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Weighted gene co‑expression 
network analysis identified GBP2 
connected to PPARα activity 
and liver cancer
Mandana AmeliMojarad 1,2, Melika AmeliMojarad 1,2 & Xiaonan Cui 1*

Liver cancer is the fourth leading cause of cancer‑related deaths with a steadily increasing rate 
worldwide, as a well‑known hallmark of liver cancer, metabolic alterations are related to liposomal 
changes, a common characteristic of primary liver cancers based on recent lipidomics studies. 
Peroxisome proliferator‑activated receptor α (PPARα) is a ligand‑activated transcription factor with 
important lipid homeostasis function, therefore we aimed to understand the molecular mechanisms 
and pathways that activate PPARα after using PPAR‑α agonist WY‑14643 and identify candidate 
biomarkers related to PPARα activity and evaluate their effects in liver cancer. The data from 
differently expressed genes (DEGs) between liver cancer tissue from obese subjects alone and liver 
tissue after treatment were evaluated by DESeq2 and module genes were analyzed using weighted 
gene co‑expression network analysis (WGCNA). Final candidate genes were identified by intersecting 
genes among highly ranked DEGs and the brown module, which demonstrated a significant negative 
correlation with drug treatments. We conducted a protein–protein interaction network, and KEGG 
enrichment analysis, and core hub genes (CD40, CXCL9, CXCL10, TNFSF14, GBP2, GBP3, APOL3, 
CLDN1) were identified using the cyto‑hubba plugin, among them we focused on GBP2 that plays key 
roles in oncogenesis and evaluate its expressional with clinical outcomes. In conclusion, the WGCNA‑
based co‑expression network identified GBP2 as one of the hub genes with a negative relation with 
PPARα agonist treatments. higher expression of GBP2 was closely associated with HCC progression. 
Therefore, GBP2 might be a potential candidate for the study of PPARα activity in HCC.
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Background
The incidence of hepatocellular carcinoma (HCC) continues to increase globally, and the lack of early detec-
tion and treatment causes a significant  burden1,2. It is estimated that, by 2025, more than 1 million people will 
be affected by primary liver cancer  annually3. The common risk factors for liver cancer development are viral 
infections, alcohol abuse, and metabolic  diseases3. Dysregulation of metabolic processes in the liver as the cen-
tral metabolism organ plays an important role in cancer  development4. Lipids are involved in diverse biological 
processes in the body, including cancer cells, which rely on lipid uptake, intracellular lipid pools, or membrane 
 remodeling5,6. More ever-activated lipid metabolic pathways increase cancer cells’ resistance to immunotherapy 
 agents6,7. People with obesity or liver diseases frequently have chronic inflammatory conditions and lipid altera-
tions such as intrahepatic lipid accumulation have a higher risk of being influenced by the development of liver 
cancers, so targeting lipid metabolism could also be a promising therapeutic approach for cancer therapy to 
overcome tumor  resistance3,8.

PPAR α is a nuclear receptor that regulates fatty acid oxidation and inflammation through modulation 
by ligands, PPARα is the most abundant PPAR isotype which contributes to the liver’s remarkable metabolic 
 flexibility9,10. Currently, peroxisome proliferator (PP) agents such as WY-14643 also known as pirinixic acid 
considered a potent PPARα activator that is widely used in experimental studies affecting lipid and lipoprotein 
 metabolism11. PPARα activators can lower plasma triglyceride levels and increase HDL cholesterol, they can 
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regulate obesity in rodents by increasing hepatic fatty acid oxidation and lowering circulating  triglycerides12,13. 
Mice with PPAR α germline deletion are susceptible to various metabolic defects, including  obesity14, hepatic 
 inflammation14, and  steatosis15 but not  diabetes16. Also, PPARα expression levels were found to be lower in liver 
tissues of NAFLD/NASH patients as fibrosis  progressed17. Recent studies suggest that WY-14643 can inhibit 
the growth of various cancers, including colon and lung cancers in vivo18–20, therefore to better understand 
the molecular mechanisms of PPARα activation in the liver, particularly in obese individuals, bioinformatics 
approaches should be combined to identify new genes as clinical biomarkers for PPARα activity. WGCNA 
(weighted gene co-expression network analysis) is a powerful genetic analysis strategy that relies on a systematic 
bioinformatics algorithm. This method is used to identify highly and coordinately expressed genes within mod-
ules to determine the patterns of genetic association between different samples. In this study, a co-expression 
network of differentially expressed genes (DEGs) in obese human liver tissue treated with WY-14643 was built 
using the WGCNA algorithm to identify relevant modules based on their expression profiles for the identifica-
tion of viable biomarkers in the liver.

