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Background: Definitive chemoradiotherapy (dCRT) is the cornerstone for locally advanced non-small cell 
lung cancer (LA-NSCLC). The study aimed to construct a multi-omics model integrating baseline clinical 
data, computed tomography (CT) images and genetic information to predict the prognosis of dCRT in LA-
NSCLC patients.
Methods: The study retrospectively enrolled 105 stage III LA-NSCLC patients who had undergone 
dCRT. The pre-treatment CT images were collected, and the primary tumor was delineated as a region of 
interest (ROI) on the image using 3D-Slicer, and the radiomics features were extracted. The least absolute 
shrinkage and selection operator (LASSO) was employed for dimensionality reduction and selection of 
features. Genomic information was obtained from the baseline tumor tissue samples. We then constructed 
a multi-omics model by combining baseline clinical data, radiomics and genomics features. The predictive 
performance of the model was evaluated by the area under the curve (AUC) of the receiver operating 
characteristic (ROC) and the concordance index (C-index).
Results: The median follow-up time was 30.1 months, and the median progression-free survival (PFS) 
was 10.60 months. Four features were applied to construct the radiomics model. Multivariable analysis 
demonstrated the Rad-score, KEAP1 and MET mutations were independent prognostic factors for PFS. The 
C-index of radiomics model, genomics model and radiogenomics model all performed well in the training 
group (0.590 vs. 0.606 vs. 0.663) and the validation group (0.599 vs. 0.594 vs. 0.650).
Conclusions: The radiomics model, genomics model and radiogenomics model can all predict the 
prognosis of dCRT for LA-NSCLC, and the radiogenomics model is superior to the single type model.
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Introduction

Lung cancer ranks as the second most frequent cancer 
worldwide, non-small cell lung cancer (NSCLC) accounts 
for 81% of all cases. Approximately 30% of NSCLC 
patients are diagnosed with stages IIIA to IIIC. With the 
increasing use of immunotherapy, immune-consolidation 
after radiotherapy is the current standard treatment for 
unresectable locally advanced non-small cell lung cancer 
(LA-NSCLC) and the 5-year rate is 47.5% for overall 
survival (OS) and 33.1% for progression-free survival (PFS). 
In this treatment approach, definitive chemoradiotherapy 
(dCRT) is the cornerstone of comprehensive treatment. 
Studies indicate that 19.0% patients using concurrent 
chemoradiotherapy (CCRT) can be cured (1). Therefore, 
effective tools are needed to help screen patients with 
different prognoses after dCRT, avoid unnecessary 
additional consolidation therapy, and improve patient 
survival.

Tradit ional  imaging techniques such as  X-ray, 
computed tomography (CT), magnetic resonance imaging 
(MRI) and positron emission tomography (PET) play 
a vital role in clinical NSCLC staging and predicting 
prognosis (2-6). Traditional imaging is intuitive and 
easy to evaluate, but there are also disadvantages of 
subjective differences between observers and less use of 
image information. Compared with traditional imaging 
techniques, radiomics can extract hundreds of quantitative 
features from images and obtain additional information 
about tumor phenotypes, genes and proteins, which 
more fully reflects the most essential features underlying 
medical images (7). In NSCLC, radiomics have been 
used to distinguish benign and malignant lung lesions  
(8-10) and forecasted tumor histological (11,12), treatment 
prognosis (13-19) or molecular properties (20-24). With 
the development of technology, more studies have begun 
to explore the relationship between genes and prognosis 
(25,26). For example, a retrospective study of osimertinib 
analyzed two phase III clinical studies (AURA3, FLAURA) 
and found that the clearance status of epidermal growth 
factor receptor (EGFR) mutation in plasma at different time 
points was correlated with the clinical outcome of NSCLC 
patients (27). 

However, the majority of approaches are restricted to 
single-data models. By amalgamating multimodal data such 
as genetic, imaging and clinical information, it is helpful to 
understand the development and occurrence of diseases (28).  
The emergence of radiogenomics, which integrates 
radiomics and genetic information, can provide a deeper 

understanding of the biological nature of tumors (29). At 
present, the existing studies focus on the potential to predict 
postoperative recurrence of NSCLC (30,31). There are no 
studies on radiogenomic features to predict survival after 
dCRT for LA-NSCLC.

