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A B S T R A C T   

Background: Tongue inspection, an essential diagnostic method in Traditional Chinese Medicine (TCM), has the 
potential for early-stage disease screening. This study aimed to evaluate the effectiveness of deep learning-based 
analysis of tongue images for hepatic fibrosis screening. 
Methods: A total of 1083 tongue images were collected from 741 patients and divided into training, validation, 
and test sets. DenseNet-201, a convolutional neural network, was employed to train the AI model using these 
tongue images. The predictive performance of AI was assessed and compared with that of FIB-4, using real-time 
two-dimensional shear wave elastography as the reference standard. 
Results: The proposed AI model achieved an accuracy of 0.845 (95% CI: 0.79–0.90) and 0.814 (95% CI: 
0.76–0.87) in the validation and test sets, respectively, with negative predictive values (NPVs) exceeding 90% in 
both sets. The AI model outperformed FIB-4 in all aspects, and when combined with FIB-4, the NPV reached 
94.4%. 
Conclusion: Tongue inspection, with the assistance of AI, could serve as a first-line screening method for hepatic 
fibrosis.   

1. Introduction 

Chronic liver disease (CLD) is a major public health problem, ac
counting for significant morbidity and mortality worldwide. Cirrhosis is 
currently the 11th most common cause of death, and liver cancer is the 
5th leading cause of cancer-associated death globally.1 As a pre-stage of 
cirrhosis, fibrosis is closely related to liver function. If not dealt with 
promptly, it can progress to cirrhosis and even carcinoma.2 Thus, one 
approach to preventing liver-related mortality is to prevent the pro
gression of fibrogenesis. As a result, liver fibrosis screening is critical for 
evaluating patients with CLD, including clinical diagnosis, monitoring, 
treatment, and prognosis. 

In the quest to screen for hepatic fibrosis, it is clear that non-invasive, 
repeatable, and cost-effective methods are highly desirable. Currently, 
non-invasive tests for the assessment of CLD can be classified into blood- 

based tests (serum markers of fibrosis) and imaging methods (e.g., 
elastography).3 Serum biomarkers are effective at ruling out the pres
ence of advanced fibrosis and cirrhosis with high negative predictive 
values.4 Elastography techniques provide a quantitative estimate of 
tissue stiffness and a more accurate result of the fibrosis stage. It has 
proven to be efficient in assessing significant fibrosis, which allows it to 
serve as a reference standard in screening for fibrosis. However, most 
non-invasive tests require professional equipment and inspectors. Also, 
they may not be available in primary care facilities, which becomes an 
obstacle in the screening process. 

Traditional Chinese Medicine (TCM) has provided four important 
diagnostic methods: inspection, listening and smelling, inquiring, and 
taking the pulse. Tongue diagnosis is one of the inspection methods to 
use when a TCM practitioner differentiates the syndromes, makes di
agnoses, and delivers prescriptions. An important theory in TCM is that 
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the tongue’s appearance reflects the conditions of the organs and the 
severity of illnesses. A study5 found that some tongue features strongly 
correlated with aminotransferases, suggesting the possible use of tongue 
features to provide an early warning of liver diseases. Tongue inspection 
could be easily and quickly done and barely cost anything compared to 
serology tests and imaging examinations. With certain features, a tongue 
could provide much information about the state of the human body. 
Thus, tongue inspection is a potential screening method for CLD. 

