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BACKGROUND Leadless cardiac resynchronization therapy (CRT) is
an emerging heart failure treatment. An implanted electrode de-
livers lateral or septal endocardial left ventricular (LV) pacing
(LVP) upon detection of a right ventricular (RV) pacing stimulus
from a coimplanted device, thus generating biventricular pacing
(BiVP). Electrical efficacy data regarding this therapy, particularly
leadless LV septal pacing (LVSP) for potential conduction system
capture, are limited.

OBJECTIVES The purpose of this study was to evaluate the acute
performance of leadless CRT using electrocardiographic imaging
(ECGi) and assess the optimal pacing modality (OPM) of LVSP on
the basis of RV and LV activation.

METHODS Ten WiSE-CRT recipients underwent an ECGi study
testing: RV pacing, BiVP, LVP only, and LVP with an optimized atrio-
ventricular delay (LV-OPT). BiV, LV, and RV activation times (short-
est time taken to activate 90% of the ventricles [BIVAT-90],
shortest time taken to activate 95% of the LV, and shortest time
taken to activate 90% of the RV) plus LV and BiV dyssynchrony index
(standard deviation of LV activation times and standard deviation of
all activation times) were calculated from reconstructed epicardial
electrograms. The individual OPM yielding the greatest improve-
ment from baseline was determined.
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RESULTS BiVP generated a 23.7% improvement in BiVAT-90
(P 5 .002). An improvement of 43.3% was observed at the
OPM (P 5 .0001), primarily through reductions in shortest
time taken to activate 90% of the RV. At the OPM, BiVAT-90
improved in patients with lateral (43.3%; P 5 .0001; n 5 5)
and septal (42.4%; P 5 .009; n 5 5) LV implants. The OPM
varied by individual. LVP and LV-OPT were mostly superior in pa-
tients with LVSP, and in those with sinus rhythm and left
bundle branch block (n 5 4).

CONCLUSION Leadless CRT significantly improves acute ECGi-
derived activation and dyssynchrony metrics. Using an individual-
ized OPM improves efficacy in selected patients. Effective LVSP is
feasible, with fusion pacing at LV-OPT mitigating the potential dele-
terious effects on RV activation.
KEYWORDS Cardiac resynchronization therapy; Heart failure; Lead-
less pacing; Endocardial pacing; Electrocardiographic imaging
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Introduction
Leadless left ventricular (LV) endocardial pacing, deliv-
ered by the WiSE-CRT system (EBR Systems Inc, Sunny-
vale, CA), is an emerging form of cardiac
resynchronization therapy (CRT)1 in patients with heart
failure who are CRT-eligible2 who are unable to receive
conventional transvenous LV epicardial pacing. The
advent of conduction system pacing (CSP) gives operators
a transvenous alternative in cases where conventional CRT
is limited by unfavorable coronary sinus anatomy, LV lead
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KEY FINDINGS

- Biventricular leadless endocardial cardiac resynchro-
nization therapy (CRT) improves electrocardiographic
imaging–derived electrical activation and dyssyn-
chrony metrics.

- Biventricular (BiV) pacing may not be the optimal
pacing modality in all patients. The optimal modality is
dependent on patient factors, such as the underlying
rhythm, and procedural factors, such as the location of
left ventricular (LV) pacing.

- For those receiving leadless LV septal pacing, LV-only
pacing may be superior to BiV pacing.

- For those with sinus rhythm and left bundle branch
block, atrioventricular optimized LV-only pacing
(fusion pacing) may be superior to BiV pacing.

- As such, individualized optimization of leadless CRT
based on patient and procedural factors is likely
necessary to maximize device performance and thus
potentially benefit clinical outcomes.
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displacements, or intolerable phrenic nerve stimulation
postimplantation3 and in conventional CRT nonresponse.4

Nevertheless, leadless CRT is an important option in pa-
tients where implantation is restricted by absent venous ac-
cess or prohibitively high infection risk and in those where
CSP is also problematic, such as in congenital heart dis-
ease or in those with septal myocardial scar.