This study aimed to construct a multi-omics model to 
predict PFS by integrating baseline clinical data, CT images 
and genetic information from patients with LA-NSCLC, 
which could help identify high risk patients and formulate 
more accurate and personalized treatment plans for clinical 
practice. We present this article  in accordance with the 
TRIPOD reporting checklist (available at https://tlcr.
amegroups.com/article/view/10.21037/tlcr-24-145/rc).

Methods

Patients

This retrospective study included 105 patients with stage 
III NSCLC who had undergone dCRT in our hospital 
from October 2014 to March 2019. Inclusion criteria were 
as follows: (I) pathological diagnosed NSCLC; (II) stage 
IIIA-C NSCLC diagnosed according to the tumor, lymph 
node and metastasis (TNM) staging system; (III) dCRT; (IV) 
available pre-treatment CT images; (V) complete clinical 
records. Exclusion criteria included: (I) concurrent other 
primary malignancies; (II) inaccurate lesion segmentation, 
e.g., lesions combined with peripheral atelectasis; (III) loss 
to follow-up. 

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) and endorsed by 
the ethical review committee of Shandong Cancer Hospital 
and Institute (No. SDTHEC202004042). The requirement 
for informed consent was waived owing to the retrospective 
nature of the study.

Treatment and assessments

All patients in this study underwent dCRT. During the 
follow-up period, the baseline CT images were compared to 
describe lesions and to assess the efficacy of treatment. The 
evaluation was conducted following the Response Evaluation 
Criteria in Solid Tumors (RECIST) version 1.1 (32). PFS 
was defined as the duration from the initiation of treatment 
to the occurrence of disease progression or death.

DNA extraction

All tumor samples, obtained from the original biopsy 
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conducted before any treatment, were in the form of 
formalin-fixed paraffin-embedded (FFPE) specimens 
with a thickness of 10 µm, and all were confirmed by 
the pathologist to contain ≥10% tumor cells. Genomic 
DNA was extracted and isolated from the paraffin-
embedded samples by DNA extraction kit, and the relevant 
information of KEAP1, FGFR family, MET, PTEN and 
NOTCH2 genes, and KEAP1-NRF2 pathway (KEAP1, 
NFE2L2 or CUL3) status of each patient was obtained.

CT image acquisition

The contrast-enhanced CT images were exported and 
stored in DICOM format through the picture archiving and 
communication system (PACS) imaging system for image 
segmentation and outlining. The region of interest (ROI) 
was manually delineated by two experienced radiologists 
using 3D-Slicer software (Figure S1). All the contouring 
was performed on the mediastinal window, and the outlined 
area was the tumor edge and internal features, without 
peritumoral extension. The tumor areas of blood vessels 
and trachea were removed during delineation to reduce 
the impact on the radiomics features of the lesions. Both 
radiologists had extensive experience in the diagnosis of chest 
imaging and were unaware of the pathology and clinical data.

Radiomics feature extraction

A total of 851 features were extracted from each patient’s 
manually segmented tumor using Pyradiomics, an open-
source software package in 3D-Slicer. There were 851 
radiomics features including 14 shape features, 18 first-
order statistical features, 75 texture features and 744 higher-
order features. The texture features include Gray-Level 
Co-Occurrence Matrix (GLCM), Gray-Level Dependence 
Matrix (GLDM), Gray-Level Run-Length Matrix 
(GLRLM), Gray-Level Size Zone Matrix (GLSZM) and 
Neighborhood Gray-Tone Difference Matrix (NGTDM). 
In addition, higher-order features include eight features 
processed by wavelets, namely, wavelet-Low-Low-Low 
(wavelet-LLL), wavelet-Low-Low-High (wavelet-LLH), 
wavelet-Low-High-Low (wavelet-LHL), wavelet-Low-
High-High (wavelet-LHH), wavelet-High-Low-Low 
(wavelet-HLL), wavelet-High-Low-High (wavelet-HLH), 
wavelet-High-High-Low (wavelet-HHL) and wavelet-
High-High-High (wavelet-HHH). The repeatability of 
these radiomics features was confirmed by repeated ROI 
delineation. 