In recent years, there have been increasing studies about applying 
Artificial Intelligence (AI) using tongue images to predict and identify 
diseases. For example, Jiang et al.6 used convolutional neural networks 
to recognize and classify tongue images, revealing that fissured tongue 
and toothmarks were closely related to hypertension, dyslipidemia, and 
nonalcoholic fatty liver disease. Since deep learning models can learn 
the most predictive features directly from raw image pixels,7,8 we 
believe that with the assistance of AI, tongue images could offer 
important clues for diseases.9 Previous studies have shown that tongue 
diagnosis could serve as a primary screening tool in the early detection 
of several diseases, such as diabetes,10 breast cancer,11 and nonalcoholic 
fatty liver disease (NAFLD).12 

In this study, we aimed to construct a deep-learning model based on 
tongue images to screen hepatic fibrosis. The predictive performance of 
AI was assessed and compared with that of FIB-4, an indirect biomarker 
panel based on four factors, including age, aspartate aminotransferase 
(AST), alanine aminotransferase (ALT), and platelet.13 

2. Methods 

2.1. Participants 

This prospective study was approved by the ICE for Clinical Research 
and Animal Trials of the First Affiliated Hospital of Sun Yat-sen Uni
versity (No.2021464), and the informed consent forms were obtained 
from the patients. 

We recruited patients diagnosed with CLD in the Gastroenterology 
Department of the First Affiliated Hospital of Sun Yat-sen University. 
From April 2021 to February 2022, we collected 1083 tongue images 
from 741 patients after eliminating ambiguous or low-quality images. 

2.2. Tongue images collection 

Patients were required to have fasted for 4 h before the ultrasound 
examination. Meanwhile, they were told to avoid colored drinks ahead 
in case of stains left on their tongues. After accepting ultrasound elas
tography, patients extended and stretched their tongues naturally 
outside for the tongue images. Photos were all captured under the same 
conditions (in terms of brightness, a distance of 15 cm, and an angle of 
45◦ between the camera and tongue surface) with the same camera 
(Sony DSC-RX100, no flash mode). Patients should stretch out their 
tongues for no more than 5 s. Patients were asked to rest for a few 
seconds between the shots if more than one picture was needed. 

2.3. Reference standard: ultrasound elastography examination 

Real-time two-dimensional shear wave elastography (2D SWE) was 
performed on all the patients by an experienced doctor（more than ten 
years of working experience）before the acquisition of tongue images. 
The patients lay supine, and the scans were performed through the right 
intercostal region. Patients were told to hold the breadth for 4–5 s when 
liver stiffness was measured. A trapezoidal color box (3.5 cm × 2.5 cm) 
was positioned in the liver parenchyma and acquired the elasticity sig
nals. A round ROI was located in a homogenous elastogram in the liver 
parenchyma, where large vessels or hepatic nodules were avoided. 
Measured elasticity values were expressed in kilopascal (kPa). In this 
study, ultrasound elastography was the reference standard method to 
detect the degree of fibrosis in the patients. The cutoff value of 714 would 

divide the patients into two groups, which were the “fibrosis group” and 
the “non-fibrosis group”. 

2.4. Data preparation 

2.4.1. Image preprocessing 
The 1083 tongue pictures were divided into training, validation, and 

test sets by 6.5: 1.5: 2. Firstly, photos in the training set were randomly 
cropped to remove unnecessary information. One patient’s tongue pic
ture could be derived into several images, and we only selected the 
images in which the tongue could be entirely seen. Secondly, data 
augmentation techniques, such as rotation, flipping, and scaling, were 
applied to enhance the model’s ability to generalize and recognize 
patterns across diverse instances. After the augmentation, 13,381 im
ages were generated for AI training. 

The numbers of images in the validation and the test sets were 167 
and 209, which meant there was only one picture for each patient. Our 
training set consisted of 8847 tongue images from non-fibrosis patients 
and 4534 from fibrosis patients. Meanwhile, the validation and test set 
contained 112 and 142 tongue images from non-fibrosis patients, and 55 
and 68 images from fibrosis patients. 

3. The training process 

3.1. Network architectures 

The deep learning structure for the classification task employed in 
the study was DenseNet-201. In traditional Chinese medicine, tongue 
diagnosis is a complex system where the tongue’s shape, color, coating, 
and other features reflect visceral functions through intricate relation
ships. The intricate nature of these features necessitates a sophisticated 
approach to capture and analyze the subtle details in tongue images 
effectively. In pre-experiments, we found that DenseNet-201, distin
guished by its densely interconnected layers,15 outperformed alternative 
networks, such as ResNet, VGG, Inception, etc. It offered significant 
advantages, including enhanced feature reuse and a reduced parameter 
count, which were crucial for efficiently processing the intricate features 
in tongue images. Consequently, we considered DenseNet a suitable 
model for our study. 

