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SUMMARY
The potential of serum extracellular vesicles (EVs) as non-invasive biomarkers for diagnosing colorectal can-
cer (CRC) remains elusive. We employed an in-depth 4D-DIA proteomics and machine learning (ML) pipeline
to identify key proteins, PF4 and AACT, for CRC diagnosis in serum EV samples from a discovery cohort of 37
cases. PF4 and AACT outperform traditional biomarkers, CEA and CA19-9, detected by ELISA in 912 individ-
uals. Furthermore, we developed an EV-related random forest (RF) model with the highest diagnostic effi-
ciency, achieving AUC values of 0.960 and 0.963 in the train and test sets, respectively. Notably, this model
demonstrated reliable diagnostic performance for early-stage CRC and distinguishing CRC from benign
colorectal diseases. Additionally, multi-omics approaches were employed to predict the functions and po-
tential sources of serum EV-derived proteins. Collectively, our study identified the crucial proteomic signa-
tures in serum EVs and established a promising EV-related RF model for CRC diagnosis in the clinic.
INTRODUCTION

Colorectal cancer (CRC) ranks among the most common cancers

worldwide, with approximately 1.8 million new cases and 900,000

deaths reported annually.1 Unfortunately, due to the insidious

symptoms of early-stage CRC, more than 50% of patients are

diagnosed at the progression stage with 5-year survival rate of

20%.However, early diagnosis ofCRCenables patients to receive

timely and optimal treatment, improving the 5-year survival rate to

90%.2 Although colonoscopy remains the gold standard for diag-

nosingCRC, its invasivenessandchallengesof repeatedexamina-

tion limit its widespread use as a screening method.3 Additionally,

carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9

(CA19-9), which are the two most commonly applied biomarkers

for CRC diagnosis, have been reported to present insufficient

sensitivity andbemoresuitable fordynamicmonitoringofCRCpa-

tients during treatment.4,5 Consequently, the development of non-

invasivemethods for early diagnosis of CRC is an urgent goal that

needs to be addressed.
Cell Reports Medicine 5, 101689, Au
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Liquid biopsy has recently emerged as a prominent area of

research in the field of cancer diagnosis and routine manage-

ment, owing to its noninvasive, sensitive, and dynamic charac-

teristics.6,7 Extracellular vesicles (EVs), important biomarkers in

liquid biopsy, carry essential biological information such as

proteins and nucleic acids and serve as critical mediators in

intercellular communication.8 The development of digital droplet

PCR technology has further advanced the study of non-coding

RNAs in EVs. Researches has shown that non-coding RNAs car-

ried by EVs derived from various body fluids hold potential to

serve as candidate biomarkers for tumor diagnosis.9 In early-

stage CRC, plasma EV-derived microRNAs (miRNAs), including

let-7b-3p, miR-125a, and miR-320c, exhibit high diagnostic

performance for CRC diagnosis.8,10 EV-derived proteins offer

greater suitability for clinical examination due to their stability

in comparison to RNAs.11 However, research progress in

EV-derived protein profiling has been constrained by limitations

of previous proteomics technology. Hence, utilizing advanced

proteomics approaches such as four-dimensional independent
gust 20, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1. Clinicopathologic characteristics of patients included in the study

Characteristics

Discovery set (n = 37) Train set (n = 338) Test set (n = 328) External set (n = 246)

HC

(n = 12)

CRC

(n = 25)

HC

(n = 96)

BCD

(n = 47)

CRC

(n = 195)

HC

(n = 112)

BCD

(n = 55)

CRC

(n = 161)

HC

(n = 60)

Enteritis

(n = 42)

Hepatitis B

(n = 46)

CRC

(n = 98)

Age, y,

mean ± SD

50.0 ± 9.3 56.5 ± 13.5 57.3 ± 8.4 51.4 ± 11.5 58.2 ± 13.5 56.6 ± 8.5 50.1 ± 11.4 60.1 ± 13.7 63.2 ± 10.5 54.8 ± 9.9 54.7 ± 9.7 62.2 ± 13.4

Gender, n (%)

Male 4 (33.3) 13 (52.0) 52 (54.2) 26 (55.3) 111 (56.9) 60 (53.6) 38 (69.1) 98 (60.9) 42 (70.0) 31 (73.8) 31 (67.4) 47 (48.0)

Female 8 (66.7) 12 (48.0) 44 (45.8) 21 (44.7) 84 (43.1) 52 (46.4) 17 (30.9) 63 (39.1) 18 (30.0) 11 (26.2) 15 (32.6) 51 (52.0)

Clinical stage, n (%)

I – 3 (12.0) – – 22 (11.3) – – 19 (11.8) 17 (17.3)

II – 6 (24.0) – – 48 (24.6) – – 31 (19.3) 22 (22.4)

III – 8 (32.0) – – 83 (42.6) – – 47 (29.2) 47 (48.0)

IV – 4 (16.0) – – 42 (21.5) – – 64 (39.8) 12 (12.2)

Unknown – 4 (16.0) – – 0 (0.0) – – 0 (0.0) 0 (0.0)

CEA, ng/mL, n (%)

<5 12 (100.0) 14 (56.0) 94 (97.9) 47 (100.0) 129 (66.2) 108 (96.4) 53 (96.4) 90 (55.9) 54 (90.0) 41 (97.6) 45 (97.8) 65 (66.3)

R5 0 (0.0) 11 (44.0) 2 (2.1) 0 (0.0) 66 (33.8) 4 (3.6) 2 (3.6) 71 (44.1) 6 (10.0) 1 (2.4) 1 (2.2) 33 (33.7)

CA19-9, ng/mL, n (%)

<35 12 (100.0) 18 (72.0) 94 (97.9) 45 (95.7) 153 (78.5) 111 (99.1) 54 (98.2) 112 (69.6) 59 (98.3) 40 (95.2) 46 (100.0) 82 (83.7)

R35 0 (0.0) 7 (28.0) 2 (2.1) 2 (4.3) 42 (21.5) 1 (0.9) 1 (1.8) 49 (30.4) 1 (1.7) 2 (4.8) 0 (0.0) 16 (16.3)
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(legend on next page)
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data acquisition (4D-DIA) to uncover key biomarkers packaged

in blood-derived EVs holds important implications for scan-

ning CRC.

Machine learning (ML), as an essential branch of artificial intel-

ligence, has garnered increasing attention in tumor diagnosis and

treatment management recently.12 Compared to conventional

diagnostic models, ML approaches are flexible and more suitable

for capturing non-linear associations and integrating vast

amounts of medical data including medical imaging and multi-

omics data.13 Multiple ML methods can be employed to robustly

extract crucial features from liquid biopsy analytes and build

diagnostic models, thereby achieving superior specificity and

sensitivity for cancer diagnosis.14 For instance, random forest

(RF) algorithm-based diagnostic models exhibit remarkable per-

formances across more than twenty types of cancer by utilizing

microbes from tissues and blood.15 Thus, a ML model based on

the optimal algorithm has the potential to enhance the accuracy

of cancer diagnosis by profiling tissue and blood materials.

In this study, the 4D-DIA technology was employed to perform

in-depth profiling of serum EV-proteomics data. Subsequently,

the most valuable protein signatures were identified by utilizing

ML-based pipeline and validated by ELISA detection. The object

of our study was to develop a reliable EV-related RF model

based on the identified protein signatures for clinical CRC

diagnosis.