Screening and analysis of radiomics features

Radiomics feature selection and dimensionality reduction 
were performed using Python. Patient characteristics were 
standardized through Z-score normalization to enhance 
data comparability. To mitigate bias or overfitting resulting 
caused by too many features, initial features were filtered 
and dimensionality reduced using interclass correlation 
coefficient (ICC) and least absolute shrinkage and selection 
operator (LASSO) regression. ICC was calculated 
using radiomics features extracted from 20 patients by 
two radiologists. Two radiologists were unaware of the 
pathology and clinical data. Features with ICC ≥0.80 were 
chosen for subsequent analysis. Subsequently, all subjects 
were classified as validation and training groups at a ratio of 
7:3, and the training group was used for feature screening. 
The best parameter lambda (λ) was determined by a 10-
fold cross-validated LASSO model based on minimizing 
the mean square error (MSE). Subsequently, the most 
informative features and their respective weighting 
coefficients were identified for predicting PFS. Based on 
linear model, the characteristics of each coefficient and the 
characteristic value multiplication, generate the Rad-score.

Construction and evaluation of survival prediction models

According to the Rad-score, the receiver operating 
characteristic (ROC) curve for predicting PFS was plotted, 
and the diagnostic cut-off point with the largest Youden 
index was used as the best cut-off value of the Rad-score. 
The survival prediction models were constructed using Cox 
regression analysis based on the selected clinical factors, 
radiomics features and genetic characteristics. The area 
under the curve (AUC) and C-index were used to evaluate 
the prediction efficiency and accuracy of the model in the 
training group and the validation group.

Statistical analysis

Statistical analyses were performed by SPSS 25.0 software. 
The clinical characteristics of patients in the training and 
validation cohorts were assessed through the Chi-squared 
test. LASSO regression was performed using Python  
3.4 software for feature screening and dimensionality 
reduction. Univariable and multivariable Cox proportional-
hazard models and Kaplan-Meier curves were used for 
survival analysis. R4.2.1 software was used to calculate the 
C-index of the model and to plot the ROC curve to evaluate 
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the predictive ability of the model in a comprehensive 
manner. All tests in this study were two-sided, and P<0.05 
was considered statistically different.

Results

Patient overview

The patients’ baseline characteristics in the training 
and validation groups are summarized in Table S1. The 
features of the training and validation groups were not 
significantly different. The median follow-up period for the 
entire cohort was 30.1 months, during which 79 patients 
experienced disease progression, and the median PFS was 
10.60 months [95% confidence interval (CI): 8.42–12.79].

Construction of Rad-score

A total of 365 image features with ICC ≥0.80 were screened 
and included as stable feature parameters in the subsequent 
analysis (Figure S2). In the training group, the LASSO 
method was used for feature dimension reduction, and the 
optimal λ value was 0.0756. Four radiomics features related 
to the PFS were screened out (Figure 1). The features and 
their respective coefficients are shown in Table 1. The Rad-
score for these features was calculated as follows:

R a d - s c o r e  =  − 0 . 0 3 2 2 4 0 2 9  ×  o r i g i n a l - g l d m -
DependenceNonUniformity + 0.03739323 × wavelet-LLH-
firstorder-Skewness + −0.01219957 × wavelet-LLH-glszm-
LargeAreaHighGrayLevelEmphasis + 0.04151755 × wavelet-
HHH-glcm-ClusterShade.

Construction of predictive models

For radiomics model, 0.745 was determined as the optimal 

Figure 1 Feature dimension reduction and selection using the 
LASSO. (A) The cross-validation curve with mean square error 
on the vertical axis and lambda (λ) on the horizontal axis. The 
dotted vertical lines represent the optimal values based on both 
minimum criteria and the 1-SE criterion. The four features with 
the smallest binomial deviance were selected. (B) Coefficient 
curves for radiomic features, with the vertical axis illustrating the 
coefficients of these features and λ on the horizontal axis. (C) Four 
features selected are presented, with their coefficients indicating 
their contributions to the model. LASSO, least absolute shrinkage 
and selection operator; MSE, mean square error.

Table 1 Radiomics features correlated with PFS and their 
respective coefficients chosen via LASSO regression

Radiomics features Coefficients

Original-gldm-DependenceNonUniformity −0.03224029

Wavelet-LLH-firstorder-Skewness 0.03739323

Wavelet-LLH-glszm-
LargeAreaHighGrayLevelEmphasis

−0.01219957

Wavelet-HHH-glcm-ClusterShade 0.04151755

PFS, progression-free survival; LASSO, least absolute shrinkage 
and selection operator.
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cut-off value of the Rad-score according to the ROC 
curve. Therefore, patients with a Rad-score ≥0.745 were 
categorised as being at high risk of progression whereas 
patients with a Rad-score <0.745 were categorised as at low 
risk for disease progression.