In our study, the DenseNet-201 comprised four dense blocks, three 
transition layers, and a global average pooling layer. Each dense block 
included a batch normalization (BN), followed by a rectified linear unit 
(ReLU) and a 3 × 3 convolution. The transition layers, layers between 
blocks, consisted of a BN layer and a 1 × 1 convolutional layer followed 
by a 2 × 2 average pooling layer. The growth rate of the network was k 
= 32.16 

3.2. Training protocol 

The model leverages the comprehensive “densenet” package inte
grated within “torchvision”, specifically opting for the “densenet201” 
module. Due to the scarcity of training data, a transfer learning approach 
was employed to capitalize on the knowledge acquired by the pre- 
existing parts of the network. The “pretrained = False” setting was 
specified, prompting the download of the pre-trained model from 
“https://download.pytorch.org/models/densenet201-c1103571.pth”. 
Subsequent model training was conducted based on this pre-trained 
foundation. The input images were resized to a resolution of 224 ×
224 pixels to standardize the input format. After the input, we trained 
the model for 300 epochs with a batch size of 30 for each training 
iteration. To optimize the learning process, an initial learning rate of 
0.001 was employed, and a weight decay of 5 × 104 was implemented to 
facilitate gradual learning rate reduction. The model aimed to predict 
the patient’s diagnosis as either “fibrosis” or “non-fibrosis” based on the 
features extracted from the input images. 

The training was performed on a workstation with an NVIDIA A100 
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Tensor Core GPU, a Core i7-6700 K (Intel) central processing unit, and 
64 GB of random-access memory. Python 3.5 (https://www.python.org) 
and the Torch (http://torch.ch) framework for neural networks were 
used for this purpose. Augmentation was performed using the Python 
imaging library of Pillow 3.3.1 (https://pypi.python. org/pypi/Pillow/ 
3.3.1). 

4. Artificial intelligence performance analysis 

4.1. Performance of the AI model versus FIB-4 

By applying the AI to the test set, each case was evaluated by the 
same input method used in the training process. The output was pre
sented as the corresponding diagnosis of fibrosis or non-fibrosis. On the 
other hand, we predicted each patient’s diagnosis in the test set by 
calculating their FIB-4 score and observed FIB-4’s diagnostic perfor
mance before comparing it with that of the AI model. 

FIB-4 was first developed to access liver fibrosis in HIV/hepatitis C 
virus (HCV) coinfection and was calculated by the formula of (age 
[years] £ AST [U/L]) / ((PLT [109/L]) £ (ALT [U/L])1/2).17 Pre
vious studies have proved that FIB-4 performed better in classifying 
different stages of liver fibrosis when compared to the AST-to Platelet 
ratio index (APRI), AST-to-ALT ratio index, and age-spleen platelet ratio 
index 18,19. After calculating the FIB-4 scores of the patients in the test 
set, we put them into three groups with cut-off values of 1.45 and 3.25 
(group A: FIB-4<1.45; group B: 1.45≤FIB-4<3.25; group C: 
FIB-4≥3.25), which were initially defined by Sterling et al. 17 to rule out 
and rule in advanced fibrosis. 

4.2. Heatmap of the model’s attention 

The Gradient-weighted Class Activation Mapping (Grad-CAM) 
technique was employed to produce visual explanations for the de
cisions from the system by using gradient information flowing into the 
last convolutional layer of the CNN to generate a localization map 
highlighting the critical regions in the image for predicting the 
concept.20 With Grad-CAM, the heatmap was generated to interpret the 
AI model’s attention when discriminating between fibrosis and 
non-fibrosis. 

