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SUMMARY
Prostate cancer (PCa) is the most common malignant tumor in men. Currently, there are few prognosis indi-
cators for predicting PCa outcomes and guiding treatments. Here, we perform comprehensive proteomic
profiling of 918 tissue specimens from 306 Chinese patients with PCa using data-independent acquisition
mass spectrometry (DIA-MS). We identify over 10,000 proteins and define three molecular subtypes of
PCa with significant clinical and proteomic differences. We develop a 16-protein panel that effectively pre-
dicts biochemical recurrence (BCR) for patients with PCa, which is validated in six published datasets
and one additional 99-biopsy-sample cohort by targeted proteomics. Interestingly, this 16-protein panel
effectively predicts BCR across different International Society of Urological Pathology (ISUP) grades and
pathological stages and outperforms the D’Amico risk classification system in BCR prediction. Furthermore,
double knockout of NUDT5 and SEPTIN8, two components from the 16-protein panel, significantly sup-
presses the PCa cells to proliferate, invade, and migrate, suggesting the combination of NUDT5 and
SEPTIN8 may provide new approaches for PCa treatment.
INTRODUCTION

Prostate cancer (PCa) is the most common type of cancer and

the second leading cause of cancer-related deaths among

males worldwide.1 In medically advanced regions, the propor-

tion of limited or locally progressive PCa at the time of initial

diagnosis is gradually increasing and tends to dominate the

mainstream diagnosed population. The major curative treatment

for this population is radical prostatectomywith adjuvant/neoad-

juvant therapy.2 The incidence of biochemical recurrence (BCR)

following radical prostatectomy can be as high as 40%,3–5 and it

is strongly linked with later clinical recurrence, metastasis, and

cancer-specific death.6,7 As a result, the prediction of BCR risk
Cell Reports Medicine 5, 101679, Aug
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using a variety of clinical indicators to direct clinical work-up is

now a widely used approach in the PCa treatment environment.

These indicators typically involve the International Society of

Urological Pathology (ISUP) grouping, prostate-specific antigen

(PSA) at diagnosis, clinical stage, etc. The most classic D’Amico

risk categorization method, which integrates the ISUP group and

PSA value at diagnosis, has consistently been endorsed by a

large number of experts across ethnic groupings. According to

the D’Amico risk classification method, patients with PCa can

be grouped into low-, intermediate-, and high-risk groups, with

estimated risks of 5-year BCR of <25%, 25%–50%, and

>50%, respectively.8 The effectiveness of combining radiolog-

ical and clinical parameters to measure the BCR risk was also
ust 20, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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evaluated, and it was shown to increase the predictive accuracy

of the risk stratification method.9 However, because of the

widespread PSA screening of PCa, the distribution of patients

gradually shifted over time from the high-risk groups into the

low- and intermediate-risk groups; the clinical relevance of

this classification scheme may be limited and diminishing at

present.10 In addition, the current stratification methods fail at

explaining the mechanisms of PCa progression and do not pro-

vide novel therapeutic targets for treating PCa.

Extensive genomic, epigenomic, and transcriptomic investi-

gations have proposed novel classifications for PCa based on

specific genomic abnormalities, such as specific genemutations

(SPOP, FOXA1, IDH1, etc.) and fusions (ERG, ETV1/4, FLI1,

etc.).11–13 However, proteins are the major executors of cellular

processes, and alterations in genetic and transcriptional profiles

are not always consistent with alterations in protein profiles or

activities. Therefore, a protein-based risk prediction and classifi-

cation strategy might provide better insights into the patholog-

ical processes, therapeutic instruction, and prognosis prediction

for cancer research.14 While thousands of PCa genomes and

transcriptomes have been profiled to date,15 the published pro-

teomic profiles of PCa were limited to small numbers of PCa

samples. A proteogenomic study analyzed 39 PCa samples

and identified a nine-gene sub-network that positively correlated

with more aggressive tumor phenotypes and predicted recur-

rence-free survival.16 Sinha et al. showed that the proteomic-

based prognostic biomarkers identified in a cohort of 76 patients

with PCa were superior to the genomic and transcriptomic-

based ones.17 The crucial involvement of the tricarboxylic acid

(TCA) cycle in PCa progression was evidenced by proteomics

rather than transcriptomics through a multi-omics study of 28

patients with PCa.18 A proteomic study of 28 patients with PCa

found that pro-NPYmight be a potential prognostic biomarker.19

A phosphoproteomic profiling, together with genomic and tran-

scriptomic analysis, revealed clinically relevant pathway infor-

mation potentially suitable for patient stratification and targeted

therapies in late-stage PCa using 27 samples.20 A large-scale

proteomic study of 278 Western patients with PCa derived a

risk classification strategy for intermediate PCa risk.21 However,

PCa is highly heterogeneous, and there are known differences in

genetic alterations in PCa among different ethnic popula-

tions.12,22,23 Most proteomic-based studies were conducted

on relatively small cohorts from different Western countries.

Our knowledge of the molecular mechanisms behind PCa pro-

gression and BCR is still insufficient, especially in the Chinese
Figure 1. Overview of the PCSHA cohort analysis
(A) The graphic illustrates the workflow encompassing tissue sample punching, s

analysis. GS1 denoted a more aggressive tumor region, whereas GS2 represent

(B) Heatmap displaying the relative protein expression levels of 10,071 proteins fr

tissue. BE, preoperative endocrine therapy, PE, postoperative endocrine therapy

guidance.

(C) Boxplots representing the intra- and inter-individual correlation comparisons b

value, and the box represents the interquartile range.

(D) Volcano plot showing 1,784 differentially expressed proteins between tum

change > 1.5).

(E) Pathways enriched (p value < 0.05) by these differentially expressed proteins i

downregulated proteins and by 2,009 upregulated proteins in the tumor samples

See also Table 1, Figure S1, and Tables S1–S3.
population. Therefore, a comprehensive proteomic analysis of

a large cohort of patients with PCa is urgent: it could provide a

far more accurate classification of patients with PCa and new in-

sights in its molecular mechanisms.

Data-independent acquisition mass spectrometry (DIA-MS)-

based proteomics analysis provides a wide range of applications

to explore novel biomarkers and therapeutic targets in various

medical fields due to its high throughput and accurate quantifi-

cation advantages.21,24–29 In particular, parallel accumulation-

serial fragmentation combined with data-independent acquisi-

tion technology is a state-of-the-art proteomics technology

that achieves higher depth of proteome identification through

reducing noise interference and increasing signal sensitivity.30

Here, we used DIA-MS technology to characterize the prote-

ome landscape of PCa using 918 samples from 306 Chinese pa-

tients with PCa who underwent radical prostatectomy surgery

(PCSHA). We measured over 10,000 proteins, mapped the pro-

teomic characteristics associated with different ISUP groups,

and identified three PCa subtypes with significant clinical and

molecular differences. Notably, we identified a panel of 16 pro-

teins that efficiently predict BCR, which outperforms the strate-

gies currently used in clinical practice. Thismodel was effectively

validated in six external datasets. Furthermore, it was validated

in an independent Chinese cohort comprising 99 biopsy samples

quantified by a targeted proteomic technology. Among these 16

proteins, we highlighted NUDT5 and SEPTIN8 as promising

candidates for synthetic targets in PCa treatment. Our compre-

hensive proteomic dataset fills the gap in the field of Chinese

PCa proteomic studies by revealing newmolecular mechanisms,

prognostic prediction methods, and potential therapeutic

strategies for PCa.

RESULTS

Generation of a comprehensive proteomic landscape of
PCa
To characterize the proteome of Chinese patients with PCa, we

collected the surgical formalin-fixed paraffin-embedded (FFPE)

blocks of 306 patients with PCa who underwent radical prosta-

tectomy for localized PCa (henceforth named PCSHA cohort).