RESULTS

Identification and characterization of serum EVs in HC
and CRC patients
The serum EVs from the discovery set (25 cases CRC, 12 cases

healthy control [HC]) were collected for candidate biomarkers

screening. An expansion cohort comprising 338 cases in the

train set and 328 cases in the test set was recruited for RF diag-

nostic model construction and validation (Table 1). Separated

EVs from serum were subjected to subsequent experiments for

validation (Figures 1A–1C). Nanoparticle tracking analysis

(NTA) exhibited that the average diameter and distribution of

EVs were compliant (Figure 1A). In western blot assay, the EV

markers CD63 and TSG101 were present in isolated EVs, but

not in protein lysate of CRC cell lines SW480, SW620, and

HCT116. As the negative control marker expressed intracellu-

larly, GRP94 and calnexin were not exposed in separated EVs

(Figure 1B). In addition, the vesicle-like particles were confirmed

by applying transmission electron microscopy (TEM) (Figure 1C).

In further in-depth EV proteome analysis, 4D-DIA technology

identified a total of 5,851 peptides and 854 proteins (Figure S1A),

which included 75 upregulated and 91 downregulated proteins in

the CRC group compared with the HC group (Figure S1B). Aber-

rant expression profiles of EVs were illustrated by volcano plot
Figure 1. Identification and characterization of serum EVs in HC and C

(A) NTA showed the mode size and particle concentration of separated EVs by F

(B) Western blot detected EV markers CD63 and TSG101 in serum EVs. GRP94

(C) TEM image displayed the morphology of isolated EVs.

(D and E) DEPs from EVs between the CRC and HC groups were illustrated by v

(F–I) Upregulated protein enrichment analysis revealed the potential molecular fu

(I) enriched in the CRC group compared to the HC group.
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and heatmap (Figures 1D and 1E). Further, Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

analysis were employed to characterize the potential function

of differentially expressed proteins (DEPs). Molecular function

of GO analysis revealed upregulated EV proteins related to

protein binding (Figure 1F), while downregulated EV proteins

associated with RNA and DNA binding (Figure S1C). Cellular

components analysis showed that DEPs were localized in both

the extracellular space and exosome (Figures 1G and S1D).

Additionally, biological processes and KEGG pathway analysis

indicated that upregulated proteins were enriched in inflamma-

tory, immune response, blood coagulation, and platelet activa-

tion (Figures 1H and 1I). Downregulated proteins also related

to certain immune response pathways including adaptive im-

mune response (Figures S1E and S1F).

Screening proteomic biomarkers of serum EVs for CRC
diagnosis via ML
To further identify the critical biomarkers of serum EVs for CRC

diagnosis, we performed orthogonal partial least squares

discriminant analysis (OPLS-DA) to clarify the contribution of

different variables in distinguishing CRC patients from HC. The

score and scatterplot displayed significant discrimination be-

tween CRC and HC subjects based on 4D-DIA proteomics

(Figures 2A and 2B). 12 candidate EV proteins, including IGG1,

A2MG, AACT, PF4, KLD8B, APOB, IC1, A1AT, IGHM, KV315,

CP135, and IGKC, were identified as the core contributors to dis-

tinguishing CRC patients from HC by using predictive variable

importance in projection (VIPpred) analysis (Figure 2C). Subse-

quently, ML diagnostic models based on 12 candidate EV pro-

teins were constructed to scan the most valuable variables.

Among 5 different ML algorithms, the RF model yielded the

best results in terms of classification error (CE), area under the

ROC curve (AUC), and area under the precision-recall curve

(PRAUC) (Figures 2D, S1G, and S1H; Table S1). Hence, we

opted to use the RF algorithm for subsequent ML model con-

struction. In the RF variable importance analysis, 5 variables,

including PF4, AACT, KLDB, CP135, and KV315, exhibited the

highest rankings (Figure 2E). Further analysis using least abso-

lute shrinkage and selection operator (Lasso) logistic regression

identified PF4 and AACT as the top two ranking variables, which

were determined to be the most valuable EV proteins for CRC

diagnosis (Figures 2F–2H ; Table S2). The combined evaluation

of PF4 and AACT exhibited superior diagnostic performance in

the RF diagnostic model (Figures 2I and 2J).

Validation of aberrant PF4 and AACT levels in expansion
cohorts
To validate the aberrant elevation of PF4 and AACT identified in

the discovery set, EVs from an expansion of 912 individuals,
RC patients by 4D-DIA proteomics analysis

low NanoAnalyzer.

and calnexin were used as negative control proteins.

olcano plot (D, p < 0.05, log2 fold change > 0.5, n = 37) and heatmap (E).

nction (F), cellular component (G), biological process (H), and KEGG pathways
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comprising 338 cases in the train set, 328 cases in the test set,

and 246 cases in the external set were collected for ELISA detec-

tion (Table 1). Distinctly, compared with HC or patients with

benign colorectal disease (BCD) or inflammatory disease, the

levels of EV-derived PF4 were significantly increased in the train,

test, and external sets (Figures 3A, 3B, and S2A). Consistently,

elevated AACT levels were also observed in CRC patients

compared to HC or patients with BCD or inflammatory disease

(Figures 3C, 3D, and S2B). Additionally, statistical analysis of

PF4 and clinicopathological characteristics indicated that the

levels of PF4 were significantly associated with clinical stage, tu-

mor-node-metastasis (TNM) classification, and differentiation

(Table S3). AACT levels were also related to clinical stage and

TNM classification (Table S4). Impressively, the levels of serum

EV-derived PF4 gradually elevated with clinical staging

(Figures 3E, 3F, and S2C). In line with PF4, AACT levels also

incrementally increased with the progression of clinical stages

(Figures 3G, 3H, and S2D). Intriguingly, EV-derived PF4 and

AACT levels were notably reduced in CRC patients after treat-

ment (Figures S2E–S2H). Taken together, these results

confirmed the potential of EV-derived PF4 and AACT as impor-

tant biomarkers for CRC diagnosis and post-treatment

monitoring.

Development and validation of the EV-related RF
diagnostic model for CRC diagnosis
Subsequently, RF diagnostic models were constructed to eval-

uate the diagnostic efficiency of EV-derived PF4 and AACT

compared with traditional CRC biomarkers CEA and CA19-9.

In the train set, receiver operating characteristics (ROC) curves

displayed significantly higher AUC values for both PF4 (AUC =

0.926) and AACT (AUC = 0.770) compared to CEA (AUC =

0.623) and CA19-9 (AUC = 0.676). Moreover, the combination

of PF4 andAACT yielded an impressive AUCof 0.950 (Figure 4A).

Consistently, in precision-recall (PR) curve analysis, PF4 and

AACT demonstrated superior PRAUC compared with CEA and

CA19-9, and the combined PF4 and AACT model even achieved

a higher PRAUC of 0.969 (Figure 4B). Accumulated local effects

(ALEs) analysis confirmed that both PF4 and AACT had a more

pronounced effect on predicting CRC compared to CEA and

CA19-9 (Figure 4C). The Shapley value also showed that higher

PF4 (R3870.74 pg/mL) and AACT (R515.4 ng/mL) levels made

the largest contribution in discriminating CRC from HC (Fig-

ure 4D), which aligns with the results from the importance anal-

ysis (Figure 4E).

To achieve the best combination of the EV-derived and tradi-

tional CRC biomarkers, RF diagnostic models were developed

using different combinations of variables. As shown in Figure 4F,
Figure 2. Screening EV-derived biomarkers for CRC diagnosis via the

(A and B) Score plot (A) and scatterplot (B) exhibited significant discrimination be

(C) Twelve candidate proteins selected based on their VIPpred scores >4.