The system consists of 3 components: a subcutaneous bat-
tery, which is connected to an ultrasound transmitter placed
in the fourth to sixth intercostal space, and a receiver elec-
trode (RE) implanted in the LV cavity via femoral access.
The patient requires a “coimplant” capable of right ventricu-
lar (RV) pacing. Upon detection of an RV pacing (RVP) im-
pulse from the coimplanted device, the transmitter uses
ultrasound pulses to communicate with the RE, converting
ultrasound energy into an electrical pacing stimulus. This re-
sults in LV pacing (LVP) and thus near-simultaneous biven-
tricular pacing (BiVP).

The efficacy of leadless CRT has been evaluated in obser-
vational studies.1,5–8 Ameta-analysis of these studies demon-
strating a clinical response rate of 63% and an
echocardiographic response rate of 54% at 6 months postim-
plantation,9 with favorable cost-effectiveness analysis also
reported.10

The system was originally designed to deliver lateral wall
LV endocardial pacing, with the RE implanted via retrograde
femoral artery access. However, the development of a trans-
septal LV approach using antegrade femoral venous ac-
cess11,12 permits LV septal RE deployment. While lateral
LVP targeting the latest activating LV myocardium13 is a
mainstay of conventional CRT, LV septal implantation
may provide benefit via capture of His-Purkinje fibers, which
run superficially in this region, to achieve leadless CSP.14
Reductions in QRS duration using BiVP with a septally
implanted RE have been demonstrated.14

Currently, BiVP is the only clinically programmable
setting for the WiSE-CRT system. However, BiVP may not
be the optimal pacing modality (OPM), especially in patients
with LV septal pacing in whom fusion with optimized atrio-
ventricular (AV) delay could represent the optimal modality
for LV and RV activation.15

We performed a mechanistic electrocardiographic imag-
ing (ECGi) evaluation of leadless CRT to determine the acute
efficacy of leadless CRT and leadless LV septal pacing on
LV and RV activation metrics.
Methods
Study population
Ten patients from our center previously implanted with
WiSE-CRT devices were included. This included all 5 pa-
tients with a septal RE, and 5 consecutive patients with a
lateral RE attending the pacing clinic. All patients pro-
vided written informed consent. The study was conducted
in accordance with the Declaration of Helsinki and
approved by the local research ethics committee (13/LO/
1475). The study results did not influence the subsequent
patient care. After testing, devices were returned to base-
line settings.

ECGi study
Patients were fitted with a 252-electrode CardioInsight
sensor array vest (Medtronic, Minneapolis, MN) and un-
derwent a noncontrast computed tomography scan to
obtain electrode positions and cardiac anatomy as previ-
ously described.16 Surface electrograms were continuously
recorded throughout a noninvasive pacing protocol. Body
surface potentials from individually selected beats were
combined with the computed tomography–derived
segmented cardiac anatomy to create reconstructed unipo-
lar electrograms using the CardioInsight Workstation.

Pacing protocol
A noninvasive acute pacing study was performed using
the patients’ implanted devices (Online Supplemental
Table S1). The following modalities were tested in this
order: underlying rhythm, RVP, BiVP, LVP, and LVP
at AV delays (AVDs) varying from 80 to 200 ms for pa-
tients in sinus rhythm (SR) to determine the optimal AVD
(LV-OPT). Each ECGi recording was 1 minute in dura-
tion, and this was repeated 3 times per modality. There
was a 30-second waiting period between recordings, dur-
ing which time device settings were reverted to RVP for
consistency.

Activation map creation and calculation of
ECGi-derived metrics
Custom in-house code was used to create activation maps
and calculate ECGi-derived metrics as previously
described.17,18 For each pacing configuration, the



Table 1 Baseline characteristics

Patient
no. Sex Etiology

WiSE-CRT
indication

Underlying
rhythm

RV lead
location

LV electrode
location Scar location

1 Male Nonischemic Failed LV lead AF, CHB Apical Basal inferoseptum Inferior
2 Female Nonischemic Failed LV lead SR, LBBB Apical Mid-septum N/A
3 Male Nonischemic Nonresponder AF, CHB Apical Basal septum Apical lateral
4 Male Ischemic Failed LV lead SR, LBBB Apical Mid-septum Inferolateral
5 Male Ischemic Failed LV lead AF, CHB Apical Basal septum Septum, inferior wall,

apex
6 Female Nonischemic Failed LV lead SR, LBBB Apical Posterolateral N/A
7 Male Ischemic Failed LV lead Slow AF Apical Lateral Lateral
8 Female Nonischemic Failed LV lead SR, LBBB Apical Basal lateral N/A
9 Male Ischemic Failed LV lead AF, CHB Apical Mid lateral Inferior, mid inferolateral
10 Male Nonischemic Failed LV lead AF, CHB Apical Apical anterolateral N/A