The basic information of our study cohort, including age,

PSA level at diagnosis, Gleason score, and pathological stage,

is shown in Tables S1 and S7. Three punches were taken from

each FFPE block: two from the primary and secondary Gleason

score grading areas and one from the adjacent non-cancerous
ample information annotation, batch design, and subsequent proteomic data

ed a less malignant region.

om 918 prostate tissue samples (N = 918). The gray bricks represented benign

; PR, postoperative radiotherapy. The patients were graded following the ISUP

ased on proteomic data. In the boxplot, the middle bar represents the average

or and benign samples (Welch’s t test, B-H adjusted p value < 0.05, fold

n Figure 1D using Metascape. Blue and orange pathways were enriched by 61

, respectively.
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area (Figure 1A; Figure S1A), for a total of 918 FFPE punches.

Each punch location was selected based on the hematoxylin

and eosin staining of the FFPE block, which was evaluated by

at least two pathologists (Figure S1B; Table S1). The diameter

for each punched tissue is 1 mm, ensuring that the percentage

of tumor cells is over 90% in the sample for proteomic analysis.

Utilizing the data-independent acquisition (DIA) technology,

we identified 116,631 peptides belonging to 10,071 proteins,

with a false discovery rate of 1% (Table S2A). Over 6,500

detected proteinswere found in over 50%of the samples. In gen-

eral, more proteins were identified in tumor samples than in adja-

cent non-cancerous samples (Figure S1C), 10,023 proteins were

identified in all tumor samples and 285 specific proteins in tumor

samples, and 9,768 proteins in all benign samples and only 30

specific proteins in benign samples. Our proteomic data were

highly reproducible, as the median Pearson correlation of the

quality control samples was 0.92 (Figures S1D and S1E). No

batch effect (different batches or mass spectrometry machines)

was observed in the quality control samples or in all samples.

These quality control analyses demonstrate that the proteomics

data are of high quality. The proteomics profile of tumor samples

is clearly different from normal samples (Figures 1B and S1F).

However, the distinction between different ISUP grades (Fig-

ure S1G), pathology stages (Figure S1H), and BCR prognosis

(Figure S1I) was less significant. The expression of KLK3

(also known as PSA), an abundant protein expressed in prostate

tissues, was detected in our study as expected; however, the

protein expression of KLK3 in prostate tissue did not exhibit

any correlation with the serum PSA level (Figure S1J).

It is widely recognized that PCa is highly heterogeneous, as

evidenced by the various Gleason scores and genomic alter-

ations among various regions of PCa within a single patient.22,31

But when we evaluated the differences in proteome profiles

between two Gleason score regions within the same patient

(intra-patient) or the same Gleason score among different pa-

tients (inter-patient), we discovered that inter-patient heteroge-

neity significantly dominates intra-patient heterogeneity in PCa

(Figure 1C). Furthermore, when we treated the two tumor

samples from the same patient separately, in combination or

by taking the mean of them, and then compared differentially ex-

pressed proteins (DEPs) between the tumor samples and the

benign samples (Figure S1K), we discovered that by taking the

mean of the two tumor samples, we identified the most common

DEPs and the least unique DEPs. Therefore, for the subsequent

study, we employed the averaged intra-patient protein expres-

sion data for latter analysis. We first evaluated the differential

expressed proteins between tumor and benign samples and

identified 1,784 DEPs (Figure 1D; Table S3A), including proteins

such as AMACR that have been shown to be associated with
Figure 2. Dysregulated proteins across different ISUP grades

(A) 12 different clusters identified by mFuzz clustering across different ISUP grad

(B) Normalized protein expression across five ISUP grades in clusters 1, 2, 3, an

(C) Normalized average protein expression of all the proteins in each cluster acro

(D) Pathway enrichment from all the proteins in each cluster across five ISUP g

operative endocrine therapy; PR, postoperative radiotherapy.

(E and F) Networks based on the enriched pathways obtained using the most sig

Orange points (E) show the proteins from cluster 1 and the blue ones (F) show th
PCa.We then analyzed these DEPs usingMetascape.32 The pro-

teins upregulated in tumor samples were enriched in various

metabolism pathways, such as mitochondrial translation initia-

tion, organic acid catabolic process, amino acid metabolic pro-

cess, ribosome biogenesis, fatty acid metabolism, and RNA

metabolism, whereas downregulated proteins in the tumor sam-

ples were enriched in actin-associated pathways, prostaglandin

synthesis and regulation, and long-chain fatty acid transport

pathways (Table S3; Figure 1E). These findings are consistent

with previous studies.17–19,33

Activated cell cycle and inhibited cell adhesion in high-
grade PCa
In general, patients with a higher Gleason score at diagnosis

have a more aggressive disease course than those with a lower

Gleason score.34,35 To explore the underlying mechanisms of

PCa progression, we analyzed those differently expressed pro-

teins within tumor samples across different ISUP groups. We

discovered that dysregulated proteins could be categorized

into 12 distinct clusters spanning five ISUP grades using mFuzz

analysis (Figure 2A; Table S2C). Dysregulated proteins from

clusters 1 (n = 679) and 2 (n = 644) were enriched in DNA damage

repair pathways and cell cycle, and the expression of these pro-

teins consistently increased with the increase in ISUP grades

(Figures 2B–2D). Furthermore, the most significantly changed

proteins (ANOVA p < 0.01) in cluster 1 were associated with

RNAmetabolism and the cell population proliferation (Figure 2E).

In contrast, the expression of the dysregulated proteins from

clusters 3 (n = 1,008) and 4 (n = 1,330) was continuously down-

regulated with the increase in ISUP grade. And these proteins

were associated with cell adhesion and cytoskeleton-related

pathways (Figure 2D), indicating that a higher PCa grade had a

greater capacity for migration. The most significantly changed

proteins (ANOVA p < 0.01) in cluster 3 were abundant in

numerous metabolic pathways and the immunological route

neutrophil degranulation (Figure 2F). Therefore, the progression

of PCa may be influenced by metabolism and the microenviron-

ment. Specifically, higher cell cycle activity and lower cell

adhesion point to tumor cells that are more stem-like, less differ-

entiated, and more malignant.

Molecular subtyping of PCa based on proteomic profiles
To understand the proteomic patterns of primary PCa, we then

performed an unsupervised clustering of DEPs, non-negative

matrix factorization (NMF) analysis (Figure S2), and identified

three patient subgroups: CPC1, CPC2, and CPC3 (Figure 3A).

We then examined how clinical parameters varied in these

patient subgroups (Figures 3A–3C). We discovered that the

distribution of clinical variables, such as age, ISUP grade,
es in the tumor samples.

d 4.

ss five ISUP grades.

rades (p < 0.05, Metascape). BE, preoperative endocrine therapy; PE, post-

nificantly dysregulated proteins from each cluster (one-way ANOVA p < 0.01).

e proteins from cluster 4.
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pathological stage, and treatment, was similar in all subgroups

(Figure 3C); however, the BCR-free survival varied significantly

(Figure 3B), suggesting that specific components of the pro-

teomes of the three subgroupsmay predict theBCR-free survival

of patientswithPCa.We thus lookedatwhichbiological functions

were enriched in each subgroup. CPC1 and CPC2 show similar

proteomic characteristics, which are featured by activation of

metabolism-related pathways, including amino acid, sugar, and

fatty acid metabolism, and downregulation in the cell cycle, im-

mune-related signaling pathways, and genetic information pro-

cessing pathways (Figure 3A).Of note, CPC3,which included pa-

tients with the poorest prognosis (Figure 3B), was characterized

by the downregulation of metabolism-related processes and

cellular processes involved in cell-cell interaction and by the up-

regulation in genetic information processing and immune cell re-

ceptor signaling pathways (Figure 3A). Comparing with mFuzz

clustering, we identified similar pathways, such as DNA damage

repair pathways and cell cycle, and the expression of these pro-

teins consistently increased with the increase in ISUP grades in

clusters 1 and2 (Figures 2B–2D). In contrast, immune-associated

pathways were decreased in clusters 3 and 4 (Figures 2B–2D).