(D) Bar plot showed the value of CE in ML diagnostic models based on different

(E) Variable importance score plot showed the contribution of twelve candidate p

(F and G) The Lasso regression analysis based on 4D-DIA proteomics and parti

1-standard error (1SE) criteria were used to draw the dotted vertical lines at the

(H) Venn plot displayed the intersection of candidate proteins from the RF mode

(I and J) ROC curve (I) and PR curve (J) of RF diagnostic models based on PF4,
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the combination of PF4, AACT, CEA, and CA19-9 achieved the

best diagnostic performance with an AUC of 0.960, PRAUC of

0.979, and CE of 0.08 (Figures S3A and S3B; Table S5). Thus,

the optimal diagnostic model based on the 4 variables was

defined as the EV-related model and subsequently validated in

the test set (Table S6). The confusion matrix illustrated that the

EV-related model exhibited superior accuracy of 0.883 in the

test set and 0.810 in the external set (Figures 4G and S3C;

Table S6). Furthermore, the excellent diagnostic performance

was also confirmed by other metrics including ROC and

PRAUC curves with an AUC of 0.963 and 0.895 and a PRAUC

of 0.975 and 0.921 in the test set and external set, respectively

(Figures 4H and 4I; Table S6).

The diagnosis of early-stage tumors poses greater challenges

in comparison to advanced-stage tumors due to the scarcity of

suitable tumor markers. To evaluate the diagnostic efficacy of

the EV-related model for early-stage CRC, we extracted data

from patients with stage I and stage II CRC in the test set for

further validation. In confusion matrix analysis, the EV-related

model demonstrated reliable accuracy in discriminating patients

with stage I and stage II tumors from HC subjects in the test set

(Figures 4J and S3D). Consistently, ROC and PRAUC curves

further validated the excellent diagnostic efficacy of the EV-

related model (Figure 4K and 4L; Table S6). Moreover, the ability

of the EV-related model was also tested in distinguishing pa-

tients with CRC from patients with BCD or inflammatory disease.

Notably, the model presented outstanding diagnostic perfor-

mance in discriminating between CRC and other patients

(Figures S3E–S3J; Table S6). Collectively, EV-derived PF4 and

AACT outperformed CEA and CA19-9 as biomarkers for CRC

diagnosis. The EV-related model exhibited superior diagnostic

performance for CRC, including early-stage diagnosis and differ-

ential diagnosis from patients with BCD or inflammatory disease.

Functional enrichment analysis of EV-derived PF4 and
AACT
To gain insights into the potential functions of EV-derived PF4

and AACT in CRC, we performed gene set enrichment analysis

(GSEA). The results showed that EV-derived PF4 in the discovery

set was enriched in pathways related to cell differentiation, cell

development, and transmembrane transport. Particularly, lipid

localization and cholesterol efflux pathways were negatively

correlated with PF4, and similar pathway enrichment results

were also obtained in The Cancer Genome Atlas (TCGA) data-

base (Figures 5A, 5B, and S4A). EnrichmentMap analysis was

utilized to research the associations between these enriched

terms. Likewise, the EV-derived PF4 low-expressed phenotype

exhibited strong associations between the localization and
ML pipeline

tween CRC and HC subjects via OPLS-DA analysis.

algorithms.

roteins in the RF diagnostic model.

al likelihood deviance on the prognostic genes. The minimum criteria and the

optimal values of variables.

l and the Lasso regression models based on minimum and 1SE criteria.

AACT, and combined PF4 and AACT levels of 4D-DIA proteomics.
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homeostasis of lipid, cholesterol efflux, and sterol transport

pathways in corresponding association network (Figure 5C).

Furthermore, core genes in the EnrichmentMap network were

extracted using leading edge analysis and integrated with PF4

to construct the protein-protein interaction (PPI) networks in

the STRING database (Figures S4C and 5D). The PPI network

indicated that PF4 might interact with the core genes including

APOA1, APOA2, and APOE (Figure 5D).

The same analysis pipeline was also processed in EV-derived

AACT. GSEA results displayed that the AACT-high phenotype

was enriched in several pathways, including ‘‘Acute inflamma-

tory response,’’ ‘‘Negative regulation of proteolysis,’’ and

‘‘Negative regulation of peptidase activity’’ (Figures 5E and 5F).

The same enriched pathways were also validated in the TCGA

database (Figure S4B). Consistently, EV-derived AACT was

negatively associated with the metabolic process and metabo-

lites pathways involved in proteolysis (Figures 5E and 5F), whose

association was also reflected in the EnrichmentMap network

(Figure 5G). Moreover, leading edge analysis was performed to

obtain hub genes in the EnrichmentMap network (Figure S4D).

The PPI network comprising AACT and hub genes revealed

that AACT might interact with transforming growth factor

(TGF)-b1, ACTB, and PTPRC, suggesting its potential role in in-

flammatory, cytoskeleton, and protein metabolic pathways

(Figure 5H).

Deciphering specific cell types releasing EV-derived
PF4 and AACT
Next, single-cell transcriptome analysis of the GEO: GSE132465

and GEO: GSE132257 datasets was employed to identify the

specific cell types responsible for releasing PF4 and AACT pack-

aged in EVs. When analyzing the GEO: GSE132465 dataset

comprising normal and CRC tissues (Figures 6A and S4E), PF4

exhibited a dramatic elevation in CRC epithelial cells compared

to normal epithelial cells. Additionally, PF4 was also slightly

upregulated in myeloid cells, stromal cells, and T cells

(Figures 6B and 6C). Consistently, in the GEO: GSE132257 data-

set (Figures 6D and S4F), PF4 expression wasmarkedly elevated

in CRC epithelial cells and slightly elevated in stromal cells,

myeloid cells, and T cells compared to normal tissues

(Figures 6E and 6F). As for AACT, its expression was significantly

higher in CRC epithelial cells compared to normal epithelial cells

in both the GEO: GSE132465 (Figures 6B and 6C) and GEO:

GSE132257 datasets (Figures 6E and 6F). Furthermore, immu-

nohistochemistry (IHC) was performed to detect PF4 and

AACT expression in 50 paired CRC and adjacent tissues.

Consistent with single-cell transcriptome analysis, the expres-

sion levels of PF4 and AACT were abnormally elevated in CRC

epithelial cells compared to adjacent normal epithelial cells
Figure 3. The aberrant levels of PF4 and AACT in expansion cohorts

(A and B) EV-derived PF4 levels detected by ELISA in HC (train set: n = 96, test set:

set: n = 161) groups from the train set (A) and the test set (B).

(C and D) EV-derived AACT levels detected by ELISA in HC, BCD, and CRC gro

(E and F) The levels of EV-derived PF4 at different clinical stages of CRC patients in

19, II: n = 31, III: n = 47, IV: n = 64).

(G and H) The levels of EV-derived AACT at different clinical stages of CRC patient

significant, *p < 0.05, **p < 0.01, and ***p < 0.001.
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(Figures 6G and 6H). Taken together, aberrant elevation of EV-

derived PF4 and AACT might release from CRC epithelial cells,

and PF4 might also originate from myeloid cells, stromal cells,

and T cells.

DISCUSSION

CRC is a commonmalignant tumor with high incidence andmor-

tality rates, ranking third among different types of cancers.16 Due

to the lack of effective approaches for early diagnosis, the 5-year

survival rate of CRC patients is approximately 50%–60%, which

even plunges to 14% for patients with metastasis.17 Non-inva-

sive approaches with accurate and repeatable characteristic

are in high demand for early detection to improve patient

outcome. In this context, our study identified two biomarkers,

PF4 and AACT, by deeply profiling 4D-DIA proteomics data of

EVs with a ML pipeline. Subsequently, the optimal RF model

based on PF4 and AACT was constructed and yielded the supe-

rior diagnostic performance. The identified EV-proteomic signa-

tures and developed RF model provide valuable tools for

enhancing early detection and management of CRC in clinical

settings.

