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Abstract

The accelerated adoption of digital pathology and advances in deep learning have enabled the 

development of robust models for various pathology tasks across a diverse array of diseases 

and patient cohorts. However, model training is often difficult due to label scarcity in the 
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medical domain, and a model’s usage is limited by the specific task and disease for which 

it is trained. Additionally, most models in histopathology leverage only image data, a stark 

contrast to how humans teach each other and reason about histopathologic entities. We introduce 

CONtrastive learning from Captions for Histopathology (CONCH), a visual-language foundation 

model developed using diverse sources of histopathology images, biomedical text and, notably, 

over 1.17 million image–caption pairs through task-agnostic pretraining. Evaluated on a suite 

of 14 diverse benchmarks, CONCH can be transferred to a wide range of downstream tasks 

involving histopathology images and/or text, achieving state-of-the-art performance on histology 

image classification, segmentation, captioning, and text-to-image and image-to-text retrieval. 

CONCH represents a substantial leap over concurrent visual-language pretrained systems for 

histopathology, with the potential to directly facilitate a wide array of machine learning-based 

workflows requiring minimal or no further supervised fine-tuning.

The gold standard for the diagnosis of many diseases remains the examination of 

tissue by a pathologist. The recent rise of computational pathology1–4, which leverages 

artificial intelligence (AI) to solve problems in pathology, has demonstrated considerable 

advances across many tasks, including metastasis detection5, cancer subtyping6,7, survival 

prediction8–10, unknown primary origin site prediction11,12, image search13–16 and 

prediction of molecular alterations17,18, among other tasks19. Additionally, current strides 

in the field are made under the paradigm of developing models targeting specific tasks using 

large cohorts of labeled training examples, such as in lymph node metastasis detection20 

and prostate cancer grading21,22. However, the process of data collection and annotation 

of whole-slide images (WSIs) is labor intensive and is not scalable to open-set recognition 

problems or rare diseases, both of which are common to the practice of pathology. With 

thousands of possible diagnoses and many other tasks, training separate models for every 

step of the pathology workflow is untenable. Additionally, as diverse as these tasks are, they 

are all analyses of visual data or include other structured information such as ‘omics’ (refs. 

23–26) and other multimodal data sources27–29. However, the practice of pathology and the 

communication of pathological findings make extensive use of natural language, be it in the 

form of the report that the pathologist prepares for the patient and their treating clinician, the 

journal article that details a new histopathologic entity or the textbook chapter that teaches 

residents how to practice pathology.

The general machine learning community has made immense strides in foundation models 

that use both visual and language information. Representative tools such as CLIP30, 

ALIGN31 and CoCa32, among others33–38, use large-scale image–caption pairs39 to pretrain 

visual-language foundation models—task-agnostic pretrained models that demonstrate 

robust performance in downstream vision and visual-language tasks. In the broader 

biomedical imaging domain, visual-language data have been leveraged for a variety of 

tasks, including X-ray report generation40,41, zero-shot classification42–45 and retrieval45–48, 

among others49–53. However, the number of studies integrating vision and language data 

for representation learning in computational pathology is small, with recent studies44,54–58 

demonstrating the potential of using paired image–caption data to learn meaningful visual 

representations and to develop foundation models for histopathology that can be transferred 

to multiple downstream tasks in a zero-shot setting, that is, using no task-specific training 
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data. However, these studies44,54,56 were limited in the scale of histopathology-specific 

pretraining data due to the lack of readily available image–caption pairs in this domain, 

leading to limited practical utility from relatively poor performance. Additionally, the 

broader capabilities of these models remain underexplored.

Given the diversity of tasks, the difficulty in acquiring large datasets of rare diseases or 

combinations of findings, and the central nature of language to the practice of pathology, 

there is a need for (1) highperforming visual-language foundation models that leverage 

large-scale pretraining and generalize well across tasks; and (2) extensive studies on 

the wide range of potential applications of these models to understand their utility 

and limitations. We introduce CONtrastive learning from Captions for Histopathology 

(CONCH), a visual-language foundation model developed using diverse sources of 

histopathology images, biomedical text and over 1.17 million image–caption pairs (Fig. 

1a–b and Extended Data Fig. 1) through task-agnostic pretraining to address these 

unfilled needs. Based on CoCa32, a state-of-the-art visual-language foundation pretraining 

framework, CONCH uses an image encoder, a text encoder and a multimodal fusion 

decoder, and it is trained using a combination of contrastive alignment objectives that 

seek to align the image and text modalities in the model’s representation space and a 

captioning objective that learns to predict the caption corresponding to an image (Fig. 

1c). We investigate the capabilities of CONCH on a wide array of tasks, including 

classification of image tiles and gigapixel WSIs, cross-modal image-to-text and text-to-

image retrieval, image segmentation and image captioning, using a total of 14 diverse 

benchmarks. We demonstrate that our model achieves state-of-the-art performance across all 

benchmarks relative to other visual-language foundation models (Fig. 1d), including PLIP54, 

BiomedCLIP44 and OpenAICLIP30, and it outperforms concurrent baselines, often by a 

large margin (Figs. 2–5).

Results

Zero-shot classification of diverse tissues and diseases

Contrastively aligned visual-language pretraining allows the model to be directly applied to 

downstream classification tasks without requiring further labeled examples for supervised 

learning or fine-tuning. This zero-shot transfer capability allows a single pretrained 

foundation model to be applied off the shelf to different downstream datasets with an 

arbitrary number of classes compared with the current paradigm of training a new model 

for every new task. While we do not expect zero-shot classification to currently be 

sufficiently accurate for most clinical use cases, in some tasks, we found CONCH to 

perform surprisingly well, and it may serve as a strong baseline for conventional supervised 

learning, especially when training labels are scarce.

Given a task, we first represented the set of class or category names using a set of 

predetermined text prompts, where each prompt corresponded to a class. An image was then 

classified by matching it with the most similar text prompt in the model’s shared image–text 

representation space (Fig. 2a; see Methods for details). In practice, there are often multiple 

ways to phrase the same concept in text (for example, ‘invasive lobular carcinoma (ILC) of 

the breast’ and ‘breast ILC’); therefore, we created an ensemble of multiple text prompts 
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for each class during prediction, which was found to generally boost predictive performance 

compared to using a single text prompt (Extended Data Fig. 2). Additionally, while previous 

studies44,54 primarily focused on classification tasks at the region-of-interest (ROI) level, 

we also investigated the zero-shot capability of our model on gigapixel WSIs by leveraging 

MI-Zero56, which divides a WSI into smaller tiles and subsequently aggregates individual 

tile-level scores into a slide-level prediction (Fig. 2b).

In total, we evaluated CONCH on four slide-level classification tasks: The Cancer Genome 

Atlas (TCGA) BRCA (invasive breast carcinoma subtyping), TCGA NSCLC (non-small-

cell lung cancer subtyping), TCGA RCC (renal cell carcinoma subtyping) and Dartmouth 

Hitchcock Medical Center (DHMC) LUAD (lung adenocarcinoma histologic pattern 

classification) and three ROI-level tasks: CRC100k (colorectal cancer tissue classification), 

WSSS4LUAD (LUAD tissue classification) and SICAP (Gleason pattern classification). 

We used balanced accuracy as the primary evaluation metric for TCGA NSCLC, TCGA 

RCC, TCGA LUAD, CRC100k and WSSS4LUAD, which accounted for class imbalance 

by weighing the accuracy score of each class equally. Following the community standard, 

we used Cohen’s κ and quadratic weighted Cohen’s κ as primary metrics for LUAD 

pattern classification and Gleason pattern classification, respectively, as they are regarded 

as more subjective tasks, which typically translates to higher inter-rater variability. We refer 

readers to Supplementary Tables 1–14 for more detailed reporting of model performance and 

Methods for detailed descriptions of evaluation datasets.

On slide-level benchmarks, CONCH outperformed state-of-the-art visual-language 

foundation models (PLIP, BiomedCLIP and OpenAICLIP) on all tasks, often by a wide 

margin (Fig. 2c). For instance, for NSCLC subtyping and RCC subtyping, CONCH achieved 

a zero-shot accuracy of 90.7% and 90.2%, respectively, and it outperformed the next-best-

performing model, PLIP, by 12.0% and 9.8% on each task with P < 0.01 according to a 

two-sided paired permutation test (Methods, ‘Statistical analysis’). On the more difficult 

BRCA subtyping task, CONCH achieved a zero-shot accuracy of 91.3%, while other models 

performed at near-random chance, with accuracies ranging from 50.7% (PLIP) to 55.3% 

(BiomedCLIP), nearly 35% (P < 0.01) lower than CONCH. Lastly, on the LUAD pattern 

classification task, CONCH achieved a κ score of 0.200, which was 0.12 higher than that for 

the next-best-performing model, PLIP, although no significance was noted (P = 0.055). On 

ROI-level benchmarks, we observed similar findings, where CONCH achieved a zero-shot 

quadratic κ of 0.690 on SICAP (outperforming BiomedCLIP by 0.140, P < 0.01), a zero-shot 

accuracy of 79.1% on CRC100k (outperforming PLIP by 11.7%, P < 0.01) and a zero-shot 

accuracy of 71.9% on WSSS4LUAD (outperforming PLIP by 9.5%, P < 0.01). These results 

demonstrate that, in addition to achieving more accurate predictions on relatively easy tasks, 

CONCH was still able to achieve meaningful predictions on some more challenging tasks 

where other models may especially struggle.

When classifying a WSI using zero-shot transfer, in addition to computing an aggregated, 

slide-level prediction, we can create a heatmap to visualize the cosine-similarity score 

between each tile in the slide and the text prompt corresponding to the predicted class label. 

Regions with high similarity scores are deemed by the model to be close matches with the 

diagnosis (for example, invasive ductal carcinoma (IDC)), while regions with low similarity 
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scores do not match the diagnosis (Fig. 2e). In an example of a breast IDC slide, we found 

that regions highlighted in the heatmap closely resembled the tumor regions as delineated 

by pathologist annotation (Fig. 2e, left and middle). Because the slide-level prediction score 

is a simple average of the similarity scores of the top-K tiles for a given class, the heatmap 

enables human interpretability by directly highlighting regions involved in the model’s 

decision-making process, which can be displayed in high resolution to the human user 

for inspection (Fig. 2e, right). Additional examples are visualized in Extended Data Figs. 

3–5. These findings suggest the possibility of using the zero-shot recognition ability of our 

model for coarse-grained tissue segmentation on WSIs, which we quantitatively evaluated in 

Results (‘Zero-shot segmentation’).