To identify newpotential therapeutic targets for PCa treatment,

we intersected our 1,784 DEPs with a database of 744 proteins

that can be targeted in the Human Protein Atlas portal (www.

proteinatlas.org). We found that 19 proteins of our 1,784 DEPs

can potentially be drug targets for PCa (see STAR Methods).

Indeed, the expression of these 19 molecules was significantly

different in the three subgroups (Figure 3D). However, all these

19 proteins were downregulated in the CPC3 patient subgroup,

which had the poorest prognosis, indicating that these proteins

may not directly be suitable targets for PCa treatment. As previ-

ous studies suggested, the lack of known effective therapeutic

targets for PCa treatment requires a different study approach.12

Identification and validation of a panel of 16 protein
biomarkers for prognostic prediction
ISUP grading is associated with BCR disease-free survival in the

PCSHA cohort (Figure S3A). To define a protein-based signature

for predicting the prognosis of patients with PCa, we screened

for proteins most significantly associated with the prognosis af-

ter excluding the proteins with missing values > 50% (Figure 4A).

In our data, BCRmostly occurred within 1,000 days after surgery

(Figure S3B), which is probably due to the fact that most patients

with PCa were in the middle-to-late stages when diagnosed;

therefore, we focused on BCR follow-up of 1–3 years in our

study. A prognostic prediction model based on 16 proteins

was built using Lasso regression on the PCSHA dataset to pre-

dict BCR in patients with PCa (Figure 4A; Table S4A, for details

of the modeling see STAR Methods). The C-index for the
Figure 3. Proteomic pathway-based stratification of the patients with

(A) The heatmap shows the normalized enrichment scores of the three patient su

The associations of proteomic subtypes with clinical characteristics (pathologica

(B) Kaplan-Meier curves of the BCR-free survival of each patient subtype from o

(C) Distribution of the clinical indexes in the three patient subtypes.

(D) Relative expression of the dysregulated druggable proteins in the three pa

*** < 0.001; **** < 0.0001. BE, preoperative endocrine therapy; PE, postoperative

See also Figure S2.
16-protein panel was determined to be 0.71, obtained through

1,000 bootstrapping iterations. The expression of the 16 proteins

is shown in Figure 4B and Figure S4.

Based on the expression of these 16 proteins, we clustered

patients with PCa into high- and low-risk groups (Figure 4B). Pa-

tients in the high-risk group were significantly associated with

poor BCR-free survival, while those in the low-risk group were

associated with better BCR-free survival (log rank p < 0.0001)

(Figures 4C, S3C, and S3D). The area under the curve values

(AUCs) based on the PCSHA discovery set for BCR prediction

until 1, 2, and 3 years was 0.850, 0.856, and 0.899, respectively.

Similar results were observed in the PCSHA validation cohort

(Figures 4C and 4D). These results show that the prediction

model based on the 16-protein panel performs well in predicting

BCR-free survival in patients with PCa.

We further tested the prognostic prediction power of our

16-protein panel using other six public datasets. We first chose

three transcriptomic datasets from The Cancer Genome Atlas

(TCGA) (https://xenabrowser.net/) (432 Western patients with

PCa), Memorial Sloan Kettering Cancer Center (MSKCC)36 (140

patients with PCa), and the Chinese Prostate Cancer Genome

and Epigenome Atlas (CPGEA) (136 Chinese patients with

PCa)12 (Table S7). In these three validation sets, the 16-protein

panel was significantly correlated with the BCR-free survival (log

rank p < 0.0001) (Figures 4D–4F). A similar prediction power

(AUC values) was observed when predicting the prognosis of pa-

tients with PCa 1, 2, and 3 years after surgery (Figure 4; next, we

validated the prognostic prediction performance of our model for

PCa at different clinical stages using TCGA). Then, we tested the

prediction power of our protein panel using three other published

proteomic datasets (from Sinha et al.,17 Zhong et al.,21 and

Charmpi et al.16) (TableS7).Onceagain,we foundasignificant as-

sociationof our 16-proteinpanelwithprognosis (log rankp<0.05,

Figures S3E–S3H). However, the AUCs were less than 0.7 in

Charmpi et al.’s and the Sinha et al.’s datasets due to fewer pro-

teins in the 16-protein panel detected in thesedatasets (12unique

proteins in Charmpi et al.’s dataset, seven unique proteins in Si-

nha et al.’s dataset, and 12 unique proteins in Zhong et al.’s data-

set) (Figure S3H). Notably, our 16-protein panel did not perform

well in Charmpi et al.’s dataset probably due to the small number

of patients in these data (N = 2 in the low-risk group in Charmpi

et al.’s dataset). In summary, the 16-protein panel demonstrated

an excellent prediction power in predicting the prognosis of PCa.

The 16-protein prognosis prediction panel performed
well across different ISUP grade and pathological
stages
With the widespread of PSA screening both in western countries

and in China, the spectrum of PCa at initial diagnosis gradually
PCa associated with their prognosis

btypes (CPC1, N = 126; CPC2, N = 57; and CPC3, N = 43) using NMF analysis.

l stages, PSA, biochemical recurrence [BCR], and ISUP grade) are annotated.

ur cohort (log rank p = 0.0012).

tient subtypes. One-way ANOVA, B-H adjusted p value: * < 0.05; ** < 0.01;

endocrine therapy; PR, postoperative radiotherapy.
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shifted frommiddle-to-late stages to early stage. As a result, risk

classification based on clinical parameters such as pathological

stages and ISUP grade may have limited values.10 Then, we as-

sessed the effectiveness of this 16-protein prediction model in

predicting PCa prognosis at various clinical stages. We found

that this 16-protein panel performed well in predicting BCR-

free survival across different ISUP grades and different patholog-

ical stages in both the PCSHA discovery set (Figures S5A and

S5B) and the PCSHA validation dataset (Figure 4G).

Next, we validated the prognostic prediction performance of

our model for PCa at different clinical stages using TCGA

(https://xenabrowser.net/) and MSKCC36 datasets, which have

more than ten patients with PCa with BCR in each clinical sub-

group. Our 16-protein panel showed a significant association

with BCR (log rank p < 0.05) and excellent BCR-free survival pre-

diction power (AUCs >0.6) across different ISUP grades and

different pathological stages in these two external datasets

(Figures 4H–4I, S5D, and S5E). The 16-protein panel failed to

predict prognosis only in one subgroup due to the small number

of BCR occurrence (N = 5 in the T1-2 pathological subgroup of

TCGA dataset (Figure S5D). Collectively, these results indicate

that our 16-protein panel can effectively predict the BCR-free

survival of patients at different levels of PCa aggressiveness,

providing useful information for clinical decision-making and

personalized treatment strategies after surgery.

The 16-protein prognosis prediction panel outperforms
the prediction based on clinical parameters
We next compared the prognosis prediction performance of our

16-protein panel with commonly used predictionmethods based

on clinical parameters. We focused on the following clinical pa-

rameters: the PSA level at diagnosis (pre-PSA), the pathological

staging, and the ISUP grade. Using amultivariate Cox regression

analysis, these clinical parameters had a significantly high unfa-

vorable risk score for BCR-free survival, indicating that PSA level

at diagnosis, pathological staging, and ISUP grade are signifi-

cantly associated with BCR (Figure 5A), in agreement with pub-

lished results.8 Therefore, these three clinical parameters were

further used in the comparison for prognostic prediction perfor-

mance with the 16-protein panel. The hazard ratios (HRs) of pre-

PSA, ISUP grade, and pathological T stage were between 1.07

and 2.07, while the HR of the 16-protein panel is 3.79, which is

the highest (Figure 5A, labeled in red). We also found that the

16-protein panel exhibited a significant association with ISUP

grade after being adjusted by multiple covariates (Table S4B).