As an emerging liquid biopsy technology, EVs constitute sig-

nificant potential for clinical applications in drug delivery therapy

and cancer diagnosis.18 Analyzing EVs from serum offers several

advantages compared to direct serum testing.9 Primarily, the

lipid bilayer structure of EVs shields their cargo from degrada-

tion, offering a more accurate representation of the body’s state.

In addition, the proteins in the serum of CRC patients are en-

riched by EVs, which substantially augment detection efficacy.

Consequently, EVs have garnered increasing attention in the

realm of liquid biopsy. The application of ultracentrifugation for

EV extraction we employed is widely recognized as a robust

extraction method.19 To verify the reproducibility of our experi-

ments, we utilized a commercial extraction kit based on size

exclusion chromatography (SEC) principles for EV isolation.

Correlation analysis demonstrated a strong correlation between

biomarkers isolated by ultracentrifugation and SEC methods

(Figures S5A and S5B). Additionally, aberrant levels of PF4 and

AACT isolated by SEC were also observed in the CRC group

compared to the HC group (Figures S5C and S5D). RF models

based on both EV extraction methods exhibited robust

diagnostic performance (Figures S5E and S5F). These results

demonstrate the reproducibility of our experiments and the reli-

ability of the proteomic signatures we identified.

A previous study on using serum EVs for CRC diagnosis

showed significant limitations, including testing mixed samples

and employing unstable TMT-tagged mass spectrometry with

instability and limited proteome coverage.20 In contrast, our
n = 112), BCD (train set: n = 47, test set: n = 55), and CRC (train set: n = 195, test

ups from the train set (C) and test set (D).

the train set (E, I: n = 22, II: n = 48, III: n = 83, IV: n = 42) and the test set (F, I: n =

s in the train set (G) and the test set (H). Data are shown as mean ± SD; n.s., not
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study conducted separate testing for multiple samples and uti-

lized the most recent mass spectrometry methods, resulting in

significantly different protein markers compared to theirs. More-

over, we also identified two biomarkers proposed in this study,

namely FN1 and HSP90AA1. The results indicated that FN1

levels were slightly elevated in the CRC group compared to the

HC group (Figure S6A), while HSP90AA1 showed no difference

between the two groups (Figure S6B). ROC and PR curves

demonstrated that the diagnostic efficacy of RF models based

on FN1, HSP90AA1, and their combination wasmarkedly inferior

compared to that of the models based on PF4, AACT, and their

combination (Figures S6C and S6D). Consistent results were

also obtained from ALE (Figure S6E) and variable importance

analysis (Figure S6F). These data further validated the proteomic

signatures we identified as robust biomarkers for CRC

diagnosis.

Recently, the application of ML in the field of oncology has

been increasingly highlighted. By performing robust feature

selection from analytes of liquid and tissue biopsy, we can use

ML approaches to improve the accuracy and efficiency of cancer

diagnosis, treatment decision, and prognostic prediction.13,21 In

our research, various ML algorithms, including support vector

machine, k-nearest neighbor, decision tree (Rpart), RF, and lo-

gistic regression, were employed to construct diagnostic

models. Compared to conventional linear analysis of logistic

regression, models based on other ML algorithms such as RF

demonstrated a significant improvement in terms of AUC from

0.887 to 0.993 (Figure S2A). Consequently, ML is capable of

profiling crucial proteomic features from EVs and developing

more robust and reliable models compared to traditional linear

regression models.

PF4, also known as CXCL4, was a chemokine mainly pro-

duced by activated platelets participating in numerous biological

processes, including host inflammatory response promotion, he-

matopoiesis, and angiogenesis inhibition.22 In addition to plate-

lets, PF4 is also produced and secreted by other cells, such as

somatic cells and cancer cells.23,24 Our IHC results indicate

that PF4 is highly expressed in CRC epithelial cells compared

to adjacent tissues (Figures 6E and 6J). Moreover, single-cell

transcriptome analysis revealed that the elevated EV-derived

PF4 in the serum of CRC patients may originate from CRC

epithelial cells, with a slight increase also observed in myeloid,

stromal, and T cells (Figure 6). Our findings suggest that the

abnormally elevated PF4 in serum EVs may originate from both
Figure 4. Construction and validation of the EV-related RF diagnostic

(A and B) ROC curve (A) and PR curve (B) of RF diagnostic models based on ind

(C) The ALE curve depicts the accumulated local effects of PF4, AACT, CEA, and

accumulated local effects.

(D) Shapley values bar plot illustrates the Shapley values for each feature in

discriminating CRC patients from HC.

(E) Variable importance score plot showed the contribution of 4 variables in the R

(F) CE, AUC, and PRAUC values of the RF diagnostic models with different varia

(G) Confusion matrix displayed the prediction results for 273 test set sample (161 C

EV-related diagnostic model.

(H and I) ROC curve (H) and PR curve (I) were plotted for the EV-related diagnos

(J) Confusionmatrix displayed the prediction results for 162 untrained test samples

HC through the EV-related diagnostic model.

(K and L) ROC curve (K) and PR curve (L) were plotted for the EV-related diagno
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tumor cells and the tumor microenvironment. A growing number

of studies focus on the role of PF4 in reshaping the immune

microenvironment.25 PF4 has been shown to not only drive

macrophagemigration during tumor progression but also induce

differentiation of recruited monocytes into myeloid-derived sup-

pressor cells, thereby suppressing CD8+ T cell function.26,27

Furthermore, PF4 promoted regulatory T cell (Treg) production

in a mouse model of sepsis through activation of the STAT5/

FOXP3 pathway.28 In addition, PF4 reduced the proliferation of

cytotoxic T lymphocytes and promoted the proliferation of

Tregs, thereby suppressing the immune response to CRC in

transplanted tumor-bearing mice.23 Besides, PF4 deletion abro-

gated SPP1+ macrophage differentiation and improved fibrosis

after cardiac and renal injury.29 PF4 impaired the phagocytic ca-

pacity of macrophages by reducing CD36 levels, leading to the

development of cardiovascular disease.30 CD36 was a key

transporter protein in maintaining lipid homeostasis, and several

studies suggested that CD36 was involved in reprogramming

lipid metabolism of the tumor microenvironment in CRC.31–33

Our bioinformatics results also suggested that EV-derived PF4

was responsible for regulating lipid homeostasis and lipid local-

ization (Figures 5A–5D). It would be intriguing to further explore

whether EV-derived PF4 regulated lipid metabolism homeosta-

sis through CD36 to reshape the tumor microenvironment. Addi-

tionally, the PPI network indicated that PF4 might interact with

several apolipoproteins, including APOA1, APOA2, and APOE,

suggesting the potential mechanism of PF4 participating in lipid

homeostasis and cholesterol efflux (Figure 5D). Moreover, in our

single-cell transcriptome analysis, the elevated EV-derived PF4

in the serum of CRC patients may release from CRC epithelial

cells, with a slight increase also observed in myeloid, stromal,

and T cells (Figure 6). However, PF4 has not yet been a therapeu-

tic target due to the absence of a defined receptor to explain its

regulatory function on immune cells. A recent study revealed that

PF4 bound to glycosaminoglycan sugars on proteoglycans in the

endothelial extracellular matrix, leading to increased adhesion of

leukocytes to blood vessels and causing a series of non-specific

recruitment of leukocytes.34 Further studies are needed to fully

understand the mechanism of PF4’s regulatory effects on im-

mune cells.

Glycoprotein AACT was a serine protease inhibitor synthesized

primarily in the liver and secreted into the blood.35 However,

increasingevidencesuggested thatAACTcould alsoserveasa tu-

mor biomarker and played a crucial role in tumor progression.
model for CRC detection

icated variables in the train set.