5. Statistical methods 

Descriptive statistics were summarized as the mean ± standard de
viation (SD) or median and interquartile range. Continuous variables 
were compared by the t-test or Mann–Whitney U test, and categorical 
variables were compared using the χ2 test. The performances of the AI 
model and FIB-4 were mainly evaluated in terms of the AUC (Area Under 
Curve), accuracy (ACC), sensitivity (Se), specificity (Sp), positive pre
dictive value (PPV), negative predictive value (NPV), and error rates. R 
software (version 3.4.1; https://www.r-project.org) was used for sta
tistical analysis. Results with two-sided P-values of less than 0.05 indi
cated a statistically significant difference. 

6. Result 

6.1. Clinical characteristics 

This study included 741 patients, of whom 249 were females (mean 
age, 46.3 ± 13.0 years old), and 492 were males (mean age, 43.6 ±
12.6). According to the reference standard, patients were categorized 
into a fibrosis group (training: 236 patients; validation: 55 patients; test: 
68 patients) and a non-fibrosis group (training: 471 patients; validation: 
112 patients; test: 142 patients). The performance of AI and FIB-4 were 
compared on the test set. In the test set, 174 patients had undergone 
serum tests right before participating in the study, of whom 115 were 
diagnosed with non-fibrosis and 59 with fibrosis. The clinical 

characteristics of the 174 patients are listed in Table 1. 

6.2. Diagnostic performance of the AI model 

The AI model achieved an ACC of 0.845 (95% CI: 0.79–0.90) in the 
validation set and 0.814 (95% CI: 0.76–0.87) in the test set. The vali
dation and test sets achieved a considerably high NPV of 0.907 (95% CI: 
0.85–0.96) and 0.906 (95% CI: 0.86–0.96), respectively. The perfor
mance measurements of both validation and test sets are shown in 
Table 2, and their receiver operating characteristic curves (ROC curves) 
are shown in Fig. 1. 

6.3. Performance comparison between the AI model and FIB-4 

We evaluated the serological tests of 174 patients in the test set and 
determined their FIB-4 scores based on laboratory results. Of these pa
tients, 104 patients had FIB-4 scores less than 1.45, indicating METAVIR 
F0–F1 stage, and were labeled as non-fibrosis. And the rest of the 70 
patients who got FIB-4 scores equal to or greater than 1.45 were labeled 
as fibrosis. 

Comparing the FIB-4 label with the corresponding patient’s actual 
diagnosis, the accuracy, sensitivity, specificity, PPV, and NPV of FIB-4 in 
the test set were 71.8%, 67.8%, 73.9%, 57.1%, and 81.7%, which were 
inferior to that of the AI model. When combining the AI model and FIB- 
4, we got a higher NPV than both the AI model and FIB-4 respectively. 
Details are shown in Table 3. 

A previous study showed that patients with FIB-4≥1.45 were clas
sified as having significant fibrosis.21 And since FIB-4 serves as a 
screening tool with high NPVs in ruling out fibrosis,13 here we propose a 
pathway consisting of a 2-step non-invasive assessment starting with 
tongue image analysis followed by FIB-4. On the basis of test set data, of 
174 patients who received tongue image analysis, 102 (58.6%) patients 
were predicted as negative and recommended staying in the primary 
care setting. The rest 72 patients then received serological tests, 
resulting in 32 (18.4%) patients with FIB-4<1.45 and 40 (23%) patients 
with FIB-4≥1.45. According to Fig. 2, which displays the flowchart of 
the 2-step diagnostic pathway, 77% of patients are deemed at low risk of 
advanced fibrosis, while the remaining 23% are referred to liver 
specialists. 

To observe the AI model’s performance in different situations, we 
built three confusion matrices for Group A, B, and C. In Group A, when 
FIB-4 was less than 1.45, the AI model correctly labeled more than half 
of the images as “non-fibrosis” (68 out of 104). Conversely, in Group C 
(FIB-4≥3.25), 16 out of 20 images were identified as “true fibrosis” by 
the AI model. Fig. 3 below provides an intuitive illustration of the AI’s 
performance. 