Materials and methods
Data source
The data used in this paper was obtained from the GEO database in NCBI (Gene Expression Omnibus http:// 
www. ncbi. nlm. nih. gov/ geo), and the experimental data entry number is GSE71731.

Differentially expressed gene identification
First, we used R to read the data from dataset GSE71731. Then we performed DEG analysis screening using the 
“limma” package. Following the significance analysis of expression levels, the "heatmap" and "ggplot2" R packages 
were used to create volcano maps and DEG expression heat maps.

Weighted gene co‑expression network analysis
The interactive connection among the co-expression modules was studied using the WGCNA algorithm. The 
WGCNA R software package (http:// www.r- proje ct. org/) can be used to determine network construction, the 
calculation of topological properties, gene selection, module detection, differential network analysis, and net-
work statistics. The soft threshold (β = 20) was used after the standard scale-free network to obtain the weighted 
adjacency matrix and change it to the topological overlap matrix (TOM) to intensify the connection between 
genes. We used the average-linkage hierarchical clustering method to cluster genes and identify modules, we set 
a minimum size of 30 for the gene dendrogram and a cutting line of 0.25 for the modular dendrogram to merge 
similar modules, Furthermore, a heat map was plotted to exhibit the strength of interaction among the modules.

Screening of candidate hub genes and KEGG analysis
To search for hub genes, we used co-expressed genes between WGCNA-derived brown modules and down-
regulated DEGs. We eventually screened 30 overlapping genes as candidate hub genes that may play an important 
role in the WY-14643 response. Subsequently, by using the “clusterProfiler" R package (version 4.4.4), KEGG 
analyses (KEGG, https:// www. kegg. jp/ kegg/ kegg1. html) were conducted to assist us in understanding the poten-
tial mechanisms and their underlying  roles21–24.

Protein–protein interaction network hub genes
We predicted and visualized protein–protein interaction (PPI) networks using STRING database (https:// string- 
db. org), and Cytoscape software (version 3.9.1). Cytohubba plugin in Cytoscape was used to rank the important 
genes in PPI networks as our core genes between 30 final hub genes.

Expression analysis of core genes and their prognostic values
The GEPIA2 website, GSCA, and UALCAN database (http:// ualcan. path. uab. edu) were used to compare the 
expression of target genes in tumor tissues and adjacent normal tissues and determine correlation with different 
tumor stages, age, and immune cell infiltration. The "survival analysis" was used to determine overall survival 
(OS), and HPA (https:// www. prote inatl as. org) was used to obtain immunohistochemistry images of protein 
expression between liver cancer and normal tissues. TF-gene pairs network was also visualized using the Network 
Analyst database (https:// www. netwo rkana lyst. ca/).

Results
Screening of DEGs
First, we obtained our dataset (GSE71731) from the GEO database to evaluate DEGs, based on the result we 
identified 220 upregulated and 311 downregulated genes, in the samples treated with WY-14643 compared to 
non-treated groups. We also draw the heatmap to evaluate the relation between them Fig. 1A–C.

Co‑expression module construction
To identify potential gene clusters involved in human liver tissue response to drugs, we conducted WGCNA 
with suitable soft-thresholding power to guarantee a scale-free network, Hierarchical cluster analysis indicated 
samples were well clustered and no outliers or strong clusters were observed. The soft-thresholding powers 
(soft power = 20) were determined based on a scale-free  (R2 = 0.8), The dynamic tree cut method was used for 
module identification by clustering genes using 1-TOM, with a minimum size cutoff of 30 and a deep split value 
of 2. A total of 6 different gene modules with different colors were identified based on hierarchical clustering 

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
http://www.r-project.org/
https://www.kegg.jp/kegg/kegg1.html
https://string-db.org
https://string-db.org
http://ualcan.path.uab.edu
https://www.proteinatlas.org
https://www.networkanalyst.ca/


3

Vol.:(0123456789)

Scientific Reports |        (2024) 14:20745  | https://doi.org/10.1038/s41598-024-70832-6

www.nature.com/scientificreports/

of the calculated dissimilarity. The largest module contains 145 genes, and the smallest module contains 1 gene 
Fig. 2A–E.