The AUCs of BCR-free prognosis prediction within three years
Figure 4. Identification and validation of a panel of 16 proteins for BCR

(A) Workflow for the development and validation of the 16-protein panel.

(B) Heatmap showing the relative abundance of 16 proteins in two different risk gr

tested by Fisher’s exact test. The differential expression of each protein between t

* < 0.05; ** < 0.01; *** < 0.001; **** < 0.0001.

(C–F) Kaplan-Meier plot for BCR-free survival (left panel) and ROC curves (right pa

(D), theMSKCC dataset (E), and the CPGEA dataset (F) for BCR-free survival base

2-year predictive power (blue), and a 3-year predictive power (red).

(G–I) Kaplan-Meier plots and ROC curves of BCR-free survival based on the 16-pr

(G), TCGA dataset (H), and the MSKCC dataset (I).

See also Figures S3 and S4 and Table S4.
using the 16-protein panel were significantly higher than using

clinical parameters (Figures 5B and S5F), indicating that the

16-protein panel has a superior performance in prediction prog-

nosis than the commonly employed methods based on clinical

parameters. The decision curve analysis also supported that

the 16-protein panel outperformed the clinical parameter-based

methods (Figure S5G).

Notably, Sankey plots showed that the risk classification

based on our 16-protein panel overlaps with the observed

BCR better than the risk classifications based on the ISUP grade

in the PCSHA dataset (Figures 5C and S5H), TCGA dataset (Fig-

ure 5D), and the MSKCC dataset (Figure 5E), further demon-

strating that the 16-protein panel outperforms the ISUP grade

in predicting BCR-free survival.

The16-protein prognosis prediction panelwas validated
in independent biopsy samples
In order to further validate the effectiveness and assess the clin-

ical translation probability of the 16-protein panel in predicting

BCR-free survival, a total of 99 FFPE biopsy samples were

collected from 99 patients with PCa as an independent validation

cohort, named as PCSHA-biopsy cohort (Tables S5–S7). Upon

examining the correlation between clinical characteristics and

BCR-free survival, we discovered that there was no significant

association between the prognosis of PCa and the D’Amico

classification or pathological stages of this particular group

(Figures 6A and 6B). Subsequently, the 16-protein panel’s prog-

nostic prediction efficiency was assessed by measuring their

expression level using parallel reaction monitoring (PRM)-tar-

geted proteomics. The Pearson correlation of the quality control

samples was greater than 0.99 (Figure S6A), indicating that the

proteomic data are highly repeatable. Significant differences in

the expression of 16 proteins from the 16-protein panel between

high-risk and low-risk groups were observed (Figures 6C and

S6B). This outcome is in line with the findings observed from

the discovery cohort’s surgical samples, which are analyzed by

DIA (Figure 4B).

In this PCSHA-biopsy cohort, the AUC of the 16-protein panel

for BCR prediction was 0.88 (Figures 6D and S6C), demon-

strating superior performance of D’Amico, pre-PSA levels at

diagnosis, the pathological staging, and the ISUP grade of

both biopsy and surgical samples. Based on the expression of

these 16 proteins, we were able to cluster patients with PCa

into high- and low-risk groups. The risk groups are significantly

linked to BCR-free survival (Figure 6E). These outcomes are in

agreement with the findings from the DIA proteomics-analyzed
prediction

oups. The associations of the two risk groups with clinical characteristics were

he high- and low-risk groupswas tested byWelch’s t test, B-H adjusted p value:

nel) of the 16-protein model in the PCSHA validation dataset (C), TCGA dataset

d on our 16-protein prediction model, with a 1-year predictive power (yellow), a

otein prediction model in different ISUP grades using the PCSHA validation set
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Figure 5. Comparing the predictive performance of the 16-protein model and clinicopathological characteristics

(A) Forest plot showing the BCR-free prognostic score for each clinical parameter in a multivariate Cox regression analysis. Themiddle points indicate the hazard

ratios. The endpoints represent the lower or upper 95% confidence intervals. BE, preoperative endocrine therapy; PE, postoperative endocrine therapy; PR,

postoperative radiotherapy.

(B) ROC curves of the 16-protein panel and clinicopathological characteristics (PSA level, Gleason score, pathology stage, and D’Amico) at 1 (upper panel), 2

(middle panel), and 3 (lower panel) years in the PCSHA validation dataset.

(C–E) Sankey plots showing the patients with PCa overlapping among the 16-protein panel prediction system, the recurrence status, and the ISUP grade using

the PCSHA validation dataset (C), TCGA dataset (D), and the MSKCC dataset (E).

See also Figure S5 and Table S4.
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discovery dataset, which further confirmed the effectiveness of

this 16-protein panel in predicting BCR for patients with PCa.

More importantly, the 16-protein panel was effectively verified

in biopsy specimens, indicating that it is more practically appli-

cable to evaluate the risk of BCR prior to radical prostatectomy,

which could offer enhanced direction for prompt and vigorous in-

terventions for patients with high-risk PCa.

NUDT5 and SEPTIN8 as the potential synthetic targets
Among the 16 proteins, half of them have a higher expression in

tumor tissues than in adjacent non-tumor tissues (Figure S4).

Five proteins, namely transcription and mRNA export factor

ENY2 (ENY2), ADP-sugar pyrophosphatase (NUDT5), Septin-8

(SEPTIN8), latent transforming growth factor b (TGF-b)-binding

protein 2 (LTBP2), and Cullin-5, were found to be positively asso-

ciated with poor prognosis in patients with PCa (Table S4). The

first three proteins were also found to be highly expressed in

the high-risk group, the high Gleason score group (GS 8–10),

and/or the advanced pathological stage (T3/T4) (Figure S4).

ENY2 can regulate transcription widely and affect cell growth,37

which might not be suitable for therapeutic target. LTBP2 is a

TGF-b-binding protein. The TGF-b signaling pathway can induce

androgen receptor activation; therefore, LTBP2 could be one of

the potential therapeutic targets for PCa.38 However, we found

no significant correlation between the alteration of LTBP2 and

the overall survival in TCGA database. NUDT5 is involved in

the nucleic acid metabolism pathway and has been explored

as a hormone-dependent protein regulating proliferation that

promotes breast cancer cell growth. The inhibition of NUDT5

has been shown to effectively suppress the growth of breast

cancer cells.39 SEPTIN8 is a cytoskeleton-related protein asso-

ciated with intercellular communication, platelet secretion, and

vesicle transport.40

Immunohistochemical staining was performed to explore the

expression levels of NUDT5 and SEPTIN8 in 69 patients with

PCa. The results showed that the expression of both NUDT5

and SEPTIN8 was significantly higher in the high-risk group

compared to the low-risk group (Figures 7A and 7B; S7A),

which was consistent with the findings shown in Figure 4B.