CA19-9. The x axis represents the feature values, and the y axis represents the

the RF diagnostic model. Each bar represents the average contribution on

F diagnostic model.

ble combinations.

RC and 112 HC) and 158 external set sample (98 CRC and 60 HC) through the

tic model using the train and test sets.

comprising 50 individuals of stages I and II CRCpatients and 112 individuals of

stic model using the train and test sets.



(legend on next page)

Cell Reports Medicine 5, 101689, August 20, 2024 11

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
Sequential window acquisition of all theoretical (SWATH) mass

spectrometry identified plasma AACT as a candidate biomarker

for theearly diagnosis of glioblastoma,while substantially elevated

levels of AACT in the urine of patients with metastatic lung cancer

havealsobeen reported.36,37DiagnosticpanelsofAACT,peptides

containing single amino acid variants, and thrombospondin-1 dis-

played excellent diagnostic performance in identifying pancreatic

cancer fromHCs, and the combination ofAACTandprostate-spe-

cific antigen (PSA) remarkably improved the diagnosis of prostate

cancer.38,39 Although a marked rise in AACT in CRC tissue

compared to paracancerous tissue was reported in previous

studies, no significant differences were observed in plasma from

CRC patients compared to healthy subjects.40,41

In our study, using 4D-DIA proteomics and ELISA, we demon-

strated that AACT was dramatically elevated in EVs of CRC pa-

tients andwas of clinical diagnostic value (Figures 1 and 3).We re-

vealed the relationshipbetweenAACT inEVsand tumors, although

the exact function of EV-derived AACT in the carcinogenesis and

development of CRC requires further investigation. Previous

studies presented that AACT regulated cytokine secretion by acti-

vating the nuclear factor kB (NF-kB) signaling pathway,which also

promoted thegrowthandmigrationofCRCcells.41,42 Interestingly,

our bioinformatics results also indicated that EV-derived AACT

was most associated with the acute inflammatory response

pathway. which could activate NF-kB signaling (Figures 5E and

5F). Moreover, the STRING database analysis suggested that

AACTmightbe involved in inflammatoryandNF-kBsignalingpath-

ways through the important inflammatory regulator TGF-b (Fig-

ure 5H). Nevertheless, AACT was also able to enter the nucleus

and establish a strong link with chromatin, leading to the inhibition

of liver cancer cell proliferation.43,44 It remained unclear whether

AACT in EVs also exhibited these contradictory effects.Moreover,

AACT exhibited aberrant elevation in CRC epithelial cells and

negative correlations with proteolysis pathway. The potential role

of AACT in cytoskeleton and protein metabolic pathways remains

to be further investigated (Figures 5E–5H and 6). Taken together,

AACT may hold great promise as a diagnostic and therapeutic

target for CRC, although further studies are needed to fully under-

stand its role in tumor progression.

Limitations of the study
A limitation of our research is that the sample size of our cohorts

was not large enough. Nevertheless, we were able to replicate

our findings in the proteomics cohort using ELISA in two inde-

pendent cohorts. In addition, we needed to expand the enrolled

population range in order to verify the effect of cardiovascular

disease, inflammation, and other confounding factors on the

identified markers. Meanwhile, the specificity and sensitivity of

the combination of PF4 and AACT for other gastrointestinal tu-

mors also required more samples to be evaluated.
Figure 5. Functional prediction of EV-derived PF4 and AACT

(A and B) GSEA displayed the top ranking pathways based on EV-derived PF4-h

(C) EnrichmentMap network analysis of associated pathways enriched in EV-der

(D) STRING database analysis revealed the potential interaction between PF4 an

(E and F) GSEA displayed the top ranking pathways based on EV-derived AACT

(G) EnrichmentMap network analysis of associated pathways enriched in EV-der

(H) STRING database analysis revealed the potential interaction between AACT
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Figure 6. scRNA-seq analysis reveals CRC epithelial cells as the major source of EV-derived PF4 and AACT production

(A) Uniform manifold approximation and projection (UMAP) plot showed different cell types in CRC (n = 23) and normal (n = 10) tissues via single-cell RNA

sequencing (scRNA-seq) analysis from the GEO: GSE132465 dataset.

(legend continued on next page)

Cell Reports Medicine 5, 101689, August 20, 2024 13

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
REFERENCES

1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jemal,

A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of inci-

dence andmortality worldwide for 36 cancers in 185 countries. CA Cancer

J. Clin. 68, 394–424.

2. Biller, L.H., and Schrag, D. (2021). Diagnosis and Treatment of Metastatic

Colorectal Cancer: A Review. JAMA 325, 669–685.

3. Rutter, M.D., Beintaris, I., Valori, R., Chiu, H.M., Corley, D.A., Cuatrecasas,

M., Dekker, E., Forsberg, A., Gore-Booth, J., Haug, U., et al. (2018). World

Endoscopy Organization Consensus Statements on Post-Colonoscopy

and Post-Imaging Colorectal Cancer. Gastroenterology 155, 909–925.

4. Li, C., Zhang, D., Pang, X., Pu, H., Lei, M., Fan, B., Lv, J., You, D., Li, Z., and

Zhang, T. (2021). Trajectories of Perioperative Serum Tumor Markers and

Colorectal Cancer Outcomes: A Retrospective, Multicenter Longitudinal

Cohort Study. EBioMedicine 74, 103706.

5. Engle, D.D., Tiriac, H., Rivera, K.D., Pommier, A., Whalen, S., Oni, T.E.,

Alagesan, B., Lee, E.J., Yao, M.A., Lucito, M.S., et al. (2019). The glycan

CA19-9 promotes pancreatitis and pancreatic cancer in mice. Science

364, 1156–1162.

6. Zhu, Z., Hu, E., Shen, H., Tan, J., and Zeng, S. (2023). The functional and

clinical roles of liquid biopsy in patient-derived models. J. Hematol. Oncol.

16, 36.

7. Clack, K., Soda, N., Kasetsirikul, S., Mahmudunnabi, R.G., Nguyen, N.T.,

and Shiddiky, M.J.A. (2023). Toward Personalized Nanomedicine: The

Critical Evaluation of Micro and Nanodevices for Cancer Biomarker Anal-

ysis in Liquid Biopsy. Small 19, e2205856.

8. Ebrahimi, N., Faghihkhorasani, F., Fakhr, S.S., Moghaddam, P.R., Yaz-

dani, E., Kheradmand, Z., Rezaei-Tazangi, F., Adelian, S., Mobarak, H.,

Hamblin, M.R., and Aref, A.R. (2022). Tumor-derived exosomal non-cod-

ing RNAs as diagnostic biomarkers in cancer. Cell. Mol. Life Sci. 79, 572.

9. Yu, D., Li, Y., Wang, M., Gu, J., Xu, W., Cai, H., Fang, X., and Zhang, X.

(2022). Exosomes as a new frontier of cancer liquid biopsy. Mol. Cancer

21, 56.

10. Min, L., Zhu, S., Chen, L., Liu, X., Wei, R., Zhao, L., Yang, Y., Zhang, Z.,

Kong, G., Li, P., and Zhang, S. (2019). Evaluation of circulating small extra-

cellular vesicles derived miRNAs as biomarkers of early colon cancer: a

comparison with plasma total miRNAs. J. Extracell. Vesicles 8, 1643670.

11. Chen, I.H., Xue, L., Hsu, C.C., Paez, J.S.P., Pan, L., Andaluz, H., Wendt,

M.K., Iliuk, A.B., Zhu, J.K., and Tao, W.A. (2017). Phosphoproteins in

extracellular vesicles as candidate markers for breast cancer. Proc. Natl.