Identification of the modules of interest and enrichment analysis
To obtain specific modules that are related to WY-14643 treatment, and PPAR-α activity in the liver, this study 
evaluated the modular trait association between the 6 modules and phenotypic traits. Based on the results 
most modules were negatively associated with WY-14643 treatment, especially two modules the ME brown 
(r = − 0.94, P = 6e−04), and the ME turquoise (r = − 0.84, P = 0.009). We designed our candidate hub genes between 
those co-expressed genes from the brown module and those downregulated DEGs with |logFC|> 1, and p < 0.05 
and eventually screened 30 overlapping genes as candidate hub genes that may play an important role in the 
activation of PPAR-α after treatment with WY-14643. The DEGs with logFC < 0 or logFC > 0 were considered 
downregulated or upregulated genes, respectively (Fig. 3A–C).

We used the STRING online tool to construct a PPI network of overlapping hub genes and then to find our 
main core genes we visualized highly ranked genes using Cytoscape software, Cytohubba plugins (Fig. 3D,E), 
(Table1). KEGG enrichment analysis data indicate that our selected hub genes were mostly enriched in viral 
protein interaction with cytokines, cytokine receptors, toll-like receptor signaling, and NF-κB signaling pathway, 
and less in primary immunodeficiency and ferroptosis (Fig. 3F), and indicate the transcription factors (TFs) 
related to each hub genes to gain further insights for understanding gene regulatory networks (Fig. 3G).

Analyzing the correlation of GBP2 with liver cancer clinical outcome
After ranking our 30 hub genes using the cytohubba plugin we especially focused on GBP2 as the first-ranked 
core genes in our study. GBP2 is a member of Guanylate-Binding Proteins (GBPs) which can be considered 
as a key indicator of high immunogenicity in most cancer types and predict immunotherapeutic  responses25. 
However, there are few studies on the role of GBP2 in immune properties especially in liver cancer therefore in 
this study we examined the clinical relevance of GBP2 in HCC and explored its effect on immune properties 
by evaluating its effect on liver cancer immune cell infiltration. Based on the result GBP2 is highly expressed 
in liver cancer in both RNA and protein levels and was significantly correlated with tumor stage, and higher 
age, it is negatively correlated with CPT1A, and its higher expression can increase tumor cell infiltration score, 

Fig. 1.  Identification of differentially expressed genes. (A) The volcano plots of DEGs showing the top 20 
significant genes with their names, the horizontal axis represents the value of logFC, while the vertical axis 
represents the mean value of -log 10 (false discovery rate). (B) Heatmap of whole gene expression in all samples 
related to WY-14643 treatment and age. (C) heatmap of top 20 highly modified genes in the treated group 
compared to untreated samples.
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especially by increasing macrophage and downregulating neutrophils and Th17 in tumor tissue microenviron-
ments (Fig. 4A–F).

Discussion
Hepatocellular carcinoma (HCC) is considered a highly prevalent cancer globally, necessitating the quick iden-
tification of relevant diagnostic  biomarkers1,26. Peroxisome proliferator-activated receptor α (PPARα) a nuclear 
hormone receptor plays pivotal roles in the regulation of fatty acid homeostasis, lipid metabolism as well as 
inflammation, and immune response in the liver by regulating genes related to fatty acid transport and oxidation, 
high-density lipoprotein (HDL) metabolism, and ketone synthesis that occur in mitochondria, PPARα preserves 
lipid metabolism and  homeostasis27,28 PPAR-α activation also increases HDL cholesterol and serum triglyceride 
clearance, along with energy  production10,29. Furthermore, there is increasing evidence that PPAR-α can either 
induce or repress the expression of specific target genes involved in metabolism in different tissues regulates the 
metabolism of carbohydrates and amino acids, and plays a significant role in the starvation  response30, there-
fore dysregulation of PPAR-dependent pathways is associated with metabolic disorders or  cancer13,31,16. At the 
moment both anti- and pro-tumorigenesis properties have been reported for PPAR-α, but in total, PPARα activi-
ties are primarily thought to be anticancer in humans with the ability to suppress oncogenic roles of nuclear factor 
kappa B (NF-κB) and  Akt9,32. Interestingly poor tumor cell adaptation to PPARα-mediated anti-inflammatory 
response and fatty acid oxidation may lead to reduced proliferation and higher apoptosis and autophagic cell 
 death9,32. Therefore, PPAR agonists and PPAR-α modulators showed great capability to manage the process of 
 cancer33. To gain a comprehensive understanding of the hub genes related to PPARα activity after treatment with 
PPARα agonist (WY-14643) in the liver tissue, by using WGCNA we created co-expression networks to identify 
new hub genes that are differentially expressed between treated samples compared to non-treated-groups-and-
carry-out-gene-specific-analysis to validate the role of selected core gene in HCC. By using this approach, we 
discovered 30 intersect genes as the hub genes showing a highly negative correlation with WY-14643 treatment 
compared to non-treated groups, the KEGG analysis results revealed that key genes were mostly enriched in viral 
protein interaction with cytokines and cytokine receptors and toll-like receptor and NF-κB signaling pathway. 
Cytohubba plugin was used to detect highly ranked hub genes as our core genes based on their ranking score 
Fig. 3E. Finally, we select GBP2 as the member of the GBPs family, a family of interferon-induced GTPases that is 
highly activated in response to stimulation such as inflammatory cytokines, IFN α/β/γ, tumor necrosis factor–α, 
and toll-like receptor  agonists34, and crucial for autonomous immunity against microbial pathogens, inflamma-
tion, and  cancer26,35. The molecular mechanism that links GBP2 and cancer is still unknown especially based 