AF, atrial fibrillation; BiV5 biventricular; BIVAT-905 time for 90% biventricular activation; BiVDI5 biventricular dyssynchrony index; CHB, complete heart
block; LBBB, left bundle branch block; LVAT95 5 time for 95% left ventricular activation; LVDI 5 left ventricular dyssynchrony index; RVAT90 5 time for 90%
right ventricular activation; SR, sinus rhythm.
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following metrics were calculated from an average of the
3 analyzed beats: (1) LV activation time (LVAT-95)—
shortest time taken to activate 95% of the LV; (2) LV dys-
synchrony index—standard deviation of LV activation
times; (3) BiV activation time (BIVAT-90)—shortest
time taken to activate 90% of the ventricles; (4) BiV dys-
synchrony index—standard deviation of all activation
times; and (5) RV activation time (RVAT-90)—shortest
time taken to activate 90% of the RV. More detailed
methodology is described in the Online Supplement, as
well as ECG-based validation of the ECGi-derived metrics
for this cohort (Online Supplemental Figure S1) and a
summary of prior studies where ECGi maps were vali-
dated against invasive mapping data.

Statistical analysis
Continuous variables were tested for normality using the
Shapiro-Wilk test and are expressed as mean 6 SD if nor-
mally distributed. Discrete variables are expressed as count
(percentage). For each dyssynchrony metric, the calculated
end point is expressed as percentage improvement
compared to baseline. Baseline was defined as either un-
derlying rhythm or RVP for those with complete heart
block (CHB). For each patient, the OPM was defined as
the pacing modality that yielded the largest improvement
in BiVAT-90. Dyssynchrony metrics for different pacing
modalities compared to baseline were tested using
paired-sample t tests. Statistical analysis was performed
using the Stata Statistical Software Package Release 17
(StataCorp LLC, College Station, TX). P , .05 was
considered significant.
Results
Baseline characteristics
Ten patients were recruited, and their characteristics are
summarized in Table 1. All patients had previously im-
planted WiSE-CRT devices as part of the WiSE postmar-
ket registry6 or the Stimulation of the Left Ventricular
Endocardium for Cardiac Resynchronization Therapy
trial.19 The mean age was 72.7 6 9 years; 7 patients
were male. Four patients had an ischemic heart failure eti-
ology. The leadless CRT indication was conventional CRT
nonresponse in 1 patient, with the remaining 9 being
CRT-naive due to failure of LV lead implantation. Five
patients had LV septal RE implants, and 5 had LV lateral
wall implants. In 2 patients with septal implants, the RE
had been deployed at the site of a mapped left bundle
(LB) potential. In the remaining 3, implantation was per-
formed without septal mapping. Four patients had underly-
ing SR with left bundle branch block (LBBB). The
remaining 6 had atrial fibrillation (AF), 1 with slow ven-
tricular response and 5 with CHB. The protocol was
completed in all 10 patients. The total protocol time varied
between 15 and 25 minutes.
Main results
The changes in each activation metric with BiVP and pac-
ing at an individualized OPM compared to baseline are
demonstrated in Figure 1. BiVP yielded a 23% 6 18%
improvement in BiVAT-90 (P , .01) and a 19% 6
18.5% improvement in BiVDI (P 5 .02). Nonsignificant
improvements of 22.7% and 23.4% were observed in
LVAT-95 and LVDI, respectively, with a nonsignificant
prolongation in RVAT-90 of 8.3%. At an individualized
OPM, significant improvements are observed in all metrics
compared to BiVP. At the OPM, there was a 43% 6
14.1% improvement in BiV activation compared to base-
line, which was 20% superior to BiVP (P 5 .02), and a
44% 6 16.3% improvement in LVAT-95, which was
24% superior to BiVP (P 5 .03). The OPM yielded sig-
nificant reductions in RVAT-90 of 36% 6 25.1%, which
was significantly better than the 8% prolongation seen dur-
ing empirical BiVP (P , .01). Using an OPM, BiVAT-90
was significantly improved in both patients with lateral
(43.3%; P 5 .0001) and septal (42.4%; P 5 .009) LV im-
plants.