We also examined the expression of NUDT5 and SEPTIN8 in

several PCa cell lines by western blotting (Figure S7B). Interest-

ingly, we observed a higher expression of NUDT5 in DU 145

and C4-2 cell lines compared to LnCaP, while there was no sig-

nificant difference in the expression of SEPTIN8 among PCa

cell lines. To further investigate the functional roles of NUDT5

and SEPTIN8 in PCa, we performed knockdown experiments

targeting these genes in PC-3 cells (Figures 7C, S7C, and

S7D). Interestingly, we found that knockdown of NUDT5 or

SEPTIN8 alone did not significantly affect the proliferation

(Figures 7E–7H), migration (Figures 7I–7K and S7E), or cell
Figure 6. Validation of the 16-protein panel for BCR prediction in pros

(A and B) Kaplan-Meier plots for BCR-free survival based on D’Amico (A) and pa

(C) The peak groups of the unique peptides and the protein abundance between

(D) ROC curves (right panel) of the 16-protein model and clinicopathological ch

pathological stage, and D’Amico) in the PCSHA-biopsy test set.

(E) Kaplan-Meier plots of BCR-free survival based on the 16-protein prediction m

See also Figure S6 and Tables S5 and S6.
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cycle (Figure S7F) of PC-3 cells. However, simultaneous

knockdown of both NUDT5 and SEPTIN8 in PC-3 cells (Fig-

ure 7D) resulted in a significant inhibition of cell proliferation

(Figures 7F–7H), migration (Figures 7I and 7J), and invasion

(Figures 7L and 7M). These findings suggest a potential syner-

gistic effect of NUDT5 and SEPTIN8 in promoting the malignant

characteristics of PCa cells.

DISCUSSION

The comprehensive proteomic resource of the Chinese
patients with PCa
In this study, using DIA-MS technology, we generated a highly

valuable and comprehensive in-depth proteomic landscape of

PCa. In total, 10,045 proteins were identified in 918 FFPE pros-

tate tissues from 306 Chinese patients with PCa. With the use

of AI technology, the highly reproducible proteomics data pro-

duced by DIA-based proteomics techniques may be investi-

gated further to identify more proteins and learn additional

important insights. Patients with PCa included in previous

mass spectrometry-based proteome investigations are from

western country.16–19,21 Therefore, to the best of our knowledge,

this proteomic dataset—which includes the most patients with

PCa and the most proteins that have been identified thus far—

is the largest and most comprehensive one, thus serving as a

valuable proteomic resource to the PCa field.

To account for the intra-tumor heterogeneity, we collected at

least two tumor samples from each patient. However, we

observed that intra-tumor heterogeneity was much less than in-

ter-tumor one, highlighting the importance of enrolling a large

number of patients to fully understand the underlying mecha-

nisms of PCa.

Unlike other large-scale research on PCa proteins, our cohort

is distinctive in that it includes a large number of Chinese patients

with PCa. Except for the common dysregulation pathways, such

as increased oxidative phosphorylation capacity, dysregulation

of the TCA cycle, and mitochondrial dysfunction in tumor sam-

ples,12,18,19 we confirmed the different mutation convergence

into the common pathway.12,16 Our investigation also discov-

ered several distinct pathways enriched in tumors, including

RNAmetabolism, ribosome synthesis, mitochondrial translation,

and metabolic digestion of amino acids.

The molecular taxonomy of patients with PCa
Given the extensive heterogeneity of PCa, molecular subtyping

could help explore the divergent disease mechanisms and pre-

dict variable clinical outcomes and treatments. Genomics has

been used to identify molecular subtypes of patients with PCa

based on specific gene mutations.11 Building on this classical

mutation-based genotype, more classifications have been
tate cancer patients using biopsy samples

thological stage (B) in the PCSHA-biopsy dataset (N = 99).

high- and low-risk patients.

aracteristics (PSA level, ISUP grade based on biopsy and surgical samples,

odel in the PCSHA-biopsy set.
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proposed by incorporating transcriptomic data, clinical parame-

ters, and other factors.41–43

We proposed a new subtyping of patients with PCa (CPC1,

CPC2, and CPC3) based on the proteome of our cohort and

showed that it agrees with the observed BCR prognosis of the

patients. CPC3 had the poorest prognosis and was character-

ized by the downregulation of metabolism-related processes

and cellular processes involved in cell-cell interaction and the

upregulation of genetic information processing and immune

cell receptor signaling pathways. Some of these signaling path-

ways were observed in previous studies.44–46 In the amino acid

metabolism pathways, arginine, glycine, serine, and fatty acid

metabolism have been reported to play important roles in PCa

progression.47 FOXA1 mutation has been found in Chinese pa-

tients with PCa,12 which is a pioneer factor to regulate DNA bind-

ing by distinct transcription factors and RNA splicing.48 Thus, the

genetic information processing might be more venerable in our

PCSHA cohort, which hints novel insights for PCa treatment

guidance and prognostic prediction.

In our work, the molecular clusters are linked to the prognosis

of PCa (Figure 2B), which could inform clinicians the molecular

features for PCa with low or high BCR risk, and provide guidance

to clinicians to develop personalized treatment plan for PCa with

different molecular features.

A 16-protein panel for BCR prediction
We developed a 16-protein panel capable of predicting BCR of

patients with PCa. The model demonstrated superior BCR pre-

diction performance over other commonly employed prediction

system based on the PSA level, ISUP grade, pathology stage,

or D’Amico risk classification (Figures 6 and 7). Importantly, the

16-protein model can effectively predict BCR across different

ISUP grades and pathological stages, suggesting its potential

application for predicting BCR even in the early stages of PCa.

PCSHA validation dataset, as well as other six published PCa

datasets, including three transcriptomic datasets and three

proteomic datasets were used to assess the efficacy and gener-

alizability of the 16-protein model in BCR prediction. Similar to its

BCR prediction power in the PCSHA discovery dataset, the

16-protein model effectively predicted BCR for patients with

PCa both in the PCSHA validation dataset and in the three tran-

scriptomic datasets (Figures 3C–3F). However, the prognosis

prediction capacity of the 16-protein panel was less effective

in the three proteomic dataset (with AUCs less than 0.7)

(Figures S4D–S4F), which could potentially be attributed to the

lower detection depth and higher missing rate observed in the
Figure 7. Validation of potential synthetic targets

(A and B) Immunohistochemical (IHC) staining showing the protein expression of S

patients (A), and the statistics for the IHC intensity score of 69 patients with PCa

(C and D) Western blot showing the efficacy of the single (C) or double (D) knock

(E and F) Cell proliferation assay of the single (E) or double (F) knockout ofSEPTIN8

(G and H) Cell proliferation assay of SEPTIN8-knockout (KO), NUDT5 KO, and d

statistics for the percentage of EdU-positive cells were shown in (H).

(I and J) Wound healing assay of dKO in PC-3 cell line, and the statistics were sh

(K) Bar chart shows the statistics of the wound healing assay for NUDT5 or SEP

(L andM) Invasion assay of SEPTIN8/NUDT5-dKO in PC-3 cell line using transwell

Data are represented as mean ± SD. The p values are calculated by Welch’s t te

See also Figure S7.
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published proteomic datasets, aswell as the smaller cohort sizes

compared to our cohort. It is important to emphasize that robust

evaluation and validation necessitate an adequate number of

samples.

Zhong et al. developed an 18-protein panel (HR = 2.72) for

prognosis prediction using proteomic data.49 The HR is lower

than ours (HR = 3.79). However, when their 18-protein model

was applied to the PCSHA dataset for BCR prediction, its AUC

was found to be 0.768, lower than that of our 16-protein panel.

Given the significant variability in epidemiology and genetic

background of PCa among different ethnic groups,12,50,51 the ef-

ficacy of the 18-protein BCR prediction panel for Chinese pa-

tients with PCamay be limited. Consequently, these two cohorts

from different ethnicities complement each other, expanding the

protein landscape of PCa and providing valuable resources for

researchers to better understand PCa.