Few-shot classification with task-specific supervised learning

The zero-shot recognition capability of contrastive pretrained visual-language models for 

histopathology enables efficient and expedited application of a single foundation model to 

a potentially wide range of tasks without going through the laborious processes of training 

data collection, annotation and supervised model training for each new task. Sometimes, 

however, it may still be desirable to specialize the model with labeled training examples 

to maximize performance for a given task, ideally using as few labels as possible. In 

this section, we investigate the label efficiency when using the pretrained representation 

of the image encoder backbone of the visual-language foundation models for task-specific 

supervised classification. For each benchmark using supervised training, we used either the 

official training set (if provided) or the remaining cases from the dataset after holding out 

the set of cases used for zero-shot evaluation (Methods, ‘Downstream evaluation datasets’). 

For slide-level tasks, we trained weakly supervised classification models using slide-level 

labels based on the widely used attention-based multiple-instance learning (ABMIL) 

algorithm59. For ROI-level tasks, we used logistic regression on top of the global (for 

example, classification (<CLS>) token) representation of each encoder, a practice commonly 

known as linear probing. In addition to PLIP, BiomedCLIP and OpenAICLIP encoders, 

we introduced supplementary baselines for comparison: for slide-level tasks, given its 

popularity, we used ResNet50 (ref. 60) (truncated after the third residual block) pretrained 

on ImageNet61, while, for ROI-level tasks, we included CTransPath62—a state-of-the-art 

self-supervised pretrained histopathology image encoder (see Methods for details).

On the slide-level tasks (Fig. 2d, left), CONCH achieved a balanced accuracy score of 

86.7%, 94.2% and 93.3% on BRCA subtyping, RCC subtyping and NSCLC subtyping, 

respectively, outperforming the commonly used ResNet50 ImageNet baseline by 10.0%, 

2.6% and 10.7%, respectively (P < 0.01, P = 0.223 and P = 0.033). Overall, CONCH 

obtained an average accuracy of 91.4% across the three tasks, whereas PLIP and 

BiomedCLIP had an average accuracy of 87.3% and 89.4%, respectively, but no statistical 

significance was detected other than for BRCA subtyping in the comparison with PLIP (P 
= 0.04). In the ROI-level tasks (Fig. 2d, right), CONCH performed nearly identically to the 

state-of-the-art CTransPath encoder (93.8% versus 93.8% balanced accuracy on CRC100k 

and 0.833 versus 0.835 quadratically weighted κ on SICAP), while outperforming PLIP, 

BiomedCLIP and OpenAICLIP by 4.0–5.8% in balanced accuracy on CRC100k and by 

0.071–0.128 in quadratically weighted κ on SICAP (P < 0.01 for all comparisons). These 
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results demonstrated that, overall, CONCH provides a strong image encoder that performed 

either comparably to or better than all visual encoders tested, including a strong, vision-only 

self-supervised baseline (see Supplementary Tables 15–19 for detailed reporting of model 

performance).

Next, we investigated the label efficiency of different visual language pretrained encoders 

in the few-shot setting, where we varied the number of training labels per class (nc), for 

nc = 1, 2, 4, 8, up to 512 per class or until we reached the maximum number of available 

labels in the training set. In the few-shot setting, for each experiment, we sampled five 

different sets of training examples and showed their individual performance by boxplot to 

account for the high variance in model performance when performing supervised learning 

with very few training examples (Fig. 3 and Extended Data Fig. 6). We first observed that 

CONCH achieved better performance (in terms of the median accuracy of five runs) than 

other encoders for all sizes of training set and for all tasks, which translated to requiring 

fewer labels to achieve the same performance. For instance, in BRCA subtyping, using the 

CONCH encoder and 8 training labels per class outperformed using PLIP, BiomedCLIP 

or OpenAICLIP with 64 labels per class, representing a nontrivial reduction in training 

set size—a trend we also observed for most tasks tested. Additionally, we noted that the 

zero-shot performance of CONCH was highly competitive when compared to few-shot 

supervised learning. Aside from relatively easy tasks such as RCC subtyping and CRC 

tissue classification, CONCH zero-shot outperformed PLIP-based and BiomedCLIP-based 

supervised learning in BRCA subtyping (up to 64 labels per class), NSCLC subtyping 

(up to 128 labels per class) and Gleason grading (up to 8 labels per class for PLIP and 

64 labels per class for BiomedCLIP). These findings suggest that the zero-shot capability 

of a good visual-language foundation model should not be trivialized and, in fact, can 

serve as a very good baseline when evaluating the performance of task-specific diagnostic 

models trained with supervised learning. On the other hand, we found that the zero-shot 

capability of previous visual-language foundation models (that is, PLIP and BiomedCLIP) 

could be relatively easily surpassed by using supervised learning on top of the CONCH 

vision encoder with just a few labeled examples.

Application to classification of rare diseases

While previous investigations have focused on evaluating zero-shot and few-shot 

performance of visual-language pretrained models on relatively narrow tasks corresponding 

to a small set of possible classes (2–5 classes), to our best knowledge, the effectiveness 

of such models in large-scale, potentially fine-grained disease classification involving rare 

diseases has yet to be studied. Here, we investigated the utility of CONCH in recognizing 

up to 30 categories of brain tumors, all of which are classified as rare cancers following the 

definition of the RARECARE project63 as having an annual crude incidence rate smaller 

than 6 per 100,000, the definition adopted by the National Cancer Institute’s Surveillance, 

Epidemiology and End Results (SEER) program. We constructed a large-scale subtyping 

benchmark using the EBRAINS dataset and evaluated the effectiveness of both zero-shot 

and supervised learning of various models.
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In zero-shot classification, CONCH achieved a balanced accuracy score of 37.1% on 

the 30-class subtyping problem (Extended Data Fig. 7 and Supplementary Table 20), far 

surpassing the random chance baseline of 3.3%, as well as the second-best-performing 

visual-language pretrained zero-shot classifier, BiomedCLIP (+17.0%, P < 0.01). However, 

the generally low zero-shot performance of these models suggests that the current generation 

of visual-language foundation models may not yet be capable of directly performing ‘in 

the wild’, that is, open-set recognition of diverse diseases in pathology, and they are likely 

to achieve limited performance when evaluated on more challenging benchmarks involving 

many classes and rare entities.

Next, we studied the quality of pretrained representations of our vision encoder for training 

weakly supervised ABMIL classification models. Similar to the previous section, we 

also included additional baselines for pretrained vision encoders, including CTransPath, 

KimiaNet64 and truncated ResNet50 (ImageNet initialized weights). We found that, while 

the zero-shot performance of CONCH was limited due to the challenging nature of 

the task, image embeddings of the frozen CONCH encoder could be used to develop 

strong-performing classification models when combined with weakly supervised learning. 

Specifically, CONCH combined with ABMIL achieved a balanced accuracy of 68.2% 

(Extended Data Fig. 7a and Supplementary Table 21), surpassing the vision-only self-

supervised learning (SSL) pretrained CTransPath model (+6.8%, P < 0.01), as well as all 

other visual-language pretrained models tested by a substantial margin (+10.7%, P < 0.01 

for PLIP, +14.4%, P < 0.01 for BiomedCLIP and +17.8%, P < 0.01 for OpenAICLIP). These 

results demonstrate the potential utility of a strong pretrained visual-language model as 

an effective image-only encoder for standard weakly supervised learning of computational 

pathology workflows, even when the task predominantly involves rare diseases. Lastly, 

we also investigated the few-shot learning performance of various models, motivated by 

the need for high label efficiency when training diagnostic models for rare diseases due 

to limited data availability. We observed a similar trend of superior label efficiency for 

CONCH compared to all other models tested, with other models generally requiring around 

four times as many labels to achieve comparable performance (Extended Data Fig. 7b).

Zero-shot cross-modal retrieval

By learning an aligned latent space for visual and language embeddings, our model is 

capable of cross-modal retrieval in a zero-shot setting, that is, retrieving the corresponding 

text entry on the basis of an image query (image-to-text, abbreviated as ‘i2t’) or vice 

versa (text-to-image, abbreviated as ‘t2i’). This task naturally lends itself to image search 

applications, which are useful in the biomedical domain for applications such as identifying 

cases for inclusion in research cohorts or clinical trials, assistance with rare disease 

presentations or morphologies, and collecting cases for or helping to create educational 

resources. To perform text-to-image retrieval (the image-to-text direction was analogous), 

we used the text encoder to embed a text input that served as a query. We then used the 

query text embedding to retrieve similar images in the latent space (Fig. 4b).

We evaluated our model on three image–caption datasets, source A and source B (both are 

held-out sources from model pretraining that cover a diverse range of general pathology 
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concepts) and TCGA LUAD (a much more specific dataset of tiles extracted from LUAD 

slides in TCGA and annotated with captions in house). Following previous studies31,44,54, 

we used Recall@K as the metric for cross-modal retrieval (see Methods for more detailed 

descriptions of retrieval datasets).

On average, over the three datasets, CONCH significantly outperformed baselines by a large 

margin, achieving mean recall for text-to-image retrieval of 44.0%, and it outperformed the 

next-best model, BiomedCLIP, by 17.3% with P < 0.01 according to a two-sided paired 

permutation test (Fig. 4a). For source A and source B, CONCH achieved mean recall 

for text-to-image retrieval of 68.8% and 39.0%, respectively, outperforming the second-

best model, BiomedCLIP, by 31.5% and 15.1% (P < 0.01 for both). For TCGA LUAD, 

CONCH achieved text-to-image mean recall of 24.0%, outperforming the next-best model, 

BiomedCLIP, by 5.3% but with no statistical significance (P = 0.22). However, CONCH 

significantly outperformed PLIP and OpenAICLIP (P < 0.01). Image-to-text retrieval for all 

three datasets followed the same trend as text-to-image retrieval in terms of performance 

and statistical significance, except for TCGA LUAD where the gap for CONCH and 

BiomedCLIP was slightly smaller (1.6%). We refer readers to Supplementary Tables 22–27 

for more detailed reporting of model performance. On the basis of these results, CONCH 

was able to perform more accurate cross-modal retrieval than baselines.

In addition to using the paired captions as queries, we show examples of retrieved results 

using CONCH with simple text prompts of concepts related to LUAD (for example, ‘solid-

pattern LUAD’) on the TCGA LUAD dataset (Fig. 4c). To provide examples from more 

complex text queries, such as ‘cribriform prostatic adenocarcinoma’, we used a highly 

diverse dataset of 321,261 tiles sampled from 1,620 cases held out during pretraining, 

spanning 108 OncoTree65 codes (Extended Data Fig. 8). However, as this dataset did not 

have paired text data, we were not able to quantify the retrieval performance. The presented 

examples were confirmed by a pathologist to represent the text query closely.