Fig. 2.  WGCNA was constructed to see gene expression networks of liver samples treated with WY-14643. (A) 
Sample clustering. (B) Scale independence (left) and mean connectivity (right). (C) A total of 6 modules were 
obtained. (D) Clustering dendrogram of genes, with dissimilarity based on topological overlap, together with 
assigned module colors. (E) Expression heatmap of assigned module colors in each sample.
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Fig. 3.  - Identification of module trait relationship and KEGG analysis. Module-trait heatmap of the correlation 
between the clustering gene module and WY-14643 treatment (A). The scatter plot of module brown has the 
strongest negative correlation with the WY-14643 treatment (B). Venn diagram showing our 30 candidate 
hub genes from the intersection of genes between the brown module and downregulated DEGs (C). The 
construction of the PPI network (D). Cytohubba algorithm was used to rank our hub genes, the deeper colors 
represent the higher-ranking score (E). KEGG pathway analysis of candidate hub genes using the R language 
cluster Profiler package (F), identifying the TFs related to hub genes expression (G).

Table 1.  Average expression for selected core genes after using the Cytohubba plugin.

Symbol logFC AveExpr t P.Value adj.P.Val

CXCL9 − 2.71 9.09 − 13.27 5.49E−07 0.001

CXCL10 − 2.76 9.50 − 9.28 9.66E−06 0.007

TNFSF14 − 1.29 7.52 − 6.86 9.53E−05 0.025

GBP2 − 1.09 9.33 − 6.64 0.0001 0.0274

GBP3 − 0.83 8.78 − 4.15 0.002 0.119

CD40 − 0.66 7.57 − 4.89 0.001 0.0811

APOL3 − 0.98 8.1 − 5.34 0.000870 0.07112

CLDN1 − 0.77 7.1 − 4.21 3.80E−05 0.0169
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on its heterogeneous roles in different  tissues36. However, elevated GBP2 expression is a marker for esophageal 
squamous cell carcinoma (ESCC)37,38, and can encourage GBM invasion through the Stat3/FN1  cascade39. Addi-
tionally, GBP2 has been demonstrated to be a pancreatic adenocarcinoma prognostic  biomarker40. Since very 
few studies have been done on the role of GBP2in HCC, we selected GBP2 to get a better insight into its role in 
HCC pathogenesis which indicates higher GBP2 expression in tumors is closely associated with HCC tumor 
cell proliferation, proving its suggesting role in regulating cancer  metastasis25. Therefore, GBP2 is emerges as a 
novel therapeutic strategy for HCC.

Conclusion
In conclusion, this study through co-expression network analysis, indicates the potential role of GBP2 as the 
therapeutic target associated with PPARα activity and corelating with lower HCC clinical outcomes. However, 
more experiments are required to validate its specific relation in the future.

Fig. 4.  Higher GBP2 levels are correlated with lower liver cancer clinical outcomes. Higher GBP2 expression 
is linked with poor patient outcomes, higher stage, grade, and age (A–D) higher GBP2 expression is correlated 
with higher tumor immune infiltration score via decreasing Th17, neutrophil, monocyte, CD4, CD8 native in 
HCC (E) immunohistochemistry staining also indicate the higher GBP2 expression in HCC tumors compare to 
normal tissues (F).
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Data availability
The data from the current study can be provided based on the request from the corresponding author. The gene 
expression data that support our results are available at https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= 
GSE71 731.
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