: fibroblasts; orange:
SMC). The shaded region indicates 95% confidence interval. B: Violin plots showing the
mean absolute time prediction error of the fibroblast (blue) and SMC (orange) cluster. C:
Mean absolute error overlayed on the UMAP projection of the mouse aorta data. Larger
points indicate a mean absolute error greater than 5. D–F: Observed (green box plot)
and the population average of SNOW–generated (red lines) time series of known circadian
marker genes from the mouse heart fibroblast (D), fly dorsal (E) and lateral (F) neurons.
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Figure 4: SNOW corrects potential batch effects. A: Examples showing SNOW–generated
time series (red lines) and the experimental observation (green boxplots). B: Gene expres-
sion of batch–affected genes overlayed on top of the UMAP projection of the clock neuron
dataset. Cells belonging to the 1:DN1p_CNMa neuron cluster are plotted to be bigger. C:
Box plots showing the log probability of observing each cell for the named clusters at each
timepoint.
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Figure 5: SNOW allows cycling detection at the single–cell level. A: Estimated p values,
amplitudes and phases (in hours) of known circadian genes (tim, vri, Clk, per) overlayed
on the UMAP projection of the clock neuron dataset. Cells with p value greater than
0.001 or amplitude smaller than 0.0001 were made small for better visualization. The p
value color scale is the same as panel B. B: Estimated p values and amplitude of sky. The
circled region indicates agreement between our analysis and that of Ma et al., and the
shaded region indicates disagreements. D: SNOW generated time series (red lines) and
experimental observation (green boxes) of cells within the circled and shaded region.
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