Zero-shot segmentation

While WSIs can be gigapixels in size, they are generally heterogeneous, with diverse cell 

types, morphologies and tissue architectures represented, each often making up a small 

share of the slide. Consequently, segmentation on the slide level is a difficult and useful 

task to identify distinct regions of a WSI on the basis of the characteristics of interest, and 

it can reduce the number of tiles needed for downstream applications. However, because 

annotated data at the sub-slide level are expensive and laborious to collect, a general model 

capable of performing slide-level segmentation in a zero-shot setting is valuable. In this 

work, we explored the possibility of performing coarse-grained tissue segmentation on WSIs 

without labeled examples, instead directly using the demonstrated zero-shot retrieval and 

classification capabilities of our model.

Given a WSI, we divided the tissue regions into smaller image tiles and posed a given 

segmentation task as classifying each tile using zero-shot classification and assigning the 

predicted class label to all pixels in the tile, performed for all tiles (Fig. 5a). To minimize 

sharp transition in predicted values for pixels at the boundary of neighboring tiles, we tiled 

the WSIs with a 75% overlap and averaged the prediction scores in overlapped regions to 

Lu et al. Page 8

Nat Med. Author manuscript; available in PMC 2024 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



achieve a smoother appearance in the predicted segmentation map. We evaluated our model 

on SICAP for prostate tumor versus normal tissue segmentation and on DigestPath for 

malignant versus benign tissue segmentation in CRC specimens. We report the widely used 

Dice score, in addition to precision and recall, for each task against ground-truth pixel-level 

annotations, with scores macro-averaged over all images in each dataset (see Methods for 

more details). We refer the reader to Supplementary Tables 28 and 29 for more detailed 

results of model performance.

CONCH outperformed other models in both tasks (Fig. 5b,c). In SICAP, CONCH achieved 

an average Dice score of 0.601 (0.549, P = 0.08 for PLIP and 0.484, P < 0.01 for 

BiomedCLIP), an average recall score of 0.751 (0.644, P < 0.01 for PLIP and 0.557, P 
< 0.01 for BiomedCLIP) and an average precision core of 0.672 (0.605, P = 0.024 for PLIP 

and 0.536, P < 0.01 for BiomedCLIP). In DigestPath, CONCH achieved an average Dice 

score of 0.615 (0.426, P < 0.01 for PLIP and 0.446, P < 0.01 for BiomedCLIP), an average 

recall score of 0.709 (0.541, P < 0.01 for PLIP and 0.601, P < 0.01 for BiomedCLIP) and 

an average precision core of 0.663 (0.526, P = 0.024 for PLIP and 0.581, P < 0.01 for 

BiomedCLIP). Additionally, we found that, despite the coarse-grained and zero-shot nature 

of the approach, the model was able to produce reasonably accurate pixel-level segmentation 

masks in some instances, as visualized in Fig. 5d,e.

Discussion

Most previous tools in computational pathology have attempted to extract meaningful 

patterns and discriminative signals from image data and/or structured patient data such as 

genomics and have ignored the textual aspect of pathology. However, these approaches leave 

on the table a huge amount of information present in descriptions of images, information 

that allows pathology trainees to generalize from a few exemplar images of an entity to 

images in the real world that are often substantially more diverse. While several recent 

studies44,54 attempted to leverage image and caption data from social media or biomedical 

research articles to build visual-language foundation models applicable to the domain of 

histopathology, we found that, across a number of tasks, both their zero-shot and their 

supervised classification performance remain limited, hindering their practical value as 

general-purpose recognition or retrieval systems for histopathology. Additionally, beyond 

working on small ROIs, the models’ abilities to perform in more complex settings (for 

example, classification of rare diseases or tumor segmentation on heterogeneous gigapixel 

WSIs) remain underexplored.

In this study, we demonstrated that, by using the currently largest histopathology-specific, 

paired image–text dataset of over 1.17 million examples for task-agnostic pretraining, 

we could build a high-performance visual-language foundation model that could then 

demonstrate utility in a wide range of clinically relevant downstream tasks such as 

classification, retrieval and tissue segmentation. Our model is equipped with strong zero-

shot recognition capabilities out of the box, which can potentially relieve the burden of 

annotating training examples for many specific classification tasks, and we demonstrated 

that its zero-shot performance often rivaled or even outperformed conventional supervised 

learning baselines in these tasks under few-shot settings. Additionally, the much-improved 
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zero-shot image-to-text and text-to-image retrieval capabilities of our model will potentially 

empower trainees, physicians and researchers to more accurately and flexibly retrieve 

relevant patient cases or educational examples based on image or natural language queries 

once it can be efficiently implemented into healthcare systems or databases. Equipped with 

a multimodal decoder, our visual-language foundation model also provides the flexibility to 

be further fine-tuned in downstream tasks that involve language generation (for example, 

image captioning; see Methods, ‘Captioning with fine-tuning’ for details and Extended Data 

Fig. 9 and Supplementary Table 30 for exploratory results) and/or multimodal reasoning 

based on both visual and textual inputs. However, beyond promising results in select tasks, 

we also found and noted that current visual-language pretrained models, including CONCH, 

still perform poorly on challenging zero-shot problems (relative to their supervised learning 

counterparts) that involve a large number of classes and rare diseases. These observations 

suggest that we still potentially have a long way to go before achieving the goal of 

building a foundation model capable of truly universal zero-shot recognition or retrieval 

for histopathology.

We additionally performed ablation experiments to investigate the effect of data filtering, 

different pretraining algorithms and unimodal pretraining on the performance of our model. 

Most notably, we found that performing unimodal pretraining (especially vision encoder 

SSL pretraining) could improve model performance in zero-shot classification and retrieval 

across most tasks (see Extended Data Fig. 10 for more details).

Another relatively underexplored aspect is the compatibility of visual-language pretrained 

foundation models with conventional end-to-end supervised learning aimed at targeting 

specific tasks. For some widely studied, single-disease model tasks such as prostate 

adenocarcinoma Gleason grading, there have been substantial efforts by various groups 

around the world to build large and diverse datasets with detailed ROI or pixel-level 

annotations suitable for end-to-end supervised machine learning. A natural question is, 

given the abundance of annotated data, does pretraining a foundation model on images 

and captions from diverse tissue types and diseases still lead to tangible benefits for these 

specific tasks? We attempted to provide some insight into this question by assembling 

a large and diverse dataset of more than 200,000 labeled ROIs for the task of prostate 

cancer Gleason grading from multiple publicly available sources, before performing 

end-to-end fine-tuning of our vision encoder, as well as a handful of other pretrained 

standard convolutional neural network (CNN)-based and vision transformer (ViT)-based 

models including domain-specific encoders such as KimiaNet64 and CTransPath62. In our 

experiments, we found that, even with hundreds of thousands of labeled ROIs paired with 

transfer learning from ImageNet weights or SSL pretraining, a fine-tuned CONCH model 

can still provide a sizeable improvement, even when compared to a much larger ViT-Large 

model (Supplementary Table 31).

While a recent investigation found that current visual-language pretrained foundational 

models may perform worse than smaller encoders in the specific scenario of WSI-to-WSI 

matching using one specific algorithm66, our experiments in both rare disease few-shot and 

weakly supervised classification, as well as end-to-end fine-tuning, showed that CONCH 

can serve as a state-of-the-art visual encoder for histopathology images, in addition to 
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providing a shared image–text latent space that unlocks additional multimodal capabilities. 

Nevertheless, these findings highlight the importance of continuous research and evaluation 

to better understand the strengths and limitations of foundational models for computational 

pathology.

A key limitation of our study is the scale of data pretraining, which still pales in comparison 

to billion-scale datasets used in developing large-scale visual-language foundation models 

in the general machine learning community; therefore, we are likely to see further potential 

improvement in zero-shot recognition capabilities, representation quality and robustness 

by increasing both the quantity and the quality of histopathology image–caption datasets. 

However, given the increasing data scale used in pretraining, the potential for unintentional 

data overlap between pretraining data and downstream test data becomes increasingly 

high, a limitation also shared by previous vision-language pretraining approaches in the 

biomedical domain44,54. Detecting and removing duplicates and near-duplicates typically 

relies on a combination of heuristics and manual assessment, and this has not been 

sufficiently explored in the biomedical domain, serving as an open research question for 

future work. In this study, we minimized the potential for data overlap by ensuring that 

no publicly available test dataset was directly derived from any training sources and by 

only holding out data at the source level. Another limitation of the study is that we 

did not investigate the robustness of zero-shot classification (for both image ROIs and 

WSIs) across different data cohorts with potentially different staining variations, tissue 

preparation protocols and scanner-specific imaging profiles, compared to using conventional 

supervised learning or parameter-efficient fine-tuning techniques67,68. Additionally, while 

we showed that simply ensembling a small number of templates and class names written 

by a pathologist can already work well for several tasks, we did not attempt to explicitly 

engineer the prompts on the basis of the model’s performance (for example, by using 

a validation set). We note that doing an explicit search for ‘good’ prompts on a small 

validation set (if it is available) may be much more effective in practice while still retaining 

the benefit of not needing to fine-tune the model, although it would no longer be strictly 

considered zero-shot transfer69,70. Moreover, as a zero-shot classification algorithm for 

WSIs, MI-Zero is only best suited for tasks where the defining morphological patterns of 

each class are mutually exclusive, and it may not work on tasks with specific assumptions 

or guidelines. This includes tasks such as Gleason scoring where both the primary and the 

secondary pattern may need to be considered to inform the classification or tumor versus 

normal classification, in which a slide may be appropriately labeled as ‘positive’ as soon 

as a single tumor-containing region is identified. We note that, for these types of tasks, the 

pooling function of MI-Zero can be adjusted to better suit the nature of the task, and we 

leave its implementation and evaluation to future studies. Lastly, while the current landscape 

of visual-language foundation models for histopathology focuses primarily on image-level 

tasks, the ability of these models to recognize fine-grained visual concepts at the region 

level (that is, cellular or even subcellular level) has not yet been studied, meaning that other 

important tasks such as mitosis detection, fine-grained tissue segmentation or cell counting 

currently remain outside the scope of their downstream capabilities.
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Methods

Dataset curation

Most data used for this study were obtained from publicly available research articles. 

For internal data, the Mass General Brigham institutional review board approved the 

retrospective analysis of internal pathology images, corresponding reports and electronic 

records. All internal digital data, including WSIs, pathology reports and EMRs were 

deidentified before computational analysis and model development. Patients were not 

directly involved or recruited for the study. Informed consent was waived for analyzing 

archival pathology slides retrospectively. We used publicly available articles from PubMed 

to curate the largest-to-date dataset of histopathology image–caption pairs. We used deep 

learning to automate data cleaning iteratively. For curation, we divided the data sources into 

two categories: EDU, which consists of data extracted from educational notes, and PMC 

OA, which consists of data downloaded from the PubMed Central Open Access Dataset 

(https://ncbi.nlm.nih.gov/pmc/tools/openftlist/).