6.4. Interpretability of the AI model 

To visualize and interpret the model predictions, we generated 

Table 1 
Characteristics of the test set.  

Characteristic Fibrosis (N =
59) 

Non-fibrosis (N =
115) 

p value 

Age (y)a 50.3 ± 13.2 43.0 ± 12.9 <0.001 
Gender 

Male 
Female 

46 (78.0%) 
13 (22.0%) 

60 (52.2%) 
55 (47.8%) 

<0.05 

Laboratory tests    
Alanine aminotransferase 
(U/L)a 

44.7 ± 49.2 31.8 ± 29.4 <0.05 

Aspartate aminotransferase 45.2 ± 45.4 29.9 ± 16.9 <0.05 
(U/L)a 

Platelet count ( × 109/L)a 165.7 ± 72.3 227.0 ± 55.8 <0.001  

a Data are means ± standard deviations. 
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attention heatmaps, as shown in Fig. 4. By analyzing the heatmaps along 
with the corresponding images, we observed that the AI model focused 
on the lateral sides of the tongue in cases that were diagnosed with 
fibrosis. These regions were particularly prominent in the heatmaps, 
indicating their importance in the model’s decision-making process. The 
intensity of the color in the heatmap corresponds to the degree of 
contribution of the corresponding region to the recognition of liver 
fibrosis. According to TCM theory, different tongue regions represent 
different organs in the body. Fig. 5 shows the subdivisions of the tongue, 
including spleen-stomach on the middle part, liver-gallbladder on the 
lateral sides, heart-lung on the tip, and kidney on the root.11 

7. Discussion 

In this study, we applied a deep learning approach to analyze tongue 

images and established a classification task to validate its performance 
of screening for hepatic fibrosis. Our analysis demonstrates that tongue 
images could be of great value in estimating liver fibrosis and provide 
vital information for physicians with the assistance of AI. To the best of 
our knowledge, no previous works have applied deep-learning models to 
predict hepatic fibrosis using only tongue images. 

Traditional tongue inspection inevitably involves the observer’s 
subjectivity, which could lead to bias in diagnosis.22 With the develop
ment of AI, such a problem seems to be potentially solvable. In this 
study, our proposed AI model achieved an ACC of 84.5% and 81.4% in 
the validation and test sets, respectively, while NPVs were over 90% in 
both sets. Compared with FIB-4, our model exhibited better performance 
in all aspects. Furthermore, when combining the AI model and FIB-4, 
NPV could reach 94.4%, exceeding any of the two. 

A model with high NPV has the advantage of excluding diseases in 
the screening process. Following the 2-step assessment we proposed 
resulted in a 77% reduction of unnecessary referrals. It suggests that 
when integrating the method into clinical practice, the majority of re
ferrals made to hepatologists or tertiary hospitals could have been 
managed in primary care, which has the benefits of easing patients’ 
economic and emotional burdens, relieving the pressure on secondary or 
tertiary care services, and reducing the costs for the healthcare system. 
In addition, it’s possible to install the deep learning model into smart
phone applications, enabling patients to capture pictures of their tongue 
and make a preliminary diagnosis even before going out to seek physi
cians. All in all, we believe promoting this method in clinical practice is 
beneficial to facilitating the screening process for hepatic fibrosis. 

It should be noted that there were 24 false positives (13.8%) and 11 
false negatives (6.3%) when the AI model made the diagnosis prediction. 
Among those falsely predicted to be fibrosis by the AI model, more than 
half were middle-aged with a rather long history of hepatitis. Their ALT 
and AST were normal, as well as the liver elasticity measurement (LSM). 
However, we could not rule out the possibility that dysfunction of the qi 
and blood had happened and manifested on the tongue surfaces. 
Therefore, we consider that even if the LSM is within normal range, it 
should not be treated lightly for patients with chronic hepatitis history. 
For the false negative patients, their aminotransferase values were 
relatively higher, which indicated their livers were under an inflam
matory state. In this situation, the result of ultrasound elastography had 
the possibility of being false positive on the contrary. 