Acad. Sci. USA 114, 3175–3180.

12. Clift, A.K., Dodwell, D., Lord, S., Petrou, S., Brady, M., Collins, G.S., and

Hippisley-Cox, J. (2023). Development and internal-external validation of

statistical andmachine learningmodels for breast cancer prognostication:

cohort study. BMJ 381, e073800.

13. LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521,

436–444.

14. Halner, A., Hankey, L., Liang, Z., Pozzetti, F., Szulc, D., Mi, E., Liu, G.,

Kessler, B.M., Syed, J., and Liu, P.J. (2023). DEcancer: Machine learning

framework tailored to liquid biopsy based cancer detection and biomarker

signature selection. iScience 26, 106610.

15. Xu, W., Wang, T., Wang, N., Zhang, H., Zha, Y., Ji, L., Chu, Y., and Ning, K.

(2023). Artificial intelligence-enabled microbiome-based diagnosis
(B) Dot plot showed the expression of PF4 and AACT in normal and CRC tissues

(C) Violin plot exhibited the expression of PF4 and AACT in normal and CRC tiss

(D) UMAP plot showed different cell types in CRC (n = 5) and normal (n = 5) tissu

(E) Dot plot showed the expression of PF4 and AACT from the GEO: GSE132257

(F) Violin plot exhibited the expression of PF4 and AACT from the GEO: GSE132

(G and H) Representative images and statistical analysis of PF4 (G) and AACT (H)

Scale bar: 50 mm.

14 Cell Reports Medicine 5, 101689, August 20, 2024
models for a broad spectrum of cancer types. Brief Bioinform. 24,

bbad178.

16. Keum, N., and Giovannucci, E. (2019). Global burden of colorectal cancer:

emerging trends, risk factors and prevention strategies. Nat. Rev. Gastro-

enterol. Hepatol. 16, 713–732.

17. Xie, Y.H., Chen, Y.X., and Fang, J.Y. (2020). Comprehensive review of tar-

geted therapy for colorectal cancer. Signal Transduct. Targeted Ther.

5, 22.

18. Piffoux, M., Silva, A.K.A., Gazeau, F., and Salmon, H. (2022). Potential of

on-chip analysis and engineering techniques for extracellular vesicle bio-

production for therapeutics. View 3, 20200175.

19. Li, Z., Moniruzzaman, M., Dastgheyb, R.M., Yoo, S.W., Wang, M., Hao, H.,

Liu, J., Casaccia, P., Nogueras-Ortiz, C., Kapogiannis, D., et al. (2020). As-

trocytes deliver CK1 to neurons via extracellular vesicles in response to

inflammation promoting the translation and amyloidogenic processing of

APP. J. Extracell. Vesicles 10, e12035.

20. Chen, Y., Xie, Y., Xu, L., Zhan, S., Xiao, Y., Gao, Y., Wu, B., and Ge, W.

(2017). Protein content and functional characteristics of serum-purified

exosomes from patients with colorectal cancer revealed by quantitative

proteomics. Int. J. Cancer 140, 900–913.

21. Wang, Z., Liu, Y., and Niu, X. (2023). Application of artificial intelligence for

improving early detection and prediction of therapeutic outcomes for

gastric cancer in the era of precision oncology. Semin. Cancer Biol.

93, 83–96.

22. Wang, Z., and Huang, H. (2013). Platelet factor-4 (CXCL4/PF-4): an angio-

static chemokine for cancer therapy. Cancer Lett. 331, 147–153.

23. Deng, S., Deng, Q., Zhang, Y., Ye, H., Yu, X., Zhang, Y., Han, G.Y., Luo, P.,

Wu, M., Yu, Y., and Han, W. (2019). Non-platelet-derived CXCL4 differen-

tially regulates cytotoxic and regulatory T cells through CXCR3 to sup-

press the immune response to colon cancer. Cancer Lett. 443, 1–12.

24. Zhang, Y., Gao, J., Wang, X., Deng, S., Ye, H., Guan, W., Wu, M., Zhu, S.,

Yu, Y., and Han, W. (2015). CXCL4 mediates tumor regrowth after chemo-

therapy by suppression of antitumor immunity. Cancer Biol. Ther. 16,

1775–1783.

25. Bikfalvi, A., and Billottet, C. (2020). The CC and CXC chemokines: major

regulators of tumor progression and the tumor microenvironment. Am. J.

Physiol. Cell Physiol. 318, C542–C554.

26. Fox, J.M., Kausar, F., Day, A., Osborne, M., Hussain, K., Mueller, A., Lin,

J., Tsuchiya, T., Kanegasaki, S., and Pease, J.E. (2018). CXCL4/Platelet

Factor 4 is an agonist of CCR1 and drives human monocyte migration.

Sci. Rep. 8, 9466.

27. Joseph, R., Soundararajan, R., Vasaikar, S., Yang, F., Allton, K.L., Tian, L.,

den Hollander, P., Isgandarova, S., Haemmerle, M., Mino, B., et al. (2021).

CD8(+) T cells inhibit metastasis and CXCL4 regulates its function. Br. J.

Cancer 125, 176–189.

28. Xu, T., Zhao, J., Wang, X., Meng, Y., Zhao, Z., Bao, R., Deng, X., Bian, J.,

and Yang, T. (2020). CXCL4 promoted the production of CD4(+)CD25(+)

FOXP3(+)treg cells in mouse sepsis model through regulating STAT5/

FOXP3 pathway. Autoimmunity 53, 289–296.

29. Hoeft, K., Schaefer, G.J.L., Kim, H., Schumacher, D., Bleckwehl, T., Long,

Q., Klinkhammer, B.M., Peisker, F., Koch, L., Nagai, J., et al. (2023).

Platelet-instructed SPP1(+) macrophages drive myofibroblast activation

in fibrosis in a CXCL4-dependent manner. Cell Rep. 42, 112131.

30. Lindsey, M.L., Jung, M., Yabluchanskiy, A., Cannon, P.L., Iyer, R.P., Flynn,

E.R., DeLeon-Pennell, K.Y., Valerio, F.M., Harrison, C.L., Ripplinger, C.M.,
from the GEO: GSE132465 dataset.

ues from the GEO: GSE132465 dataset.

es via scRNA-seq analysis from the GEO: GSE132257 dataset.

dataset.

257 dataset.

IHC staining in 50 paired adjacent and CRC specimens (4003 magnification).

http://refhub.elsevier.com/S2666-3791(24)00410-5/sref1
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref1
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref1
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref1
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref2
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref2
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref3
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref3
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref3
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref3
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref4
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref4
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref4
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref4
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref5
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref5
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref5
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref5
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref6
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref6
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref6
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref7
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref7
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref7
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref7
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref8
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref8
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref8
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref8
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref9
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref9
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref9
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref10
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref10
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref10
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref10
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref11
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref11
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref11
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref11
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref12
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref12
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref12
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref12
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref13
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref13
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref14
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref14
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref14
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref14
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref15
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref15
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref15
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref15
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref16
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref16
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref16
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref17
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref17
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref17
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref18
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref18
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref18
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref19
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref19
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref19
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref19
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref19
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref20
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref20
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref20
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref20
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref21
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref21
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref21
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref21
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref22
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref22
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref23
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref23
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref23
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref23
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref24
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref24
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref24
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref24
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref25
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref25
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref25
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref26
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref26
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref26
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref26
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref27
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref27
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref27
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref27
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref28
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref28
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref28
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref28
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref29
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref29
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref29
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref29
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref30
http://refhub.elsevier.com/S2666-3791(24)00410-5/sref30


Article
ll

OPEN ACCESS
et al. (2019). Exogenous CXCL4 infusion inhibits macrophage phagocy-

tosis by limiting CD36 signalling to enhance post-myocardial infarction

cardiac dilation and mortality. Cardiovasc. Res. 115, 395–408.