The data curation process poses two main challenges: filtering for histopathology data and 

handling image panels. The first challenge is that the raw downloaded data comprised both 

histopathology and non-histopathology examples. The second challenge is that a substantial 

portion of the data were in the form of figure panels, where the images consisted of multiple 

subimages arranged in a panel with parts of the caption addressing all or some of the 

subimages. In light of these challenges, manually cleaning the data was infeasible. We 

cleaned the data in three steps: (1) detecting histopathology images (as single images or 

subimages); (2) splitting captions that referred to image panels into separate captions into 

subcaptions; and (3) aligning subimages with subcaptions within each image panel.

To detect histopathology images, we used an object detection model (YOLOv5)71 to 

generate bounding boxes for extracting detected images. To avoid the laborious task of 

manually labeling ground-truth bounding boxes, we generated synthetic data by randomly 

selecting single-panel images and arranging them in an image panel. We iteratively refined 

the detection model by validating it on a small subset (<0.5%) of PMC OA and adding 

incorrectly labeled samples to the training set.

For caption splitting, we collected a dataset of original and split captions (while cleaning the 

EDU dataset) to fine-tune a generative pretrained transformer (GPT)-style model pretrained 

on PubMed and other medical text72. We posed the problem of splitting captions as causal 

language modeling, where we fine-tuned the language model to take the original full caption 

as input and predicted the subcaptions separated by the keyword ‘next caption’. We used the 

fine-tuned model to perform caption splitting.

To align the detected histopathology images with split captions, we first trained a CLIP 

model30 on the cleaned EDU dataset, along with PMC OA single figures that did not require 

splitting and alignment. Using the trained model, given a set of m detected images and 

n split captions from an image panel, we computed the image embeddings u0, u1, …, um

and text embeddings v0, v1, …, vn  in the aligned latent space. For each image embedding 

ui, we computed the cosine-similarity score with each text embedding vj. We retrieved the 
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text with the highest cosine-similarity score si, j = uiT vj and considered ui, vj  to be an 

image–caption pair for our cleaned dataset.

By applying the three steps above to PMC OA, we created PMC-Path, a pathology-

specific image–caption dataset derived from PubMed figures. We then combined it with 

EDU to form our full, unfiltered pretraining dataset of 1,786,362 image–caption pairs. 

However, PMC-Path also contained a substantial number of pairs referring to animal 

histopathology, as well as non-hematoxylin and eosin (H&E) stains (immunohistochemistry 

(IHC), Masson’s trichrome, Congo red, etc.). Because our downstream evaluation concerned 

only human histopathology and H&E tasks, we wanted to assess how the animal and special 

staining data would affect performance. We first parsed the captions to exclude samples 

referencing nonhuman animals, forming a dataset of 1,170,647 human pairs. Additionally, 

we trained a classifier that identified H&E stains to further filter the human-only dataset 

and create a dataset of 457,372 pairs. We found that CONCH pretrained on the human-only 

dataset performed the best on downstream tasks in general (Extended Data Fig. 10a).

Visual-language pretraining

For visual-language pretraining, we used an equal-weighted combination of the image–text 

contrastive loss and the captioning loss following CoCa32, a state-of-the-art visual-language 

foundation model pretrained on general-domain image–caption pairs. The model consisted 

of an image encoder, f · ; θ , a text encoder, g · ; ϕ , and a multimodal text decoder, 

ℎ · ; ψ . The image encoder included the backbone and two attentional pooler modules, 

parameterized by θbackbone, θcontrast and θcaption, respectively. The backbone was a ViT73 following 

the standard ViT-base architecture with 12 transformer layers, 12 attention heads, an 

embedding dimension of 768 and a hidden dimension of 3,072. The token size was 16 

× 16, and learned absolute positional embeddings were added to each token. The backbone 

transformed images in the form of raw red–green–blue (RGB) pixel values to dense feature 

maps in a more semantically rich representation space learned from data. Each attentional 

pooler was responsible for computing a fixed number (denoted by n) of image tokens from 

the last layer representation of the ViT backbone using multiheaded attention and n learned 

queries. For enabling cross-modal retrieval through contrastive learning, the first attentional 

pooler fcontrast · ; θcontrast  used a single query (ncontrast = 1) to compute a single image token 

designed to capture the global representation of the image. The second attentional pooler 

fcaption ⋅ ; θcaption  used ncaption = 256 queries to generate a set of 256 image tokens designed to 

capture more local and fine-grained details of the image, which are typically required for 

captioning. The text encoder and multimodal decoder were both GPT-style models that used 

causal attention masks for left-to-right autoregressive language modeling. Similar to the 

image encoder, the text encoder and multimodal decoder consisted of 12 transformer layers 

with an embedding dimension of 768 and a hidden dimension of 3,072. The text encoder 

included an embedding table for mapping discrete word tokens to continuous embeddings 

and a set of learned absolute positional embeddings. Additionally, the text encoder appended 

a learned <CLS> token to each tokenized caption, which had access to the full context 

during transformer attention to extract a global representation of a given caption. The 

multimodal decoder inserted a cross-attention layer after each multiheaded self-attention 

Lu et al. Page 13

Nat Med. Author manuscript; available in PMC 2024 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



layer to incorporate information from image tokens and included a final language modeling 

head for predicting the distribution of the next token over the supported vocabulary.

During visual-language pretraining, a mini-batch consisted of M image–caption pairs 

xi, wi i = 1
M , where wi = <BOS>,wi, 1, …wi, T, <EOS>  is a sequence of T  word tokens 

representing the ith caption. For a given pair xi, wi , we let ui, vi  be the output of 

fcontrast · ; θcontrast  and the output of g · ; ϕ  at the position corresponding to the <CLS> token 

after l2-normalization. The complete objective is given by:

ℒ = − 1
2M ∑i = 1

M log exp τui
Tvi

∑j = 1
M exp τui

Tvj
− 1

2M ∑j = 1
M log exp τvj

Tui

∑i = 1
M exp τvj

Tui

− 1
M ∑i = 1

M ∑t = 1
T + 1 logp wi, t wi, 0: t − 1, xi; θ, ϕ, ψ

The first and second terms represent image-to-text and text-to-image contrastive loss, 

respectively, to maximize the cosine-similarity scores between paired image and text 

embeddings relative to remaining negative pairings in the mini-batch. The last term seeks 

to maximize the log-likelihood of each observed token under the multimodal autoregressive 

language model (jointly parameterized by the image encoder, text encoder and multimodal 

decoder), conditioned on previous tokens in the caption, as well as the corresponding image. 

Each visual-language pretraining experiment was trained for 40 epochs, distributed across 

eight NVIDIA A100 80-GB graphics processing units (GPUs) with a local batch size of 48 

per GPU, and gradient accumulation was used to achieve an effective global batch size of 

1,536. We set the image size to 448 × 448 pixels, where larger images were first resized 

along the shorter edge and center-cropped, and smaller images were zero-padded as needed. 

For all optimization hyperparameters, refer to Supplementary Table 32.

Pretraining unimodal encoders

Prior work56 showed that performing self-supervised pretraining of unimodal modules using 

unpaired data before joint visual-language pretraining using paired image–caption data 

can substantially improve downstream zero-shot transfer performance. We pretrained our 

image encoder using iBOT74, a state-of-the-art, self-supervised pretraining algorithm for 

unlabeled image data. An in-house dataset of 16 million 256 × 256-sized image tiles were 

sampled and extracted at ×20-equivalent magnification from the tissue regions of 21,442 

WSIs spanning over 350 cancer subtypes under the OncoTree classification system65. 

Detailed hyperparameters for image-only pretraining are provided in Supplementary Table 

33. For pretraining the language model, we built a diverse corpus of pathology-relevant 

texts ranging from pathology educational texts to final diagnosis sections of over 550,000 

surgical pathology reports from Massachusetts General Hospital and over 400,000 select 

histopathology-relevant PubMed abstracts. We used regex to deidentify in-house diagnostic 

reports, notably replacing patient and physician names, specimen identifiers, medical record 

numbers and dates with a corresponding special token in the vocabulary. We pretrained a 24-

layer GPT-style autoregressive model using the next-word prediction loss. Specifically, given 

a sequence of word tokens wi = <BOS>,w1, …wT, <EOS> , we maximized the log-likelihood 

of each token under an autoregressive generative model parameterized by ξ:
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ℒclm ξ = − ∑t = 1
T + 1 logp wt w0: t − 1; ξ

Detailed hyperparameters for text-only pretraining are provided in Supplementary Table 

34. After pretraining, the first 12 layers of the transformer-based language models and 

the embedding table were used to initialize the unimodal text encoder, while the last 12 

layers and the language modeling classifier head were used to initialize the corresponding 

parameters in the multimodal decoder.

We assessed the benefit of unimodal pretraining by comparing downstream performance 

between the unimodal domain-specific pretraining scheme above versus CONCH with the 

image encoder pretrained on ImageNet versus CONCH with the language model randomly 

initialized (Extended Data Fig. 10). We found that CONCH with domain-specific pretraining 

outperformed CONCH with ImageNet pretraining on both zero-shot transfer and retrieval 

tasks. CONCH with the pretrained language model performed similarly to CONCH with a 

randomly initialized language model on classification and grading tasks but outperformed it 

in retrieval tasks.

Zero-shot transfer on ROIs and tiles

For zero-shot transfer, we used the method described in CLIP30. Each class was associated 

with a text prompt consisting of a class name (for example, ‘adenocarcinoma’) and a 

template (for example, ‘this is {}.’; see Supplementary Table 35 for templates used 

across all tasks). For a prompt associated with class j ∈ 1, 2, . . . , C , we computed the 

l2-normalized embedding vj using a text encoder trained on our paired dataset to form the 

linear classifier weights. Because model performance can vary considerably depending on 

the choice of prompts, we measured the performance spread by sampling subsets from a 

pathologist-curated set of prompts and reporting the median.

Alternatively, we could also ensemble all the prompts within a class by using the mean 

embedding over the prompts as the text embedding associated with that class (see Extended 

Data Fig. 2 for a comparison with and without ensembling). Analogously, for each image, 

we computed the l2-normalized embedding ui. We then computed cosine-similarity scores 

between the image and each text embedding, and the predicted class was consequently the 

class with the highest similarity score:

yi = argmaxj ui
Tvj

Because some evaluation sets were imbalanced, we report the balanced accuracy (that is, the 

macro average over the accuracy obtained on each class) and the average F1 score weighted 

by the support of each class. For SICAP, we also report the quadratic Cohen’s κ score, which 

is often used for prostate Gleason grading75, where errors between adjacent grading classes 

are penalized less.