The univariable analysis indicated associations between 
age (<65 vs. ≥65 years), radiotherapy method [three-
dimensional conformal radiotherapy (3D-CRT) vs. intensity 
modulated radiotherapy (IMRT)], KEAP1 mutation, MET 
mutation, PTEN mutation, and Rad-score with PFS in the 
training group. These five factors were integrated into the 
multivariable analysis, revealing KEAP1 mutation, MET 

mutation, and the Rad-score as independent prognostic 
indicators for PFS (Table 2). For the genomics model, the 
patients were divided into two groups: low risk group (MET 
wild and KEAP1 wild) and high risk group (MET mutation 
and/or KEAP1 mutation). 

The radiogenomics model was constructed by combining 
radiomics model and genomics model. And the patients 
were divided into three groups of high, medium and low 
risk of progression: high risk group (Rad-score ≥0.745, 
MET mutation and/or KEAP1 mutation), medium risk 
group (Rad-score ≥0.745, MET wild and KEAP1 wild or 
Rad-score <0.745, MET mutation and/or KEAP1 mutation) 

Table 2 Univariable and multivariable analysis associated with PFS in the training group

Variables
Univariable analysis Multivariable analysis

HR (95% CI) P HR (95% CI) P

Gender (male vs. female) 0.939 (0.401–2.198) 0.88

Age (<65 vs. ≥65 years) 0.458 (0.259–0.808) 0.007 0.553 (0.289–1.059) 0.07

Smoking status (never vs. former/current) 1.429 (0.762–2.683) 0.27

Tumor location

Left lung Ref 0.70 

Right lung 1.217 (0.706–2.098) 0.48

Others 0.692 (0.092–5.193) 0.72

Histology (ADC vs. SCC) 0.821 (0.457–1.474) 0.51 

Clinical stage

IIIA Ref 0.19

IIIB 0.637 (0.367–1.104) 0.11

IIIC 0.486 (0.146–1.612) 0.24

Radiation dose (<60 vs. ≥60 Gy) 1.043 (0.550–1.980) 0.90 

Chemo radiotherapy (SCRT vs. CCRT) 0.856 (0.502–1.461) 0.57

Radiation therapy (3D-CRT vs. IMRT) 0.421 (0.198–0.895) 0.03 0.607 (0.276–1.338) 0.22

KEAP1 (wild vs. mutation) 3.123 (1.513–6.445) 0.002 2.843 (1.298–6.225) 0.009

KEAP1-NRF2 pathway (wild vs. deletion) 1.957 (0.954–4.012) 0.07 

FGFR family (wild vs. mutation) 1.228 (0.677–2.225) 0.50

MET (wild vs. mutation) 4.151 (1.706–10.099) 0.002 4.651 (1.637–13.216) 0.004

NOTCH2 (Wild vs. mutation) 1.651 (0.776–3.516) 0.20 

PTEN (wild vs. mutation) 2.197 (1.027–4.699) 0.042 2.088 (0.891–4.892) 0.09

Rad-score 2.469 (1.338–4.556) 0.004 2.847 (1.499–5.387) 0.001

PFS, progression-free survival; HR, hazard ratio; CI, confidence interval; ADC, adenocarcinoma; SCC, squamous cell carcinoma; SCRT, 
sequential chemoradiotherapy; CCRT, concurrent chemoradiotherapy; CRT, chemoradiotherapy; IMRT, intensity modulated radiation 
therapy.
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and low risk group (Rad-score <0.745, MET wild and 
KEAP1 wild).

Relationships between prediction models and PFS

In the radiomics model, there was a significant difference 
in the prognosis of the two patient groups. Specifically, the 
median PFS was 8.93 months in the low risk group and 
18.53 months in the high risk group (Figure 2A, P=0.003). 
In the validation group, the same outcomes were observed 
(Figure 2B, 7.90 vs. 23.77 months, P=0.03). 

In the genomics model, the median PFS of patients with 
high risk in the training group was significantly shorter than 
the patients with low risk (Figure 2C, 4.83 vs. 13.17 months, 
P<0.001). In the validation group, similar results were also 
observed (Figure 2D, 6.73 vs. 11.47 months, P=0.01).