Additionally, we used PRM-targeted proteomics to confirm

the efficacy of this 16-protein panel in BCR prediction in an inde-

pendent biopsy cohort of 99 patients with PCa. The BCR predic-

tion efficacy of the 16-protein model in biopsy samples was

similar to that in radical surgery samples (Figure 6), demon-

strating the robustness and effectiveness of this 16-protein panel

in predicting BCR for patients with PCa at various stages.

Furthermore, based on these findings, it may be possible to

employ this 16-protein panel to assess the prognosis of PCa

prior to radical prostatectomy. This would not only give patients

with PCa more information to help them make decisions about

their subsequent treatment plan, but it would also give clinicians

better guidance on how to treat patients with high-risk PCa

promptly and aggressively.

Notably, in both the radical surgical and biopsy samples, the

predictive efficacy of this 16-protein panel for BCR far outper-

forms that of the most widely used D’Amico prediction method,

suggesting that the 16-protein could potentially replace D’Amico

for BCR prediction in the clinic. Nevertheless, this model still

needs to be validated in larger clinical cohorts before it can be

further translated into the clinic.

Although high-resolution mass spectrometry is currently not

directly applicable to routine clinical testing, targeted mass

spectrometry could be transferred into clinical testing in the

near future.52 Meanwhile, measuring the expression of these

16-proteins by immunohistochemistry could be implemented

in clinic. Hence, our 16-protein prediction panel, which is sim-

ple to implement, highly operational, and accessible, can be

used to predict the prognosis of PCa in the clinical setting. It

can be used to improve diagnostic effectiveness as well as in
EPTIN8 and NUDT5 in benign and tumor samples of low-risk and high-risk PCa

were shown in (B).

down of SEPTIN8 or NUDT5 in PC-3 cells.

orNUDT5 knockdown PC-3 cells using a ZenCell Owl live-cell imaging system.

ouble KO (dKO) (SEPTIN8/NUDT5-dKO) using EdU staining method, and the

own in (J).

TIN8 single knockout cells.

, and the statistics were shown in (M). Experiments were repeated in triplicates.

st, p value: * < 0.05, *** < 0.001.
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the decision-making process to find therapeutic targets and

options.
Potential therapy targets of PCa
Our finding that many druggable proteins are downregulated

in patients with poor prognosis not only explains to some

extent the limited availability of targeted drugs for PCa but also

suggests new ideas for novel drug mechanisms of action. In

this study, we identified four upregulated proteins within the

16-protein panel and found that two proteins, NUDT5 and

SEPTIN8, may serve as novel targets for synthetic lethality,

which provides a new strategy for targeted therapy for PCa.
Limitations of the study
RNA sequencing data have been used to validate the 16-protein

panel’s predictive power in Western cultures for the most

part; validation based on proteomics data will shed more light

on the panel’s predictive power in other ethnic populations.

Although the effectiveness of this 16-protein panel in predicting

BCR has been confirmed in a sizable cohort, more clinical cohort

validation is still required before thismodel can be further applied

in the clinic. We also acknowledge that the functional signifi-

cance of these 16 proteins in the initiation and advancement of

PCa has not been fully confirmed by this investigation.
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CRISPR-SEPTIN8-gRNA1 This paper 50- TGAGGAAGCCAGTCACCATG -30

CRISPR-NUDT5-gRNA1 This paper 50- GAAACAGTTCCGACCACCAA -30

CRISPR-SEPTIN8-gRNA2 This paper 50- ACTGGCTTCCTCAGTCTCGA -30

CRISPR-NUDT5-gRNA2 This paper 50- TCACTATGAGTGTATCGTTC -30

CRISPR-Scramble-gRNA This paper 50- ACGGAGGCTAAGCGTCGCAA -30

Recombinant DNA

Lenti-CRISPR-V2 Vector Addgene Addgene Plasmid # 52961

Software and algorithms

Xcalibur Thermo Fisher Scientific OPTON-30965

DIA-NN version 1.8.0-linux Demichev et al.53 https://github.com/vdemichev/DiaNN

R version 4.0.2 R Project https://www.r-project.org

Metascape Zhou et al., 201932 https://metascape.org/gp/index.html#/

main/step1

Other

SOLAm Thermo Fisher Scientific Cat # 62209-001
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Chenghua

Yang (Chenghua-yang@qq.com).

Materials availability
The study did not generate new unique reagents.

Data and code availability
d All data are available in the manuscript or the supplementary material. The mass spectrometry proteomics raw data have been

deposited to the ProteomeXchange Consortium (https://proteomecentral.proteomexchange.org) via the iProX partner repos-

itory54,55 with the dataset identifier PXD054025.

d The study did not generate new code.

d Any additional information required to reanalyze the data reported in this work paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients and tissue samples
With the ethical approval by the Translational Medicine Ethic Committee, Second Military Medical University (TMEC2014-001), this

study examined the formalin-fixed paraffin-embedded (FFPE) PCa tissue samples from 306 PCa patients (Table S1) who underwent

radical prostatectomy between 2015 and 2020. For each patient, three FFPE punches were obtained: two FFPE punches were from

the tumor locations (tumor cell components are over 90%) with primary (G1) and secondary (G2) Gleason score grades, respectively;

and one punch was from a benign region. Two experienced pathologists examined the tissue blocks from each patient, and regions

with major and minor Gleason scores were marked for sample punching (Figure S1). An expert pathologist punctured the tissue

samples (1 mm in diameter, 0.5–1 mm thick, and roughly 0.6–1.2 mg in weight, including wax) in blocks of FFPE prostate tissues

for proteomics analysis (Figure S1).

For PRM targeted proteomic analysis, 99 FFPE biopsy samples were collected from 99 PCa patients at initial diagnosis before

radical prostatectomy (Table S5). The biopsy for prostate cancer at diagnosis is performed as a combination of systemic biopsy

and targeted biopsy. Each FFPE biopsy sample selected for the targeted proteomics analysis containsmore than 70% tumors, which

is evaluated by experienced pathologist.
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All patients were staged according to the 4th edition of the WHO classification on male and genitourinary tumors from 2016. Inter-

national Society of Urological Pathology (ISUP) system divides PCa into five grades: grade 1 (GS% 6), grade 2 (GS = 7 with a primary

and secondary pattern of 3 + 4), grade 3 (GS = 7 with a primary and secondary pattern of 4 + 3), grade 4 (GS = 8), and grade 5 (GS =

9–10).56

Cell culture
The PCa cell lines, including PC-3, DU 145, C4-2 and LNCaP cell lines, were purchased fromNational Collection of Authenticated Cell

Cultures (https://www.cellbank.org.cn/). PC-3 cells were cultured in F-12K medium with 10% FBS, DU 145 cells in MEM with 10%

FBS, C4-2 cells in DMEM medium with 10%FBS, and LNCaP cells in RPMI medium with 10%FBS. All cell culture media

were completed with 2 mM glutamine, 10 mM HEPES, and penicillin G/streptomycin, and cultures at 37�C, with a humidified 5%

CO2 environment. Short Tandem Repeats (STR) profiling was used to confirm the legitimacy of these prostate cancer cell line.

METHOD DETAILS

Study design and quality control
To minimize batch effects among different batches of samples, 918 samples were randomly distributed into 72 batches, each

comprising 15 prostate samples and one fresh mouse liver sample for pressure cycling technology (PCT) quality control. To control

for individual mouse heterogeneity and liver lobe heterogeneity, we divided the same liver lobe of amouse into 72 parts.We evaluated

the quality of these quality control (QC) samples (Figure S2). During mass spectrometry acquisition, it was necessary to include a

duplicate sample of one randomly selected sample. The mass spectrometry accusation sample was a mixture of randomly

selected prostate tissues from PCSHA, including benign and tumor samples with different Gleason scores. In order to ensure that

the systematic error of the experiment was negligible, we assessed the reproducibility and batch effect of the QC samples and rep-

licates. We found that the inter-patient heterogeneity was significantly higher than intra-individuals one (Figure S2D); thus, we took

the average value of the two tumor samples protein intensity for each patient.