Similarly, for cross-modal retrieval, we used the same method as zero-shot classification 

above to retrieve the top-K images that were closest in the aligned latent space to a specific 
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text query (text-to-image retrieval). Image-to-text retrieval was performed analogously. To 

evaluate retrieval, we followed ALIGN31 and used Recall@K, that is, for what percentage of 

the test set is the correct result in the top-K retrieved samples. We chose K ∈ 1, 5, 10 , and 

we also report mean recall by averaging the scores over the three Recall@K values.

Unless otherwise specified, we enforced the maximum image size to be 448 × 448 for 

CONCH through image resizing and center cropping, similar to its pretraining configuration. 

For all models that were not ours, we used their provided processor function and default 

configuration for image and text processing in downstream evaluation.

Extending zero-shot transfer to WSIs

To extend zero-shot transfer to gigapixel images, we followed the method introduced by 

MI-Zero56. Specifically, for classification over C classes, the WSI was first divided into 

N tiles, and the l2-normalized embeddings were computed independently using the image 

encoder. For each tile embedding, we computed similarity scores with each text embedding 

following the method for tiles described above, obtaining a set of C similarity scores for 

each tile. To aggregate similarity scores across tiles, we used the top-K pooling operator 

by averaging over the highest K similarity scores for each class to obtain the slide-level 

similarity score. Consequently, the class with the highest slide-level score was the predicted 

class. We chose K ∈ 1, 5, 10, 50, 100 , and we report metrics for the K value with 

the highest balanced accuracy for classification tasks and Cohen’s κ for DHMC LUAD. 

Similarly to the classification of tiles, we report the slide-level balanced accuracy and 

weighted F1 score for classification tasks. For DHMC LUAD, because the task of LUAD 

subtyping can be subjective, we report Cohen’s κ score.

We performed zero-shot slide-level segmentation using a similar approach to that used for 

classification. We divided the WSI into tiles and computed similarity scores for each tile 

independently. However, instead of aggregating the scores across tiles into a single slide-

level prediction, we mapped the tile-level scores to their corresponding spatial locations in 

the WSI, averaging the scores in overlapped regions. Finally, for each pixel, we assigned the 

class with the highest score as the prediction, producing a pixel-level segmentation mask. 

We computed the Dice score76 to quantify the quality of the predicted segmentation mask 

relative to the ground truth.

Details of WSI preprocessing for both classification and segmentation tasks are described in 

Methods, ‘WSI processing’.

Supervised and weakly supervised classification experiments

We performed supervised classification experiments on all tasks with a labeled set of 

training examples available, including TCGA BRCA for BRCA subtyping, TCGA NSCLC 

for NSCLC subtyping, TCGA RCC for RCC subtyping, CRC100k for CRC tissue 

classification and SICAP for Gleason grading. For each dataset, we used the official 

training and testing split if it was available or we used the remaining labeled cases 

for training after holding out the cases used for zero-shot classification evaluation (see 

Methods, ‘Downstream evaluation datasets’ for a more detailed breakdown). For slide-
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level experiments, we considered four visual-language pretrained image encoders, namely, 

CONCH, PLIP, BiomedCLIP and OpenAICLIP. All four encoders followed the ViT-base 

architecture with a patch size of 16 except PLIP, which used a patch size of 32. For 

slide-level tasks, we additionally considered a ResNet50 encoder truncated after the third 

residual block, with weights initialized from supervised classification on ImageNet, as it has 

been a common choice in the weakly supervised classification of WSIs. For ROI-level tasks, 

we added CTransPath62 as a baseline, which is a state-of-the-art general-purpose vision 

encoder trained with SSL on a large dataset of unlabeled histopathology images. We did 

not use CTransPath for TCGA slide-level tasks because TCGA slides (including those used 

in our test sets) made up a large portion of the data used to train CTransPath; therefore, 

this could have resulted in information leakage that unfairly inflated the performance of 

CTransPath on TCGA benchmarks.

For all experiments, we standardized the image input size to 224 × 224. We used each 

image encoder to extract a low-dimensional feature embedding from each image (tiles in the 

case of WSIs). For CONCH, we used the output of the attentional pooler that corresponded 

to image–text alignment, with an embedding dimension of 512. For CLIP-based models, 

including PLIP, BiomedCLIP and OpenAICLIP, we used the <CLS> token, which was also 

used for image–text alignment during pretraining and similarly had a dimension of 512. For 

ResNet50, we used global average pooling after the third residual block to obtain a 1,024-

dimensional embedding. For CTransPath, we also used the <CLS> token representation, 

which had an embedding dimension of 768.

For WSI classification, we used the same preprocessing setup as zero-shot classification 

with MI-Zero. We used the widely used ABMIL59 for weakly supervised classification of 

WSIs using slide-level labels. The ABMIL model architecture consists of a fully connected 

layer and a rectified linear unit (ReLU) nonlinearity that first maps the inputs to an 

embedding dimension of 512, followed by a two-layer, gated variant (as described in the 

original paper) of the attention network, with a hidden dimension of 384. Lastly, a fully 

connected classifier head maps the attention-pooled slide-level representation to logits, 

which are interpreted as class probabilities after softmax normalization. We used dropout 

with P = 0.25 after each intermediate layer in the network for regularization. We trained each 

model for 20 epochs on the training set, using an AdamW optimizer, a cosine learning rate 

scheduler and a learning rate of 1 × 10−4. We used a weighted data sampler that increased 

the sampling probability of slides from minority classes such that, on average, the model 

saw the same number of slides from each class each epoch. The full set of hyperparameters 

is summarized in Supplementary Table 36.

For ROI-level classification, we conducted linear probing by training a logistic regression 

model on top of the pretrained image embeddings of each encoder. We followed a practice 

recommended by the large-scale self-supervised representation learning community77 and 

set the ℓ2 regularization coefficient λ to 100
MC , where M is the embedding MC dimension 

and C is the number of classes. We used the limited-memory Broyden–Fletcher–Goldfarb–

Shanno (L-BFGS) solver and set the maximum number of iterations to 800.
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For few-shot classification, we kept the test set the same, and we varied the number of 

labeled examples per class for training (known as ‘shot’) from nc = 1, 2, 4, 8, 16, 32, up 

to either nc = 512 or the maximum number of labeled examples available for a given class. 

Otherwise, the hyperparameters and training setup remained the same as described above.

End-to-end fine-tuning for classification experiments

We evaluated the utility of CONCH in image ROI classification using standard end-to-end 

fine-tuning on a four-class Gleason grading benchmark with a total of 228,482 (training, 

189,484; validation, 9,959; testing, 29,039) image ROIs individually labeled as NC, G3, 

G4 or G5 (see Methods, ‘Downstream evaluation datasets’ for more details). We compared 

its performance against that of five other models covering a variety of model architectures, 

pretraining strategies and sizes, including ViT-B/16 (ViT of the same architecture as the 

CONCH vision encoder backbone), ViT-L/16 (larger ViT with ~3.5 times the number 

of parameters as ViT-B), ResNet50 (popular, widely used standard CNN architecture), 

CTransPath (a histopathology-specific image encoder based on the Swin transformer 

architecture, pretrained using large-scale vision SSL, which has achieved state-of-the-art 

performance on many computational pathology tasks) and KimiaNet64 (a lightweight CNN 

based on the DenseNet121 architecture, pretrained on a histopathology image classification 

task using supervised learning). For ViT-B/16, ViT-L/16 and ResNet50, we initialized the 

models using weights pretrained on ImageNet; for CTransPath and KimiaNet, we used 

the pretrained weights provided by their respective authors. We also investigated the label 

efficiency of each model by further subsampling 10% and 1% of labels from the full training 

set (189,484 ROIs from 4,622 slides) at the slide level, corresponding to 19,304 ROIs from 

462 slides and 1,864 ROIs from 46 slides, respectively. The results are summarized in 

Supplementary Table 31.

We used eight 80-GB NVDIA A100 GPUs for each experiment using a batch size per GPU 

of 32 for ViT-L/16 (due to GPU memory constraints) and a batch size of 128 for all other 

models. All images were resized to 448 × 448 for both training and inference. We warmed 

up the learning rate over 250 steps and used the AdamW optimizer with β = 0.9, 0.999  with 

fp16 automatic mixed precision training. For each model, we swept the learning rate over {1 

× 10−6, 1 × 10−5, 1 × 10−4, 1 × 10−3, 1 × 10−2} using the validation set. We trained for a 

maximum of 20 epochs and monitored the validation performance for early stopping with a 

patience of five epochs, using the best-performing model on the validation set for evaluation 

on the test set. We increased the maximum number of epochs to 40 and 80 for training 

with 10% labels and 1% labels, respectively, to account for the fewer training iterations 

per epoch, and we similarly increased the early-stopping patience to 10 and 20 epochs, 

respectively. We used standard data augmentation techniques during training, including 

random horizontal and vertical flips, discrete angle rotation (θrot ∈ 0, 90, 180, 270 ) and 

color jittering (brightness, 16/255; contrast, 0.125; saturation, 0.075; hue, 0.01).

Captioning with fine-tuning

Image captioning has been a widely explored task in the general visuallanguage 

domain36,78,79. In addition to distilling a top-level diagnosis of the image, image captioning 

can potentially provide morphological and contextual details, as well as additional 
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interpretability, offering a much richer set of information than discrete labels. While 

prior studies44,54,56 in visual-language pretraining showed applications in classification and 

retrieval, they are not equipped with generative capabilities. By adding a generative loss 

along with alignment and a text encoder module using the CoCa framework, our model 

is augmented with the ability to generate text conditioned on image inputs. We explored 

the captioning capabilities of CONCH on image–caption pairs extracted from a held-out 

source, source A, where a board-certified pathologist manually reviewed and condensed 

each caption such that it retained only information that could be inferred from the image, 

including the top-level diagnosis and detailed morphological descriptions. Given that our 

pretraining data were far from the scale of high-quality zero-shot captioning, we performed 

fine-tuning on the dataset. We partitioned the dataset into training, validation and testing 

splits and fine-tuned CONCH and baselines. Because PLIP and BiomedCLIP are not readily 

adaptable to captioning tasks, we compared the results against GenerativeImage2Text 

(GIT)78, a widely used family of open-source visual-language pretrained models for image 

captioning.