In the radiogenomics model, patients with high risk in the 
training group had significantly shorter median PFS than 
the medium risk group and the low risk group (Figure 2E, 
4.60 vs. 10.13 months vs. NA, P<0.001). The same results 
were also observed in the validation group (Figure 2F, 7.32 
vs. 8.27 vs. 23.77 months, P=0.01).

Comparison of model prediction performance

The ROC curve analysis depicting the performance of 
the radiomic models in predicting one-year, two-year, and 
three-year PFS probabilities is depicted in Figure 3A,3B. In 
the training group, the AUC for predicting one-year, two-
year, and three-year PFS probabilities were 0.604 (95% 
CI: 0.492–0.717), 0.668 (95% CI: 0.530–0.806), and 0.871 
(95% CI: 0.812–0.930), respectively. The AUC values were 
0.671 (95% CI: 0.493–0.849), 0.720 (95% CI: 0.4335–1.005) 
and 0.637 (95% CI: 0.274–1.000) in the validation group, 
respectively. The C-index was 0.590 (95% CI: 0.520–0.660) 
and 0.599 (95% CI: 0.488–0.711) in the training and 
validation groups.

In the genomics model, the ROC curve in predicting 
one-year, two-year, and three-year PFS probabilities is 
depicted in Figure 3C,3D. In the training group, the AUC 
values for predicting one-year, two-year, and three-year 
PFS probabilities were 0.645 (95% CI: 0.566–0.724), 0.586 
(95% CI: 0.500–0.672) and 0.533 (95% CI: 0.373–0.693), 
respectively. The AUC values were 0.684 (95% CI: 0.574–
0.794), 0.641 (95% CI: 0.550–0.732) and 0.641 (95% CI: 
0.550–0.732) in the validation group. The C-index was 0.606 
(95% CI: 0.548–0.664) and 0.594 (95% CI: 0.510–0.678) in 
the training and validation groups.

Based on the radiogenomics model, the ROC curve in 
predicting one-, two-, and three-year PFS probabilities is 
depicted in Figure 3E,3F. In the training group, the AUC of 
the model for predicting one-year, two-year and three-year 
PFS were 0.705 (95% CI: 0.605–0.805), 0.715 (95% CI: 
0.591–0.839) and 0.845 (95% CI: 0.706–0.984), respectively. 
The AUC values were 0.776 (95% CI: 0.630–0.921), 0.780 
(95% CI: 0.554–1.007) and 0.717 (95% CI: 0.431–1.003) 
in the validation group. The C-index was 0.663 (95% CI: 
0.600–0.726) and 0.650 (95% CI: 0.556–0.43), respectively.

These findings demonstrated that the radiomics model, 
genomics model, and radiogenomics model exhibit robust 
predictive efficacy in both the training and validation groups 
(Table 3).

Discussion

In this study, we analyzed the initial CT scans and baseline 
genetic characteristics of LA-NSCLC patients who received 
dCRT, and developed three models, including the radiomics 
model, genomics model and radiogenomics model, to 
predict the response of LA-NSCLC patients to dCRT. 
Multivariable analysis based on clinical data, gene mutations 
and radiomics features showed that MET, KEAP1 
mutations and Rad-score were independent predictors of 
PFS in LA-NSCLC patients after chemoradiotherapy. 
The prediction of these models was subsequently assessed 
and confirmed in a validation cohort. The performance of 
radiogenomics model is better than that of radiomics model 
and genomics model, which is helpful in predicting the 
efficacy of chemoradiotherapy in LA-NSCLC patients.