31. Gong, J., Lin, Y., Zhang, H., Liu, C., Cheng, Z., Yang, X., Zhang, J., Xiao, Y.,

Sang, N., Qian, X., et al. (2020). Reprogramming of lipidmetabolism in can-

cer-associated fibroblasts potentiatesmigration of colorectal cancer cells.

Cell Death Dis. 11, 267.

32. Yang, P., Qin, H., Li, Y., Xiao, A., Zheng, E., Zeng, H., Su, C., Luo, X., Lu, Q.,

Liao, M., et al. (2022). CD36-mediated metabolic crosstalk between tumor

cells and macrophages affects liver metastasis. Nat. Commun. 13, 5782.

33. Xu, S., Chaudhary, O., Rodrı́guez-Morales, P., Sun, X., Chen, D., Zappa-

sodi, R., Xu, Z., Pinto, A.F., Williams, A., Schulze, I., and Farsakoglu, Y.

(2021). Uptake of oxidized lipids by the scavenger receptor CD36 pro-

motes lipid peroxidation and dysfunction in CD8(+) T cells in tumors. Im-

munity 54, 1561–15677.

34. Gray, A.L., Karlsson, R., Roberts, A.R.E., Ridley, A.J.L., Pun, N., Khan, B.,

Lawless, C., Luı́s, R., Szpakowska, M., Chevigné, A., et al. (2023). Chemo-
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d This study did not generate custom computer code.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The discovery cohort comprised of 12 healthy controls (HC) and 25 colorectal cancer (CRC) patients before treatment. Serum sam-

ples from HC and CRC patients were collected between May 2022 and June 2022 at Sun Yat-sen University Cancer Center.

Expansion cohorts for ELISA detection, model development, and validation include three listed cohorts as follows.

d The train set composed of 96 HC, 47 patients with benign colorectal diseases (BCD), and 195 CRC patients before treatment.

Serum samples from the train set were collected between August 2020 and October 2022 at Sun Yat-sen University Cancer

Center.

d The test set consisted of 112 HC, 55 BCD patients, and 161 CRC patients. Serum samples from the test set were collected

between September 2020 and December 2022 at The Seventh Affiliated Hospital of Sun Yat-Sen University. The CRC group

included 161 cases of CRC patients before treatment and 39 cases of CRC patients after treatment.

d The external set consisted of 60 HC, 42 Enteritis, 46 Hepatitis B, and 98 CRC patients. Serum samples from the external set

were collected between October 2023 and March 2024 at Shenzhen People’s Hospital.
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The enrolled HC individuals had no history of intestinal diseases, inflammatory diseases, or other diseases. The diagnosis of CRC

was confirmed through histopathological examination, and serum samples were collected at the time of diagnosis prior to tumor

resection or chemoradiotherapy, except for the 39 post-treatment CRC patients in the test set. The diagnosis of BCD was based

on standard endoscopic, histologic, and radiographic criteria. Informed consent was obtained from all participants, and the study

was approved by the Ethics Committee of The Seventh Affiliated Hospital of Sun Yat-Sen University (KY-2020-039-01), Sun Yat-sen

University Cancer Center (B2022-475-01), and Shenzhen People’s Hospital (LL-KY-2022478). The clinical and biological character-

istics of the individuals from the four cohorts were described in Table 1.

METHOD DETAILS

Serum EVs isolation
2 mL Fresh blood collected from the individuals were centrifuged at 4000 g for 20 min in the vacuum blood tube. The supernatant

serum was then stored at �80�C. The collected frozen serum was uniformly thawed at 4�C and then centrifuged at 10,000 g for

20 min. The resulting suspensions were diluted with 4 mL of cold PBS and transferred to the 0.22 mm filter. After centrifugation of

the filtered supernatants at 120,000 g for 90 min, the supernatants were aspirated to collect the pellets at the bottom of the

tube. The pellets were subsequently resuspended in 4 mL PBS and subjected to another centrifugation at 120,000 g for 90 min.

The isolated EV samples were suspended in 100 mL of PBS and added to the mini-EVS purification column to remove free proteins

and nucleic acids by adsorption. The remaining suspension represented high-purity purified EVs and was stored at �80�C for

further use.

Commercially EV extraction kit was also applied for the isolation of serum EVs in the external set based on the size exclusion

chromatography (SEC) principle. One milliliter of blood plasma, filtered through a 0.8 mm filter, was diluted 1.5 times with PBS

and further purified using Exosupur columns (ES9P11e, Echobiotech, China). The samples were then eluted with PBS, and

2.5 mL eluate fractions were collected. Subsequently, these fractions were concentrated down to 200 mL using 100 kDa molecular

weight cut-off Amicon Ultra spin filters (Millipore, Germany).

Serum EV identification
For western blotting, 90 mL of RIPA lysis buffer was mixed with 10 mL of EV samples and incubated on ice for 30 min. Afterward, the

mixtures were centrifuged at 12,000 g for 5 min at 4�C, and the supernatant was collected. Protein quantification was performed

using the BCA assay kit. After conducting SDS-PAGE electrophoresis, EV-derived protein samples were transferred onto a PVDF

membrane and blocked with 7% skim milk at room temperature for 1–2 h. Overnight incubation at 4�C was carried out with primary

antibodies. Subsequent incubation with secondary antibodies was performed at room temperature. The chemiluminescence signals

were captured using the ChemiDoc Touch imaging system (Bio-rad, USA).

For transmission electron microscopy (TEM), EV suspensions were fixed using 0.1% (v/v) paraformaldehyde at a 1:1 volume ratio

for 30min. A drop of 10 mL of fixed EVs was placed on a carbon-coated copper grid for 3 min. Excess liquid was absorbed using filter

paper. Subsequently, 2% phosphotungstic acid was added to the grid for staining, and excess liquid was again absorbed using filter

paper. The copper grids were finally examined and photographed using TEM HT7800 (Hitachi, Tokyo, Japan).

For nanoparticle tracking analysis (NTA), the EV samples were diluted 1:1000with PBS. The diluted samples were directly analyzed

using a nanoparticle tracking analyzer ZetaVIEW S/N 21–734 (Particle Metrix, Munich, Germany).

ELISA detection
ELISA kits were applied to detect the levels of PF4 (Neobioscience, EHC135.96) and AACT (FineTest, EH0570) derived from serum

EVs. A total of 10 mL of EV samples were mixed with 90 mL of RIPA lysate on ice for 60 min, and were then diluted with 200 mL of PBS.

Next, 100 mL of the diluted samples was added to a 96-well plate for ELISA detection, following the manufacturer’s protocol. Finally,

the absorbance at 450 nm was measured using synergyH1 multi-model readers (BioTek, Vermont, USA).

4D-DIA quantitative proteomics
4D-DIA quantitative proteomics analysis was conducted by Shanghai Genechem Co., Ltd. In this analysis, a total of 37 serum EV

samples from the discovery set were subjected to protein extraction using ultrasonic lysis, with the addition of 1% protease inhibitor.

200 mg protein samples were subsequently digested into peptides by filter-aided sample preparation (FASP).