We fine-tuned the entire model on a small training set of image – caption pairs. When fine-

tuning CONCH, we simply set the contrastive loss to zero and kept only the captioning loss 

in the training objective. To evaluate performance, we report the commonly used metrics 

METEOR (metric for evaluation of translation with explicit ordering)80 and ROUGE (recall-

oriented understudy for gisting evaluation)81. For each model, we trained for a maximum 

of 40 epochs and selected the checkpoint with the highest METEOR on the validation set 

using an early-stopping patience of 10 epochs. At inference time, we generated captions 

using top-K sampling82 as the decoding strategy with K = 50, where, at each timestep, 

the K most likely tokens were filtered and the probability mass was redistributed before 

sampling. Similar to zero-shot classification and retrieval, we set the maximum image size 

to 448 × 448. The full set of hyperparameters used to fine-tune captioning is presented in 

Supplementary Table 37.

Evaluation metrics

For classification tasks, we report balanced accuracy, weighted F1 score and the area under 

the receiver operating characteristic curve (AUROC). Balanced accuracy is defined as the 

macro average of the recall of each class. Weighted F1 score is computed by taking the 

average of the F1 score (the harmonic mean of precision and recall) of each class, weighted 

by the support of each class. In the binary case, the AUROC is calculated from a plot of 

the true positive rate against the false positive rate as the classification threshold is varied. 

The AUROC is generalized to the multiclass case by averaging over the AUROC of all 

pairwise combinations of classes. For retrieval, we used the metric Recall@K, which is the 

proportion of the data correctly retrieved among the top-K retrieved samples. Following 

ALIGN31, we chose K ∈ 1, 5, 10 , and we also computed the mean recall, which averages 

over the Recall@K values. For segmentation, we report the Dice score, which is the same 

as the F1 score, and the precision and recall score, macro-averaged across all images and 

classes. For captioning, we report METEOR and ROUGE for comparing the predicted 

caption with the ground-truth caption. METEOR80 is a metric based on unigram matching 

that considers both precision and recall between the original and ground truth and takes into 
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account synonyms and word forms. ROUGE81 computes the overlap of n-grams between the 

predicted caption and ground truth. We used ROUGE-1, which considers unigrams.

Downstream evaluation datasets

Source A was a dataset of image–caption pairs extracted from a held-out source. We split 

multipanel figures and matched them with captions manually. Because we also used this 

dataset for captioning, and because the captions were generally noisy and often contained 

information not present in the images, a board-certified pathologist cleaned the text, and we 

used the cleaned version for all downstream tasks. After filtering and cleaning, we obtained 

797 images with an average width of 570 pixels and an average height of 428 pixels. We 

used this dataset in its entirety for cross-modal retrieval. We also used this dataset for 

captioning after performing a 70–10–20 split for training, validation and testing. To avoid 

information leakage, the dataset split was performed at the figure level (taking into account 

multifigure panels that were separated).

Source B was a dataset of image–caption pairs extracted from a held-out source. Similar 

to source A, we split multipanel figures and matched them with captions manually. After 

filtering and cleaning, we obtained 1,755 images with an average width of 512 pixels and an 

average height of 410 pixels. Because the dataset was much bigger than source A, we did 

not perform manual cleaning of the captions. We used this dataset for cross-modal retrieval.

TCGA LUAD consisted of 165 image–caption pairs extracted from 49 LUAD H&E 

histopathology slides from TCGA (https://portal.gdc.cancer.gov/). For each slide, a board-

certified pathologist chose up to five tiles of interest from each slide and provided captions 

describing the tissue pattern and any notable morphological features. This process yielded 

a set of 165 image tiles with an average width of 656 pixels and an average height of 642 

pixels. We used this set of image tiles for cross-modal retrieval.

TCGA BRCA consisted of BRCA H&E formalin-fixed paraffinembedded (FFPE) diagnostic 

histopathology WSIs from TCGA. This dataset consisted of cases for primary IDC and ILC. 

After removing slides with missing metadata, we collected a total of 1,048 slides (837 IDC 

and 211 ILC). The zero-shot test set was a sampled subset of the full TCGA RCC dataset 

consisting of 150 WSIs (75 for each class). For the supervised learning experiments, we 

held out the zero-shot test set as the test set and used the remaining slides as the supervised 

training set after excluding slides from patients who appeared in the test set. This process 

yielded a training set of 881 slides (754 IDC and 127 ILC; see Supplementary Table 38 for 

prompts used for each class in zero-shot classification).

TCGA NSCLC consisted of NSCLC H&E FFPE diagnostic histopathology WSIs from 

TCGA. This dataset consisted of cases of primary LUAD and lung squamous cell carcinoma 

(LUSC). After removing slides with missing or incorrect metadata, we collected a total of 

1,041 slides (529 LUAD and 512 LUSC). The zero-shot test set was a sampled subset of 

the full TCGA RCC dataset consisting of 150 WSIs (75 for each class). For the supervised 

learning experiments, we held out the zero-shot test set as the test set and used the remaining 

slides as the supervised training set after excluding slides from patients who appeared in the 
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test set. This process yielded a training set of 846 slides (432 LUAD and 414 LUSC; see 

Supplementary Table 38 for prompts used for each class in zero-shot classification).

TCGA RCC consisted of RCC H&E FFPE diagnostic histopathology WSIs from TCGA. 

This dataset consisted of cases of primary clear cell RCC (CCRCC), papillary RCC 

(PRCC) and chromophobe RCC (CHRCC). After removing slides missing low-resolution 

downsamples, we collected a total of 922 WSIs (519 CCRCC, 294 PRCC and 109 CHRCC). 

The zero-shot test set was a sampled subset of the full TCGA RCC dataset consisting of 225 

WSIs (75 for each of the three classes). For the supervised learning experiments, we held out 

the zero-shot test set as the test set and used the remaining slides as the supervised training 

set after excluding slides from patients who appeared in the test set. This process yielded 

a training set of 693 slides (444 CCRCC, 215 PRCC and 34 ChRCC; see Supplementary 

Table 38 for prompts used for each class in zero-shot classification).

DHMC LUAD83 consisted of 143 H&E LUAD slides, each labeled with the primary 

histologic growth pattern (59 acinar, 51 solid, 19 lepidic, 9 micropapillary and 5 papillary). 

We only used this dataset for zero-shot classification (see Supplementary Table 39 for 

prompts used for each class in zero-shot classification).

CRC100k84 consisted of 224 × 224 pixel image tiles at 0.5 μm per pixel (mpp) 

extracted from 50 patients with colorectal adenocarcinoma. Each image belonged to one 

of nine classes: adipose, background, debris, lymphocytes, mucus, smooth muscle, normal 

colon mucosa, cancer-associated stroma or colorectal adenocarcinoma epithelium. For the 

supervised dataset, we used the officially provided splits of 100,000 images in the training 

set and 7,180 images in the test set. For the zero-shot test set, we used only the official test 

set (see Supplementary Table 40 for prompts used for each class in zero-shot classification).

WSSS4LUAD85 consisted of LUAD image tiles of around 200– 500 pixels in dimension, 

each labeled as tumor, tumor-associated stroma and/or normal. For our evaluation, we 

filtered for the samples with only one ground-truth label. We were left with 4,693 images 

from the official training split (see Supplementary Table 41 for prompts used for each class 

in zero-shot classification).

SICAP75 consisted of 512 × 512 pixel images extracted from 155 WSIs of core-needle 

biopsies of prostate cancer, digitized at ×10 magnification. The official training and testing 

split partitioned the dataset into 9,959 images from 124 WSIs for training and 2,122 images 

from 31 WSIs for testing. Each tile was labeled with the primary Gleason pattern (G3, G4 

or G5) or as noncancerous (NC). For zero-shot classification, we used only the official test 

set for evaluation, while, for supervised classification, we used the official splits for training 

and testing. For zero-shot segmentation (tumor versus benign), we used the slides from the 

official test split and corresponding pixel-level segmentation mask for evaluation (combining 

Gleason patterns G3, G4 and G5 as the tumor class; see Supplementary Table 41 for prompts 

used for each class in zero-shot classification and segmentation).

DigestPath86 consisted of 660 colonoscopy H&E tissue section images from 324 patients, 

acquired at ×20-equivalent magnification. We used the subset of 250 images from 93 

patients for which pixel-level lesion annotation for colorectal cancer tissue was provided, 
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and we performed zero-shot segmentation evaluation (see Supplementary Table 41 for 

prompts used for each class in zero-shot segmentation).

EBRAINS87,88 consisted of H&E histopathology WSIs of brain tissue from the EBRAINS 

Digital Tumor Atlas. We used a subset of 2,319 slides corresponding to a 30-way fine-

grained brain tumor subtyping task, where only classes with at least 30 slides were kept 

to ensure that a reasonable number of slides were available for both model training and 

evaluation. For the supervised dataset, we performed a 50–25–25 split for training (1,151 

slides), validation (595 slides) and testing (573 slides). For the zero-shot test set, we 

used the testing split of 573 slides (see Supplementary Tables 42–44 for prompts used 

for each class in zero-shot classification). The WSI counts for each class in the dataset 

were as follows: (1) IDH1-wild-type glioblastoma (474 slides); (2) pilocytic astrocytoma 

(173 slides); (3) meningothelial meningioma (104 slides); (4) pituitary adenoma (99 

slides); (5) IDH1-mutant and 1p/19q codeleted anaplastic oligodendroglioma (91 slides); 

(6) ganglioglioma (88 slides); (7) hemangioblastoma (88 slides); (8) adamantinomatous 

craniopharyngioma (85 slides); (9) IDH1-mutant and 1p/19q codeleted oligodendroglioma 

(85 slides); (10) atypical meningioma (83 slides); (11) schwannoma (81 slides); (12) 

IDH1-mutant diffuse astrocytoma (70 slides); (13) transitional meningioma (68 slides); (14) 

diffuse large B cell lymphoma of the central nervous system (59 slides); (15) gliosarcoma 

(59 slides); (16) fibrous meningioma (57 slides); (17) anaplastic ependymoma (50 slides); 

(18) IDH1-wild-type anaplastic astrocytoma (47 slides); (19) metastatic tumors (47 slides); 

(20) IDH1-mutant anaplastic astrocytoma (47 slides); (21) ependymoma (46 slides); (22) 

anaplastic meningioma (46 slides); (23) secretory meningioma (41 slides); (24) lipoma (38 

slides); (25) hemangiopericytoma (34 slides); (26) IDH1-mutant glioblastoma (34 slides); 

(27) non-Wingless-related integration (Wnt)/non-Sonic hedgehog (Shh) medulloblastoma 

(32 slides); (28) Langerhans cell histiocytosis (32 slides); (29) angiomatous meningioma (31 

slides); and (30) hemangioma (30 slides).