For prostate cancer subtyping analysis and the development of prognosis prediction model, we randomly divided all the patients,

in a ratio of 3:1, into two groups, a discovery set (N = 226) and a validation set (N = 80), so that we can validate the analysis in an

independent patient cohort.

Proteomics analysis
In brief, about 0.5 mg of FFPE PCa samples were processed into clean peptides through dewaxing, rehydration, protein

denaturation assisted with pressure cycling technology (PCT), and digestion with lysC (enzyme to substrate ratio is 1:80)/trypsin

(enzyme to substrate ratio is 1:20) assisted with PCT, as described previously.57 Peptide samples were separated with a nanoElute

system at 300 nL/min flow rate and 217.5 bar. The mobile phase was mixed with buffer A (2% ACN, 0.1% formic acid) and buffer B

(98% ACN, 0.1% formic acid). The buffer B (%) was linearly increased from 5 to 27%, followed by an increase to 40% within 10 min

and a further boost to 80%. Peptides were scanned by a CaptiveSpray nanoelectrospray ion source on a hybrid trapped ion mobility

spectrometer (TIMS) quadrupole time-of-flight mass spectrometer (timsTOF Pro, Bruker Daltonics, Germany). We performed data-

dependent acquisition (DDA) in parallel cumulative continuous fragmentationmodewith 10 PASEF scans per top-N acquisition cycle,

which was used to generate a library of ion mobility-enhanced spectra.30 A total cycle time of 1.17 s was achieved with an accumu-

lation and ramp time of 100 ms each for the dual TIMS analyzer. The ion mobility was scanned from 0.6 to 1.6 V/cm2. The MS1 and

MS2 acquisitions were performed in the m/z range of 100 to 1,700 Th. Precursors reaching a target value of 20,000 arbitrary units

were dynamically excluded for 0.4 min, and singly charged precursors were excluded at positions in the m/z plane of ion mobility.

For DIA acquisition, the data were collected using a data independent collection of parallel cumulative sequential fragmentation.30

Ion mobility was scanned from 0.7 to 1.3 V/cm2. MS1 and MS2 acquisitions were performed in the m/z range of 100 to 1,700 Th. We

set a window with a width of 25 Da, and the rest of the parameters were the same as for DDA.30

For the DIA analysis, we used DIANN (version 1.8.0-linux) for raw data parsing. Based on deep learning spectrograms and FASTA

theoretical enzymatic cuts, we selected the options "unrelated sun", "use isotopologues", and "MBR". In addition, Trypsin was set as

the digestive enzyme, carbamidomethylation was set as a fixedmodification, and N-termmethionine excision andmethionine oxida-

tion were set as variable modifications. Other parameters were left to their default values except for the protein inference, which was

set to ‘‘protein name’’. The background file was a human FASTA file downloaded from the UniProt website on January 26, 2020.

In total, 10,071 proteins were identified with 44.7%missing rate of thewhole proteome. The batch effect across all samples and the

reproducibility of the measurement were evaluated by TSNE plots and the correlation coefficient of 144 quality control samples

(Figure S2).

PRM analysis
99 FFPE biopsy samples were collected and randomly divided into seven batches for targeted proteomic analysis, with each batch

comprising 15 samples and a QC sample. In brief, about 0.5 mg of FFPE PCa samples were processed into clean peptides using the

same process as in the FFPE surgical samples. The clean peptide samples were analyzed using parallel reaction monitoring (PRM)

targeted proteomics, which was performed on Q Exactive HF MS (Thermo Fisher Scientific) system with UltiMate 3000 RSLCnano
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System (Thermo Fisher Scientific). The linear LCwas 60min 5%–30%buffer B (98%ACN, 0.1% formic acid), separating at a flow rate

of 300 nL$min�1. The time-scheduled acquisition was in a ±5min retention time window. Full scans were acquired with anm/z range

of 300–2000 Th at a resolution of 60,000 FWHM. The AGC target was set at 3E6, and the maximum injection time was 55 ms. Target

precursors were isolated using anm/z window of 1.6 Th and then fragmented at 27%normalized collision energy. The resulting prod-

uct ions were scanned at a resolution of 30,000 FWHM, with an AGC target value of 2E5 charges and a maximum injection time of

100ms. After evaluating the peak shape and the idotp score, 16 peptide precursors from 16 proteins and 20 CiRT peptide precursors

were analyzed using skyline (Version 21.1). The Skyline-generated peptide quantitative result was log2 transformed and quantile

normalized before transformed into a protein matrix. The quantification results of each peptide from each sample were detailed in

Table S6.

Differentially expressed analysis
In case the different missing bias in both tumor and benign, proteins that were missing in more than 80% of the samples in both the

tumor group and the benign groupwere first deleted. Then, the remainingmissing values were filled with zeros, and themean value of

duplicate samples was taken as the final quantitative value for that sample. A two-sided unpaired Welch’s t-test was used to

compare the two groups. And p-values were adjusted using the Benjamini-Hochberg (B-H) method. The differentially expressed

proteins between tumor and benign tissues were filtered with fold change greater than 1.5, p-value less than 0.05 using the B-H test.

Proteomic-based clustering analysis
The pathway enrichment analysis was performed using differentially expressed proteins between tumor and benign tissues. The

activation degree score of the pathway is calculated in GSVA.58

The enrichment analysis of pathways was conducted using the "enricher" function from the "clusterProfiler" package, with default

parameters. The analysis utilized 50 hallmark gene sets obtained from the Molecular Signature Database v7.4. For the proteomic

data, enrichment was performed using the "gsva" method within the GSVA framework.

To determine the optimal number of stable PCa subtypes, we utilized K-means clustering (implemented through the "kmeans"

function in R), consensus clustering (implemented through the "consensusClusterPlus" package in R), and NbClust testing (imple-

mented through the "NbClust" function in R). In order to cluster the samples based on the constituent pattern of each pathway, we

scaled each sample. Consensus clustering was then employed to evaluate the robustness of the K-means clustering, with 1000 it-

erations and 80% resampling. NbClust testing provided 50 different test methods to determine the optimal number of clusters.

Finally, a silhouette analysis was performed to confirm the stability of the clustering.

mFuzz analysis
In case bias is induced from the benign samples, proteins that were missing in more than 80% of the tumor samples were deleted.

Theminimum value is suitable for the normalization in themFuzz analysis. Therefore, we filled themissing values in thematrix of each

GS group bymultiplying theminimum value of the protein matrix in the group by 0.8. One-way analysis of variance (ANOVA) was used

to determine differences between samples with different GS grades. P-values were adjusted using the B-H method. The average

normalized protein quantities by Z score in each GS grade were used for fuzzy c-means clustering with the R (version 4.0.2) package

Mfuzz (version 2.48.0). The number of clusters was set to ten and the fuzzifier coefficient, M, was set to 1.25.

Druggable protein screening
To enhance the reliability of our data, we implemented rigorous criteria that excluded proteins with a deletion rate exceeding 30%

(i.e., proteins that were undetected in over 30% of the samples). Following this process, we were left with a subset of 174 proteins.

Nineteen of the proteins in our subset of 174 were found to overlap with the molecules identified in NMF clustering.

Prognostic prediction model building
To identify more robust prognostic biomarkers and subsequently validate them using external validation datasets, we implemented

stricter criteria. Specifically, samples with over 50%missing ratios were excluded, and patients with recurrence-free survival (RFS) of

less than 1 month were omitted. Additionally, proteins with an expression level of ‘‘NA’’ (not detected) in >50% of patients were

removed, resulting in an expression matrix comprising 6753 proteins for 266 PCa patients. Utilizing the protein matrix obtained,

and guided by the assessment outcomes from "NAguideR",59 we employed the impseq method60 to impute missing values.