With the development of medical imaging technology 
and genomics technology, radiogenomics has emerged. 
Radiogenomics is widely used in the diagnosis and 
treatment of tumors by correlating patients’ imaging 
data with genomic data. Aonpong et al. (30) proposed a 
genotype-guided imaging genomics method that improved 
the accuracy of preoperative NSCLC recurrence prediction 
from 78.61% in the conventional method to 84.39%. Chen 
et al. (31) combined radiomics, genomics and clinical risk 
factors to construct a nomogram, and it was found that the 
C-index of the combined model for predicting OS was 0.850 
and 0.736 in the training group and test group, respectively, 
which was superior to the single mode data. Therefore, 
the combination of radiomics and genomics may improve 
OS prediction in NSCLC patients. A single-institution 
retrospective analysis of 124 patients with NSCLC provides 
evidence that combining clinicopathological models with 
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Figure 2 Comparison analysis of Kaplan-Meier survival curves of patients stratified based on radiomics, genomics and radiogenomics 
models. Applying the radiomics model, PFS curves for patients with the high risk group and low risk group in the training (A) and validation 
(B) groups. Applying the genomics model, PFS curve for patients with the high risk group and low risk group in the training (C) and 
validation (D) groups. Applying the integrated model, PFS curves for patients with the high risk group, medium risk group and low risk 
group in the training (E) and validation (F) groups. PFS, progression-free survival.
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Figure 3 Evaluation of predictive value of radiomics models, genomics models and radiogenomics models for PFS after dCRT in LA-
NSCLC patients. Receiver operating characteristic curves of the radiomics models (A,B), genomics models (C,D) and radiogenomics models 
(E,F) used to evaluate PFS in LA-NSCLC patients after dCRT in the training group and validation group. PFS, progression-free survival; 
dCRT, definitive chemoradiotherapy; LA-NSCLC, locally advanced non-small cell lung cancer; AUC, area under the curve.
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radiological and genomic characteristics may improve the 
accuracy of predicting prognosis compared with traditional 
clinicopathological data (33). The above radiogenomics 
studies on lung cancer mainly focus on predicting the 
recurrence and survival of postoperative NSCLC, while 
our study is the first exploration of a radiogenomics model 
for predicting the prognosis of LA-NSCLC patients who 
underwent dCRT. The radiogenomics model in our study 
demonstrated significantly better predictive performance 
than the radiomics model (C-index, 0.663 vs. 0.590) and 
genomics model (C-index, 0.663 vs. 0.606) in the training 
group. It is demonstrated that the radiogenomics model 
has potential strengths in predicting the progression risk of 
NSCLC patients undergoing dCRT.

Within the realm of lung cancer, the radiomics is 
developing rapidly, attributed to the widespread availability 
of chest CT scans and the integration of artificial 
intelligence (AI) (34). Radiomics refers to extracting a 
significant number of image features from the ROI of 
radiological images for analysis and accurate quantitative 
evaluation of lesions. At present, a number of studies have 
confirmed the worth of radiomics to predict the prognosis 
of LA-NSCLC patients treated with radiotherapy. Zhang 
et al. (17) integrated the imaging features of the combined 
primary tumor and lymph nodes and demonstrated that 
1441 were significantly better than conventional imaging 
features (C-index: 0.77–0.79 vs. 0.53–0.73). Chen et al. (35)  
divided LA-NSCLC patients undergoing definitive CCRT 
into the high risk group and low risk group. The low risk 
group achieved a significantly higher 3-year OS rate (68.4% 
vs. 3.3%, P<0.001), and may benefit more from dCRT and 

further adjuvant immunotherapy. Chen et al. (36) found 
that a nomogram combining radiomics features and clinical 
prognostic factors for predicting locoregional failure 
(LRF) in LA-NSCLC treated with dCRT showed good 
performance in testing and validation, with C-indexes of 
0.796 and 0.756. With research development, the seminal 
PACIFIC trial, which investigated durvalumab revealed 
a substantial extension of PFS among those who received 
durvalumab following CRT. Therefore, a subsequent 
study has found that tumor radiomics on pre-treatment 
CT images is a predictor of PFS and OS in patients with 
unresectable stage III NSCLC treated with CRT sequential 
durvalumab and CRT alone (37). In view of the above 
findings, the baseline CT images of LA-NSCLC patients 
before dCRT treatment were also included in our study for 
radiomics analysis. We found that the radiomic model can 
predict the PFS of LA-NSCLC patients receiving dCRT, 
with the C-index of 0.590. The predictive ability of the 
model was further verified in the validation group, where 
the C-index was 0.599. Therefore, our research supports 
existing evidence indicating the potential value of radiomics 
to predict the progression of LA-NSCLC receiving dCRT.