Prostate Gleason Grading consisted of 228,482 image ROIs of H&E-stained prostate tissue 

curated from three publicly available datasets: AGGC89, PANDA90 and SICAP75. In the 

case of PANDA and AGGC, each ROI was extracted at ×10-equivalent magnification with 

dimensions 512 × 512 pixels and was labeled as NC, G3, G4 or G5, assigned using the 

pixel-level annotation masks provided by the respective dataset. We used this dataset to 

compare end-to-end fine-tuning performance between our model and other vision encoders 

commonly used in computational pathology. We partitioned the dataset at the slide level and 

split the dataset into training (189,000 ROIs from 4,622 slides in PANDA and the AGGC 

official training set), validation (10,000 ROIs from 124 slides in the SICAP official training 

set), and testing (29,000 ROIs from 92 slides in the official test sets of AGGC and SICAP).

WSI processing

For slide-level tasks, the processing pipeline for WSIs consisted of tissue segmentation, 

tiling and feature extraction. We used the CLAM library7 for tissue segmentation, which 

computes a binary mask for tissue using binary thresholding along the saturation channel 

after converting a downsample of the slide from the RGB to hue–saturation–value (HSV) 

color space. Median blurring and morphological closing were used to smooth tissue contours 
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and remove artifacts. The contours were filtered by area to yield the segmentation mask. For 

zero-shot and supervised classification, we followed previous conventions7,62 and divided 

the segmented tissue regions into contiguous 256 × 256 pixel tiles at ×10-equivalent 

magnification. For segmentation, we extracted tiles using a smaller tile size (224 × 224 

pixels) with 75% overlap at the highest magnification possible (that is, ×10 for SICAP 

and ×20 for DigestPath) to achieve more fine-grained predictions. After tiling, for feature 

extraction, we resized all tiles to 224 × 224 pixels and computed embeddings for each tile 

independently using a frozen pretrained image encoder, before caching them for downstream 

evaluation.

Pretraining dataset characterization

We estimated the distribution of topics covered by our pretraining captions. We first created 

a list of 19 topics that covered major anatomical sites relevant to the study of pathology. 

For each topic, a board-certified pathologist then curated a list of keywords associated with 

the topic. We then mapped a caption to a topic if it contained a specific word. Because 

it was impractical to curate an exhaustive set of keywords to cover all captions, we used 

k-nearest neighbors (kNN) with k = 5 to categorize the remaining captions. The distribution 

of captions on the topics is shown in Fig. 1b. Within each topic (as well as the overall 

dataset), we qualitatively visualized the contents of the captions using wordclouds (Extended 

Data Fig. 1).

Statistical analysis

Nonparametric bootstrapping with 1,000 samples was used to construct 95% confidence 

intervals for model performance. For each evaluation metric, observed differences in model 

performance were tested for statistical significance using a two-sided paired permutation 

test with 1,000 permutations. In each permutation, independent predictions of two models 

were randomly swapped to obtain a new difference in model performance. The P value was 

the proportion of differences in model performance greater than the observed difference 

in terms of absolute value. The null hypothesis was that there was no difference in model 

performance for the given test set and evaluation metric.

Computing hardware and software

We used Python (version 3.8.13) for all experiments and analyses in the study, which can 

be replicated using open-source libraries as outlined below. For task-agnostic pretraining, 

we used eight 80-GB NVIDIA A100 GPUs configured for multi-GPU training using 

DistributedDataParallel (DDP) as implemented by the popular open-source deep learning 

framework PyTorch (version 2.0.0, CUDA 11.7) (https://pytorch.org). All downstream 

experiments were conducted on single 24-GB NVIDIA 3090 GPUs. For unimodal 

pretraining of our visual encoder using iBOT, we modified the ViT implementation 

maintained by the open-source Timm library (version 0.9.2) from Hugging Face (https://

huggingface.co) for the encoder backbone and used the original iBOT implementation 

(https://github.com/bytedance/ibot) for training. For natural language processing (NLP) 

workflows, we used open-source libraries provided by Hugging Face. Notably, we used 

Transformers (version 4.27.3) and Accelerate (version 0.15.0) for tokenization of text data 
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and unimodal pretraining of our language model, and we used Evaluate (version 0.4.0) for 

accessing common machine translation and image captioning metrics including ROUGE 

(from rouge-score version 0.1.2) and METEOR (from nltk version 3.6.7). We integrated our 

pretrained unimodal visual encoder and language model into the open clip library (version 

2.14.0) for visual-language pretraining using the CoCa framework. All WSI processing 

was supported by OpenSlide (version 4.3.1) and openslide-python (version 1.2.0). We used 

Scikit-learn (version 1.2.1) for its implementation of common machine learning model 

evaluation metrics for image classification and to train logistic regression models for linear 

probe experiments. Numpy (version 1.20.3) and Pandas (version 1.5.3) were used data 

collection and preparation. Implementations of other visual-language models benchmarked 

in the study were found on the Hugging Face model hub (https://huggingface.co/

models): PLIP (https://huggingface.co/vinid/plip), BiomedCLIP (https://huggingface.co/

microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224), OpenAICLIP (https://

huggingface.co/openai/clip-vit-base-patch16), GIT-base (https://huggingface.co/microsoft/

git-base) and GIT-large (https://huggingface.co/microsoft/git-large). Pillow (version 9.3.0) 

and Opencv-python were used to perform basic image processing tasks. Matplotlib (version 

3.7.1) and Seaborn (version 0.12.2) were used to create plots and figures. Usage of other 

miscellaneous Python libraries is listed in the Nature Portfolio Reporting Summary.
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Extended Data

Extended Data Fig. 1 |. Caption content of pre-training dataset.
Wordclouds of captions to qualitatively visualize the caption content of each category in the 

pretraining dataset. Larger words are more represented in the captions. Common articles, 

nouns, and verbs are ignored.
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Extended Data Fig. 2 |. Zero-shot classification: single prompt vs. ensembling.
a-d, slide-level tasks. e, ROI-level tasks. We compare using a single text prompt per class 

vs. ensembling over multiple class names and templates. Since zeroshot performance of 

a visual-language pretrained model can be sensitive to the prompts used52 when using a 

single prompt per class, for each class, we independently randomly sample a prompt from 

the pool of candidate templates and class names (see Supplementary Data Tables 34–38 

for the prompt pools). We randomly sample 50 sets of prompts for each task, and plot 

the resulting distribution of zero-shot performance for each model using boxplot. Each dot 

corresponds to a single set of prompts (n = 50 for each box). Boxes indicate quartile values, 
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and whiskers extend to data points within 1.5 × the interquartile range. Triangles indicate 

the performance of prompt ensembling. For slidelevel tasks, we show performance for all Ks 

used in top-K pooling. We observe prompt ensembling can substantially boost performance 

(relative to the median performance of randomly sampled single prompts) for most models 

in most tasks, except when the median performance is near random chance, such as for 

OpenAICLIP on most tasks and PLIP on TCGA BRCA. The poor median performance 

in these scenarios indicates that the model fails to perform under the majority of prompts 

sampled and therefore it is unsurprising that the ensembled prompt performs equally bad or 

worse. See Supplementary Data Tables 1–14 for more results.
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Extended Data Fig. 3 |. CONCH heatmaps, renal cell carcinomas.
Pathologist annotated H&E images, corresponding cosine-similarity heatmaps of, from top 

to bottom, papillary, chromophobe, and clear cell renal cell carcinomas. Tiles of high 

similarity (red border) and low similarity (black border) with the predicted class label 

are randomly sampled and displayed next to each heatmap. We find excellent agreement 

between the annotated image and the regions of the slide with high similarity, with the tiles 

demonstrating stereotypical morphology of the tumors within the high-similarity regions and 

stroma or other normal constituents of the kidney in the low similarity regions.
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Extended Data Fig. 4 |. CONCH heatmaps, non-small cell lung carcinomas.
Pathologist-annotated H&E images, corresponding cosine-similarity heatmaps of 

adenocarcinoma (top) and squamous cell carcinoma (bottom) of the lung. Tiles of high 

similarity (red border) and low similarity (black border) with the predicted class label 

are randomly sampled and displayed next to each heatmap. We find excellent agreement 

between the annotated image and the regions of the slide with high similarity, with the tiles 

demonstrating stereotypical morphology of the tumors within the high-similarity regions and 

stroma or other normal constituents of the lung in the low similarity regions.
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Extended Data Fig. 5 |. CONCH heatmap, lobular carcinoma of the breast.
Pathologist-annotated H&E image, corresponding cosine-similarity heatmap of lobular 

carcinoma of the breast. Tiles of high similarity (red border) and low similarity (black 

border) with the predicted class label are randomly sampled and displayed next to the 

heatmap. As with the ductal carcinoma heatmap in Fig. 2e, we find excellent agreement 

between the annotated image and the regions of the slide with high similarity, with the 

tiles demonstrating stereotypical morphology of lobular caricnoma within the high-similarity 

regions and stroma or other normal constituents of the breast in the low similarity regions.
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Extended Data Fig. 6 |. ROI-level few-shot classification experiments.
a, b. We investigate the label efficiency of different visual-language pretrained encoders 

in the few-shot setting where we vary the number of training labels per class (nc), 

for nc = 1,2, 4,8, 16, . . . up to 512. For each nc, we sample 5 different sets of training 

examples and perform linear probing on each training set using associated image labels 

(see Supervised classification experiments for details). We show their individual model 

performance via boxplot (i.e., n = 5 for each box) to study the variance in model 

performance when performing supervised learning with very few training examples. Boxes 

indicate quartile values and whiskers extend to data points within 1.5 × the interquartile 

range. For reference, the zero-shot performance of each model is shown as a dotted 

line on the same plot. In terms of few-shot supervised learning, CONCH achieves better 
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performance (i.e. in terms of the median accuracy of 5 runs) than other encoders for different 

sizes of training set and for all tasks. Additionally, in SICAP, we find CONCH zero-shot 

performance to be competitive with PLIP and BiomedCLIP few-shot up to 64 labels per 

class.

Extended Data Fig. 7 |. Rare disease classification results on EBRAINS.
a. Weakly-supervised ABMIL performance for CONCH and other pretrained encoder 

models on the EBRAINS 30-class brain tumor subtyping task (n = 573). Error bars represent 

95% confidence intervals; the center is the computed value of balanced accuracy. b. We 

investigate the label efficiency of different pretrained encoders in the few-shot setting where 

we vary the number of training labels per class (nc), for nc ∈ 1, 2, 4, 8, 16 . For each nc, 

we sample 5 different sets of training examples and follow the experimental protocol in a 
to train an ABMIL model on each training set using associated slide labels (see Supervised 
classification experiments for details). We show their individual model performance via 

boxplot (i.e., n = 5 for each box) to study the variance in model performance when 

performing supervised learning with very few training examples. Boxes indicate quartile 

values and whiskers extend to data points within 1.5 × the interquartile range. For reference, 

the zero-shot performance of each model is shown as a dotted line on the same plot. 