Next, all PCa patients were randomly divided into a discovery set (N = 186) and a validation set (N = 80). Univariate Cox regression

analysis was used to analyze the correlation between protein expression levels and BCR in the discovery set, revealing 973 proteins

significantly correlated with BCR (p < 0.05). The expression levels of all proteins were then ranked, and the top 50% of them were

selected for subsequent analysis. LASSO regression was performed 100 times using the glmnet package (version 4.1.6) in R soft-

ware, with the parameters set to family = "cox" and type.measure = "deviance". 10-fold cross-validation was used, and other param-

eters were set to default. Proteins with an occurrence frequency ofR90 were selected for subsequent modeling analysis, including

P80188, Q96K21, P61626, Q08426, O94972, P02042, P04179, P12724, Q13885, Q14767, Q8N9N2, Q93034, Q9HD42, Q9NPA8,

Q9UKK9, and Q92599 (Table S4). The univariate Cox regression analysis demonstrated that patients with a higher expression level

of Q14767, Q92599, Q93034, Q9NPA8, and Q9UKK9 significantly increased the risk of recurrence. For O94972, P02042, P04179,
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P12724, P61626, P80188, Q08426, Q13885, Q8N9N2, Q96K21, and Q9HD42, a higher expression level was associated with better

prognosis in prostate cancer patients.

A logistic regression algorithm was applied to develop a predictive model for prostate cancer recurrence risk. The formula for the

model is as follows:

Risk score =
Xk

i = 1
Wi3Ei

The Risk score represents a patient’s risk score for BCR, K refers to the number of proteins, Wi represents the regression coeffi-

cients from themultiple Cox regression analysis, and Ei refers to the protein expression levels. Proteins withWi > 0 are defined as risk

factors, and those withWi < 0 are defined as protective factors. Patients were divided into high/low-risk groups using the optimal cut-

off value, determined through the "surv_cutpoint" function from the R package survminer (version 0.4.9). The predictive model was

then evaluated in the PCSHA validation cohort and another six independent cohorts.

Immunohistochemistry staining
We collected 69 FFPE samples from the proteogenomic cohort to validate the expression of NUDT5 and SEPTIN8 by Immunohis-

tochemistry (IHC). Immunostaining was carried out as reported previously.61 Sections were stained using anti-NUDT5 (ab129172,

Abcam) and anti-SEPTIN8 (ab191404, Abcam) antibodies at 1:1200 dilution and detected by the DAB reagents provided in detection

kit (Wuxi Origene). Immunostaining was quantified based on the staining intensity (intensity score). The staining intensity was scored

as 0 for negative staining; 1 for weak staining; 2 for moderate staining; 3 for strong staining.

Generation of NUDT5 and SEPTIN8 knockout cells
TheCRISPR-cas9 systemwas used to generate NUDT5 or SEPTIN8 knockout cells. The sequence of Guide RNAs used to knockdout

NUDT5 or SEPTIN8 were shown in the Key resources table. Scramble gRNA were used as a control. Guide RNAwere cloned into the

Lenti-CRISPR-V2 Vector (Addgene Plasmid # 52961). Lentivirus were packaged in HEK293T cells and used to infect the PC-3 cell line

for 24 h. Then, stable cell lines were established for the subsequent experiment by puromycin selection using 1 g/mL for three days.

Western blot and the surveyor assay were used to evaluate the effectiveness of the gene knockdown.

EdU staining
BeyoClickTM EdU Cell Proliferation Kit with Alexa Fluor 488 was used to measure the proliferation of the PC-3 cell line (Beyotime,

C0071S). To label the cells in logarithmic growth, PC-3 cells were seeded into 6-well plates at a density of 13105 cells per well

and then treated for 2 hwithmedia containing 10mMEdU. Following a single PBSwash, the cells were fixed in 4%paraformaldehyde

for 15 min. After fixation, the cells were permeabilized for 15 min in PBS containing 0.3% Triton X-100. Each click reaction well

received a preset dose of click reaction buffer. Click Response Buffer was applied to the cells for 30 min at room temperature.

Hoechst 33342 was then used to stain the cell nuclei for 30 min at room temperature while it was dark. Fluorescence microscopy

was used to examine the prepared samples.

Western blot analysis
Cells were lysed with RIPA buffer (50 mM Tris-HCl pH 7.4, 1% Triton X-100, 1 mM EDTA, 150 mMNaCl, 0.1%SDS, 2mM sodium py-

rophosphate, 50 mMNaF, and a cocktail of protease inhibitor) on ice. The prostate tissues were homogenized and then lysed in RIPA

buffer on ice. All lysates were centrifuged at 12,000 rpm for 15min at 4�C. Proteins were first separated by SDS-PAGE and then trans-

ferred topolyvinylidenefluoridemembranes. Themembraneswereblockedusing5%milk inPBSandblottedusing theantibodies. The

anti-NUDT5 (ab129172) and the anti-Septin8 (ab191404) antibodies were from Abcam. The GAPDH (#2118) antibody was purchased

from Cell signaling technology. The HRP-labeled Goat Anti-Mouse/Rabbit IgG(H + L) antibodies were purchased from Epizyme.

Cell proliferation assay
To measure the cell proliferation rate, 53103 exponentially developing PC-3 cells were seeded in 24-well plates (Corning, Cat. No.

3516). The images of the PC-3 cells were recorded every 2 h using a ZenCell Owl live cell imaging system (Innome, Germany). Cell

numbers were analyzed at each time point. The cell proliferation curves were plotted utilizing GraphPad Prism.

Wound healing assay
OnemL of 1x105 exponentially growing PC-3 cells was seeded and grown to a cell density of roughly 90% in 12-well plates (Corning,

Cat. No. 3513). The medium was changed to serum-free RPMI 1640 media after drawing straight lines in the wells. The cells were

cultured for additional 48 h and imaged every 24 h using an EVOSTM XL Core. Image Pro Plus was used to calculate the migration

rate of the PC-3 cells.

Invasion assay
A total of 5x105 exponentially growing PC-3 cells that were starved for 12h in 200 mL RPMI 1640 medium without FBS were seeded

into transwell chambers (Corning, Cat. No. 3422), which were pre-coated with 60mLMatrigel solution (12.5%Matreigel in RPMI 1640
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medium) for 3h at 37�C. Next, we added 500 mL RPMI 1640mediumwith 30%FBS below the chambers. PC-3 cells were grown in the

transwell chambers for 24h. The chambers were gently dipped in PBS three times and the non-invading cells were scrubbed from the

membrane’s upper surface using cotton-tipped swabs. The cells were then fixed with 4% paraformaldehyde for 30 min, washed

three times with PBS, and stained with Crystal Violet Staining Solution for 15 min. Finally, cells in transwell chambers were imaged

using EVOSTM XL Core.

Cell cycle analysis
For cell cycle analysis, NUDT5 or SEPTIN8 knocked out PC-3 cells were, collected, washed with PBS, re-suspended in DNA Staining

Solution (Multi Sciences, CCS012) and stainedwith Permeabilization Solution (Multi Sciences, CCS012) at 1:100 dilution for 30min at

room temperature in the dark. Percentage of different cell cycle phases were analyzed by FlowJo.

QUANTIFICATION AND STATISTICAL ANALYSIS

A two-sided unpaired Welch’s t-test was used to compare the two groups. And p-values were adjusted using the Benjamini-

Hochberg (B-H) method. One-way analysis of variance (ANOVA) was used to determine differences between samples with different

GS grades. P-values were adjusted using the B-H method.
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