DDA mass spectrometry library construction: Each sample was loaded with 200 ng of peptides and desalted using Evotips. Sep-

aration was performed using the nanoflow Evosep One system (Evosep, Denmark), coupled to a timsTOF Pro mass spectrometer

(Bruker, Bremen, Germany) equipped with a CaptiveSpray ion source. Buffer A consisted of 0.1% aqueous formic acid, while buffer

B comprised 0.1% formic acid in acetonitrile. Chromatographic separation was conducted using the 30SPD method provided by

Evosep One. Following chromatographic separation on Evosep One, samples underwent mass spectrometric analysis using the

PASEF mode of the timsTOF Pro Mass Spectrometer (Bruker, Bremen, Germany). Ionization was conducted in positive ion mode

with a mass range of 100–1700 m/z. The 1/K0 ion mobility range was set to 0.6–1.6 V,s/cm2, with an ion accumulation/release

time of 100 ms and a 100% ion utilization rate. The capillary voltage was set to 1500 V, and the drying gas flow rate was 3 L/min

with a drying temperature of 180�C. PASEF settings included 10 MS/MS scans (total cycle time: 1.16 s), a charge range of 0–5,
Cell Reports Medicine 5, 101689, August 20, 2024 e2
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dynamic exclusion time of 0.4 min, ion target intensity of 10,000, ion intensity threshold of 2500, and collision-induced dissociation

energy of 20–59 eV.

DIA mass spectrometry analysis: The peptide samples were diluted to 10 ng/mL with 0.1% formic acid and supplemented with

iRT peptide mixture. 200 ng peptide sample mixed with iRT was analyzed on a Evosep One system (Evosep, Denmark) coupled

to a timsTOF Pro (Bruker, Bremen, Germany) equipped with a CaptiveSpray source. Peptides were separated on a 15 cm 3

150 mm analytical column, 1.9 mmC18 beads with a packed emitter tip (Evosep, Denmark). The column temperature was maintained

at 50�C using an integrated column oven (Bruker, Germany). The LC-separation method was provided by Evosep One at 30 samples

per day. For diaPASEF, we adapted the instrument firmware to perform data-independent isolation of multiple precursor windows

within a single TIMS separation (100 ms). We used a method with two windows in each 100 ms diaPASEF scan. 100 of these scans

covered the diagonal scan line for doubly and triply charged peptides in the m/z – ion mobility plane with narrow 25 m/z precursor

windows.

Raw data of DDA and DIA were processed and analyzed by Spectronaut (Biognosys AG, Switzerland) with default settings. Spec-

tronaut was set up to search the database assuming trypsin as the digestion enzyme. Carbamidomethyl (C) was specified as the fixed

modification. Oxidation (M) and acetyl (Protein N-term) were specified as the variable modifications. Retention time prediction type

was set to dynamic iRT. Spectronaut will determine the ideal extraction window dynamically depending on iRT calibration and

gradient stability. Q value cutoff on precursor and protein level was applied 1%.

Machine learning and development of the EV-related diagnostic model
Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) was performed using SIMCA software version 14.1. The protein

of predictive variable importance in projection larger than 4 (VIPpred > 4) was considered to be candidate EV biomarkers for CRC

discrimination. 5 ML algorithms were used to conduct the diagnostic models based on the candidate EV biomarkers for the selection

of the optimal algorithm. Based on the optimal RF algorithm, 12 candidate biomarkers were further evaluated in RF diagnostic model

in a bootstrap cross-validation manner using mlr3 R package (version 0.14.1) and Lasso logistic regression analysis.

For the development of the EV-related diagnostic model, different combinations of the variables including PF4, AACT, CEA, and

CA19-9 were used to conduct the RF diagnostic model. The best EV-related diagnostic model based on the optimal combination of

variables was then determined by its superior diagnostic efficiency. To ensure the reliability of the developed model, the test set was

employed to validate the diagnostic performance of the EV-related model by confusion matrix, receiver operating characteristics

(ROC) curve, and precision-recall (PR) curve.

Bioinformatics analysis
RNA-seq data and clinical data of TCGA CRC database were obtained from The Cancer Genome Atlas (TCGA) databases (https://

genome-cancer.ucsc.edu). Gene Set Enrichment Analysis (GSEA) was manipulated to predict the GO molecular function, cellular

component, biological process, and Kyoto Encyclopedia of Genes and Genomes (KEGG) gene sets of theMolecular Signature Data-

base v7.4 (http://www.broadinstitute.org/gsea/msigdb) based on PF4 or AACT high and low expressed phenotype. EnrichmentMap

plugin in Cytoscape 3.8.2 software was utilized to conduct the association of the enriched pathways. Leading edge analysis was

performed by GSEA 4.1.0 to elucidate key genes involved in the EnrichmentMap pathways network. The protein-protein interaction

(PPI) networks were constructed using the Search Tool for the Retrieval of Interacting Genes (STRING) database (https://string-

db.org/).

scRNA-seq data analysis
The raw single-cell RNA sequencing data were downloaded in GEO database (GSE132465 and GSE132257) and processed using

the R package Seurat (version 3.1.1) on R platform (version 4.2.1). The GEO: GSE132465 dataset comprises 23 CRC samples and 10

normal tissue samples, with a total of 63,689 single-cell transcriptomic data. The GEO: GSE132257 dataset was composed of 5 CRC

samples and 5 normal tissue samples, with a total of 18,409 cells of transcriptomic data. After passing quality control, cells were

merged into one count matrix and conducted normalization, dimensional reduction, and clustering by using the NormalizeData,

ScaleData, and RunPCA functions according to Seurat R package. FindClusters function was used for cell clustering and

FindAllMarkers function was applied for identifying the markers of clusters. Cell types were annotated by using ScType function

and marker gene expression based on CellMarker database.

Immunohistochemistry staining
The sections of 50 paired CRC and adjacent tissue were collected at The Seventh Affiliated Hospital of Sun Yat-Sen University. The

tissue sections were initially deparaffinized, followed by rehydration in a graded ethanol series and pretreated with 0.01 M citrate

buffer (pH 6.0) using a high-pressure method. Subsequently, the sections were immersed in 3% H2O2 for 20 min to quench endog-

enous peroxidas, and goat serum was applied to block nonspecific background staining. Next, primary antibodies PF4 (Servicebio,

GB113482) and AACT (ZSGB-BIO, ZA0006) were applied. After an overnight incubation with the primary antibodies at 4�C, the sec-

tions were treated with HRP-conjugated secondary antibody. The antigen-antibody complex was visualized by incubation with the

DAB kit. The stained sections were captured using a slide scanner (Axio Scan. Z1, ZEISS). Protein expression levels were determined

using the staining index (SI), calculated by multiplying the score for stained cell proportions by the staining intensity score. Stained
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tumor cell proportions were graded as follows: 0, <5% positive tumor cells; 1, 5%–25% positive tumor cells; 2, 26%–50% positive

tumor cells; 3, 51%–75% positive tumor cells; 4, >75% positive cells. Staining intensity was scored as follows: 0, negative staining

(no staining); 1, weak staining (light yellow); 2, moderate staining intensity (brown); 3, positive staining (yellow).

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed with the IBM SPSS Statistics 26.0 and R version 4.2.3. The data variability was presented as the

SD (mean ± SD) and analyzed via unpaired Student’s t test between two groups for normally distributed data. Otherwise, the data

were analyzed via nonparametric Mann-Whitney test. The diagnostic performance in terms of AUC, PRAUC, classification error (CE),

sensitivity, specificity, precision, recall, accuracy, and F1 score was calculated by using mlr3 R package. p < 0.05 was defined sta-

tistical significance.
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