One study, unlike the above study, could not confirm that 
radiomics features extracted by cone beam CT contributed 
to improved prognostic information (38). This may be 
due to poor performance of baseline radiomics features or 
clinical parameters, affecting within-dataset and between-
dataset heterogeneity. Besides, early identification of 
important driver gene mutations is essential to the formation 
of therapeutic strategies for NSCLC patients. Therefore, 
the introduction of genomic models can help to better 

Table 3 Prediction performance of radiomics model, genomics model and radiogenomics model in training group and validation group

Model
AUC (95% CI)

C-index (95% CI)
One-year PFS Two-year PFS Three-year PFS

Training group

Radiomics model 0.604 (0.492–0.717) 0.668 (0.530–0.806) 0.871 (0.812–0.930) 0.590 (0.520–0.660)

Genomic model 0.645 (0.566–0.724) 0.586 (0.500–0.672) 0.533 (0.373–0.693) 0.606 (0.548–0.664)

Radiogenomics model 0.705 (0.605–0.805) 0.715 (0.591–0.839) 0.845 (0.706–0.984) 0.663 (0.600–0.726)

Validation group

Radiomics model 0.671 (0.493–0.849) 0.720 (0.435–1.005) 0.637 (0.274–1.000) 0.599 (0.488–0.711)

Genomic model 0.684 (0.574–0.794) 0.641 (0.550–0.732) 0.641 (0.550–0.732) 0.594 (0.510–0.678)

Radiogenomics model 0.776 (0.630–0.921) 0.780 (0.554–1.007) 0.717 (0.431–1.003) 0.650 (0.556–0.743)

AUC, area under the curve; CI, confidence interval; PFS, progression-free survival.
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predict survival. Previous genomics models have confirmed 
established correlations between genetic mutations and 
the prognosis of NSCLC patients. Jiao et al. (39) found 
that TP53 mutations serve as a negative prognostic factor 
in 1,441 metastatic NSCLC patients, and when combined 
with EGFR mutations, they can more accurately predict 
the prognosis of advanced NSCLC patients. A German 
multicenter retrospective study observed that truncating 
TP53 mutations and KEAP1 mutations were related to 
shorter disease-free survival (DFS) in the 1,518 stage I–
IIIA patients undergoing surgical treatment (40). In 4,779 
stage IIIB–IV patients, TP53 mutations were not predictive 
of prognosis, while KEAP1 mutations were associated with 
prognosis. Additionally, tumors with KEAP1 mutations and 
co-occurring TP53 missense mutations demonstrated longer 
OS compared to KEAP1 mutant tumors with wildtype 
or truncating TP53 mutations. In summary, TP53 and 
KEAP1 mutations serve as prognostic factors in NSCLC. 
Similarly, researchers previously investigated the clinical 
application value of large panel in precision radiotherapy 
using real-world clinical samples and found that the Keap1-
NRF2 pathway, KEAP1, FGFR family, MET, PTEN, 
NOTCH2 mutations can independently predict the risk of 
recurrence after dCRT, which is an important guideline for 
clinical screening of patients sensitive to radiotherapy and 
chemotherapy (41). In this study, we included the results 
of the previous study and on this basis selected KEAP1 
and MET mutations by Cox analysis to construct the 
genomics model. The genomic model demonstrated good 
performance in predicting the PFS of LA-NSCLC, with 
the C-index of 0.606. Furthermore, this conclusion was also 
confirmed in the validation group with a C-index of 0.594. 
Therefore, the addition of genomics could further improve 
the reliability and accuracy of the radiomics model.

Despite the advantages of radiogenomics in prognostic 
prediction of lung cancer, there are still many obstacles 
limiting its use in clinical practice, with reproducibility 
standing as the chief challenge. Reproducibility can be 
affected by a multitude of factors, including variations 
in scanning devices (42,43),  tumor segmentation 
processes (44,45), and acquisition protocols (43,46). 
These variations may subsequently impact the radiomic 
prediction models (47). In addition, the study was 
carried out with a relatively small patient sample, which 
constrained our capacity for performing extensive analyses. 
Further multi-center and large-sample prospective studies 
may be an important direction for imaging genomics 
research.

Conclusions

In summary, this study investigated the feasibility of 
radiomics, genomics, and radiogenomics models to predict 
PFS in LA-NSCLC patients undergoing dCRT. The 
CT-based radiomics model, the genomic model and the 
radiogenomics model can all predict the prognosis of 
dCRT in LA-NSCLC, and the radiogenomics model is 
superior to the single data type model. This indicates that 
the radiogenomics model can be used as a non-invasive and 
accurate pre-treatment assessment tool for LA-NSCLC 
patients, and that better identification of NSCLC patients 
at high risk of progression can assist clinicians to optimize 
individualized treatment regimens.
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