Additional metrics are reported in Supplementary Data Table 20 – 21. We find that CONCH 

consistently outperform all other visual language pretrained models in zeroshot classification 

and all pretrained encoders in weakly-supervised learning in terms of both performance and 

label efficiency.
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Extended Data Fig. 8 |. Additional Retrieval Examples.
Retrieved examples (among top 10) using complex prompts with detailed morphological 

information. Images are from an in-house dataset of tiles sampled from 1,620 cases held-

out during pretraining, spanning 108 OncoTree codes (5 for each code). Similarity scores 

between each image and prompt are shown in the top-right corner of each image.
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Extended Data Fig. 9 |. Image captioning results.
a. Captioning performance of CONCH and baselines fine-tuned on Source A (train n=558, 

validation n=77, test n=162). The METEOR and ROUGE metrics are both calculated to 

evaluate the quality of generated captions. Captions were generated using top-K sampling 

with K = 50 as the decoding strategy. Error bars representing 95% confidence intervals; 

the center is the computed value of each metric indicated by the x-axis label. CONCH 

outperforms both GIT baselines with p < 0.01. Although our absolute performance on 

these metrics is not ideal, image captioning is a considerably more difficult task than 

classification and retrieval, and we show that our pretraining data and approach can 

significantly improve performance over general visual-language models. b. Examples of 

captions generated by CONCH considered by a pathologist to be high quality. The green text 

boxes show generated captions and gray text boxes show captions corrected by a pathologist. 

c. Examples of partially correct captions generated by CONCH. Reasonably correct portions 

of the generated caption are highlighted in blue. In general, we noticed that some of 

the generated captions are regurgitated verbatim from the training dataset, likely due to 

the limited scale of fine-tuning (training split: n=558). Given that our current pretraining 

scale is still relatively small compared to works in the general visual-language domain, we 

expect the fine-tuned captioning performance to potentially improve substantially with more 

high-quality training data.
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Extended Data Fig. 10 |. CONCH pretraining ablations.
In a, b, error bars represent 95% confidence intervals and the centres correspond to 

computed values of each metric as specified by the legend (left) or the y-axis label (middle, 
right). a. Comparison between CONCH pretrained on human-only data (n = 1,170,647) 

using CoCa vs. human-only data using CLIP vs. H&E only data (n = 457,372) vs. the full 

unfiltered dataset (n = 1,786,362). Left. Zero-shot performance on downstream subtyping 

(TCGA BRCA, n = 150; TCGA RCC, n = 225; TCGA NSCLC, n = 150; DHMC LUAD, 

n = 143; CRC100k, n = 7, 180; WSSS4LUAD, n = 4, 693) and grading (SICAP, n = 

2, 122) tasks. Following pre-established conventions, quadratically weighted Cohen’s κ is 

reported for SICAP and Cohen’s κ is reported for DHMC LUAD, while balanced accuracy 

is reported for all other tasks. CONCH performs the best on average. Middle and right. 
Model performance in cross-modal retrieval on 3 datasets of image-text pairs (Source 

A, n = 797; Source B, n = 1,755; TCGA LUAD, n = 165). CONCH (CLIP) performs 

the best on average. b. Comparison between CONCH and no domain-specific unimodal 

pretraining. CONCH (No vision pretraining) replaces the image encoder pretrained on 

histopathology image patches with an analogous encoder pretrained on ImageNet. CONCH 

(No language pretraining) initializes the text encoder randomly instead of pretraining on 

pathology-related text. Left. Zeroshot performance on subtyping and grading tasks. Middle 
and right. Crossmodal retrieval performance.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Data curation and model schematic.
a, Automated data cleaning pipeline. Educational sources (EDU) and parts of the PubMed 

Central Open Access Dataset (PMC OA) were manually cleaned and used to train an object 

detector to detect histopathology images, a language model to split captions referring to 

multiple images and a matching model to match detected images to their corresponding 

captions. The cleaning process yielded a dataset of 1.79 million image–text pairs, and 

we then filtered out pairs referring to nonhumans to create our CONCH (human-only) 

pretraining dataset of 1.17 million (see Methods for details on data cleaning and Discussion 
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on ablation experiments investigating data filtering). b, Estimated distribution of image–text 

pairs in the human-only pretraining dataset by topic. Note that pretraining data cover a 

diverse range of pathology topics. Inset, comparison of the distribution of caption lengths 

between PMC-Path and EDU (see Extended Data Fig. 1 for wordclouds of captions from 

each category). c, Visual-language pretraining setup. CONCH consists of an image encoder, 

a text encoder and a multimodal text decoder. The pretraining process uses both contrastive 

and captioning objectives. The contrastive objectives align the image and text encoders by 

maximizing the cosine-similarity scores between paired image and text embeddings, while 

the captioning objective maximizes the likelihood of generating the correct text conditioned 

on the image and previously generated text (see Methods for details). <bos>, beginning of 

sentence; attn, attention; <eos>, end of sentence. d, Radar plot comparing the performance 

of CONCH and baselines on various downstream tasks. CONCH outperforms baselines by 

a significant margin on a diverse set of tasks spanning zero-shot classification, retrieval and 

zero-shot segmentation (see Results for detailed descriptions of each task and metric).
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Fig. 2 |. Zero-shot and supervised classification.
a, Schematic of zero-shot classification using contrastively aligned image and text encoders. 

A prompt is constructed for each class, and the image is classified according to the prompt 

whose embedding is closest to that of the image in the shared embedding space. b, Zero-

shot classification of WSIs. Each WSI is divided into tiles and processed as in a. The 

similarity scores for tiles are aggregated using top-K pooling to form slide-level similarity 

scores, the highest of which corresponds to the slide-level prediction. In c,d, dashed lines 

represent the average over tasks. Error bars represent 95% confidence intervals, and the 
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centers correspond to computed values of each metric, as specified below. c, Zero-shot 

performance on downstream subtyping (TCGA BRCA, n = 150; TCGA RCC, n = 225; 

TCGA NSCLC, n = 150; DHMC LUAD, n = 143; CRC100k, n = 7,180; WSSS4LUAD, n 
= 4,693) and grading (SICAP, n = 2,122) tasks. Cohen’s κ is reported for DHMC LUAD 

and quadratically weighted Cohen’s κ is reported for SICAP, while balanced accuracy is 

reported for all other tasks. Additional metrics are reported in Supplementary Tables 1–7. d, 

Supervised evaluation of embeddings of each model. Linear probing is used for ROI-level 

tasks (CRC100k and SICAP), while ABMIL is used for slide-level tasks, with the same 

metrics reported as in c (see Supplementary Tables 15–19 for more detailed results). e, From 

left to right: pathologistannotated IDC, corresponding heatmap and selected tiles at higher 

power. The heatmap is colored on the basis of the cosine-similarity score between each tile 

within the slide and the text prompt corresponding to the predicted class label. We find 

excellent agreement between the annotated image and high-similarity regions, with the tiles 

demonstrating classic IDC morphology within the highsimilarity (high sim.) regions and 

stroma or other normal constituents of the breast in the low-similarity (low sim.) regions.
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Fig. 3 |. Slide-level few-shot classification experiments.
a–c, We investigated the label efficiency of different visual-language pretrained encoders 

in the few-shot setting where we varied the number of training labels per class (nc), for 

nc = 1, 2, 4, 8, 16 . . . until we reached the maximum number of available labels in the 

training set. For each nc, we sampled five different sets of training examples and trained a 

weakly supervised ABMIL model on each training set using slidelevel labels (see Methods, 

‘Supervised and weakly supervised classification experiments’ for details). We show their 

individual model performance for BRCA subtyping (a), RCC subtyping (b) and NSCLC 

subtyping (c) by boxplot (n = 5 for each box) to study the variance in model performance 

when performing supervised learning with very few training examples. Boxes indicate 

quartile values and whiskers extend to data points within 1.5× the interquartile range. For 

reference, the zero-shot performance of each model is shown as a dashed line on the same 

plot. In terms of few-shot supervised learning, CONCH achieves better performance (in 

terms of the median accuracy of five runs) than other encoders for different sizes of training 

set and for all tasks. Additionally, the zero-shot performance of CONCH is surprisingly 

competitive, exceeding the few-shot performance of PLIP, BiomedCLIP and OpenAICLIP 
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with up to 64 labels per class in the case of BRCA and NSCLC subtyping. Sup., supervised 

learning.
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Fig. 4 |. Zero-shot cross-modal retrieval.
a, Model performance in cross-modal retrieval was evaluated on three datasets of image–

text pairs (source A, n = 797; source B, n = 1,755; TCGA LUAD, n = 165). Similarity 

in the embedding space was computed between the query image and all text samples 

in the database. The top-K most similar texts were retrieved. We report Recall@K for 

K ∈ 1, 5, 10  and the mean recall, which averages over K. We show both text-to-image 

(top row) and image-to-text (bottom row) retrieval for each retrieval task (columns). The 

rightmost column reports the average across tasks for each metric. CONCH outperforms 

other baselines on all retrieval tasks. Error bars indicate 95% confidence intervals. b, 

Schematic for zero-shot image-to-text retrieval (the text-to-image direction is analogous). 

c, Examples of images in the top five retrieved results from TCGA LUAD using LUAD-
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relevant queries with cosine-similarity scores shown in the top-right corner. Examples of 

other datasets using more diverse queries are shown in Extended Data Fig. 7. In general, 

we found that the images retrieved by the model matched what was described in the text 

prompt.
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Fig. 5 |. Zero-shot segmentation.
a, Schematic illustrating zero-shot segmentation on WSIs (or large tissue sections). To 

perform segmentation, we divided each WSI into tiles and used zero-shot classification to 

predict the label of each tile. The tile-level predictions were stitched together to form the 

predicted segmentation mask. b,c, Zero-shot segmentation performance of CONCH and 

baselines on SICAP (n = 31) (b) and DigestPath (n = 250) (c) datasets. The macroaveraged 

Dice score, precision and recall are reported. Error bars represent 95% confidence intervals. 

d,e, Examples of CONCH segmentation prediction on WSIs for SICAP (d) and DigestPath 

(e). The left panel shows the ground truth, and the right panel shows the predicted 

segmentation mask, with example regions enlarged. Red and blue indicate tumor and normal 

tissue, respectively. In general, in these examples, CONCH displays excellent sensitivity to 

tumor regions with slightly lower specificity, although most of the regions that CONCH 

segments as tumor that are in fact nontumor are adjacent to cancerous glands or contain 

cancer-associated stroma for both SICAP and DigestPath.
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