Deep learning is often regarded as a black box. However, with the 
Grad-CAM technique, the AI model’s decision-making is more trans
parent and explainable. The TCM theory emphasizes the unity of the 
human body and demonstrates that the tongue is connected to the in
ternal organs through meridians. The condition of qi and blood of the 
organs are usually manifested in the changes of the tongue body and 

Table 2 
Performance measurements of the validation and test sets.   

ACC Se Sp PPV NPV 

Validation 0.845 
(0.791, 
0.900) 

0.818 
(0.716, 
0.920) 

0.858 
(0.794, 
0.923) 

0.738 
(0.627, 
0.848) 

0.907 
(0.851, 
0.962) 

Test 0.814 
(0.762, 
0.867) 

0.824 
(0.733, 
0.914) 

0.810 
(0.745, 
0.874) 

0.675 
(0.574, 
0.775) 

0.906 
(0.855, 
0.956) 

ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value; 
Se, sensitivity; Sp, specificity. 

Fig. 1. Receiver operating characteristic curves of the validation group (brown 
curve) and the test group (red curve). The areas under the curves are 0.893 and 
0.854, respectively. 

Table 3 
Comparisons among the AI model, FIB-4, and the combination.   

AI model FIB-4 Combined 

Accuracy (%) 81.4 71.8 79.8 
Sensitivity (%) 82.4 67.8 78.9 
Specificity (%) 81.0 73.9 80.0 
PPV (%) 67.5 57.1 46.9 
NPV (%) 90.6 81.7 94.4 

PPV, positive predictive value; NPV, negative predictive value. 

Fig. 2. Diagnostic pathway consisted of a 2-step assessment.  
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tongue coating. The heatmap revealed that the lateral sides of the tongue 
body were identified as the critical regions for the AI model when 
discriminating between fibrosis and non-fibrosis. The lateral sides of the 
tongue represent the liver and gallbladder, indicating that the model’s 
result conforms to the TCM tongue subdivision theory and provides 
objective evidence of such theory. 

This study has several limitations. First, in consideration of the 
feasibility of the study, we selected ultrasound elastography as the 
reference standard when analyzing the performance of both the pro
posed AI model and FIB-4. Ultrasound elastography has a high perfor
mance in diagnosing and staging hepatic fibrosis. However, the imaging 
results could be affected by the operator’s experience and the patient’s 
condition (e.g., obesity, liver function), leading to biased results to some 
degree. Magnetic resonance elastography (MRE), which performs better 

for the earlier fibrosis stage, could be considered a substitute to improve 
reliability. Second, even though a tongue image could potentially screen 
hepatic fibrosis with the help of AI, the critical features that determine 
the result are still unclear. Images were labeled at the pixel level for deep 
neural networks. Still, details of tongue information, such as the shape, 
the color, and the tongue coating, were unknown when the AI model 
classified the tongue images. Exploring the characteristics of the tongues 
that assist in the diagnosis of hepatic fibrosis is the direction of future 
research. Lastly, the deep learning methods are data-driven, meaning 
the robustness of the models is closely related to the amount and di
versity of training data. Future studies using a larger dataset that in
cludes data from multiple centers for training may improve the AI 
model’s performance. 

Summary 

In summary, we developed an AI model based on tongue images for 
differentiating between fibrosis and non-fibrosis, which outperformed 
the FIB-4. By combining our AI model with the FIB-4, we proposed a 
clinically applicable screening strategy for hepatic fibrosis that could 
potentially reduce unnecessary referrals in primary care. 
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Fig. 4. Images of patients’ tongues (fibrosis group), and the corresponding heatmaps.  

Fig. 5. The tongue is sub-divided into areas corresponding to different inter
nal organs. 
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