Figure 1 Improvement from baseline (underlying rhythm or RVP for those with CHB) in each activation metric when the optimal pacing modality is chosen
(orange bars) compared to when empirical BiV pacing is chosen (blue bars). BiV5 biventricular; BIVAT-905 time for 90% biventricular activation; BiVDI5
biventricular dyssynchrony index; LVAT955 time for 95% left ventricular activation; LVDI5 left ventricular dyssynchrony index; RVAT905 time for 90%
right ventricular activation.
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A color-coded illustration of the patient-specific OPM
is provided in Table 2. As can be seen, there was consid-
erable interindividual heterogeneity, also demonstrated in
Online Supplemental Figure S2, which shows the changes
in each activation metric for each pacing modality and dis-
plays wide confidence intervals. Based on the considerable
interindividual heterogeneity, a subgroup analysis was un-
dertaken for patients with septal RE implants and patients
in SR.
Subgroup analysis—LV septal pacing
BiVP in this cohort resulted in a mean improvement in
BiVAT-90 of 7.8% 6 7.3% (P 5 .08). At an OPM, there
were significant improvements in all activation metrics, in
particular a 42% 6 20.4% improvement in BiVAT-90 (P
, .01) (Figure 2). Three patients had underlying AF; of these
patients, LVP was the OPM in 2 and BiVP was the OPM in
the other. Of the 2 patients in SR, LV-OPT was the OPM in 1
patient, with empirical LVP performing best in the other.
Overall in this cohort, LVP, with or without AVD optimiza-
tion, outperformed BiVP in 4 of 5 patients. LVP resulted in
an improvement in BiVAT-90 of 30.9% compared to base-
line, translating to a 23% improvement over BiVP, driven
by a reduction in LVAT-95 (Figure 3), but not RVAT-90.
LV-OPT led to a 33.1% improvement in BiVAT-90
compared to baseline, 25.5% superior to BiVP, with im-
provements observed in both LVAT-95 and RVAT-90
(Figure 3).

The ECG features of conduction system capture in these
patients are provided in Online Supplemental Table S2.
The mean ECG-derived stimulation to LV activation time
was 82.4 6 24 ms. LVP displayed a stimulation to LV
activation time of �80 ms in 3 of 5 patients including both
patients where an LB potential was identified at the deploy-
ment site. Examples of both posterior fascicular capture (pa-
tient 2) and more proximal LB capture (patient 3) are shown
in Online Supplemental Figure S3.
Subgroup analysis—SR
Four patients were in SR at the time of the study (2 with septal
implants and 2 with lateral implants). These patients ex-
hibited a 44.5% 6 6.2% improvement in BiVAT-90 with
LV-OPT compared to baseline (P , .01). This translated to
a 23% improvement compared to empirical BiVP (P 5
.08). VOO LVP did not show any significant differences in
BiVAT-90 from baseline in this cohort (25% 6 51%; P 5
.85), driven by long RV activation times in patients with
LV lateral implants. The epicardial activation map patterns
showed that LVP led to delayed RV activation in patients
with both lateral and septal LV implants, where the basal
RV activated late. The maps demonstrate that the benefit of
LV-OPT for patients with SR and LBBB is from fusion of
the LV paced impulse with intrinsic right bundle branch
(RBB) conduction (Figure 4, septal implant, and Figure 5,
lateral implant). This is quantified by a significant improve-
ment in RVAT-90 with LV-OPT (52.8% 6 20.2%)
compared to LVP (2106.7% 6 51.5%; P , .01) or BiVP
(214.9% 6 34%; P , .01).

Figure 6A demonstrates BiVAT-90 as a function of AVD
using LVP with the optimal delay generating a 35%



Table 2 Patient-specific optimal pacing modality for each activation metric

Patient no. Underlying rhythm Electrode position

Optimal pacing modality

BiVAT-90 LVAT-95 RVAT-90 LVDI BiVDI

1 AF, CHB Septal LV LV LV LV LV
2 SR, LBBB Septal LV LV-OPT LV-OPT LV-OPT LV-OPT
3 AF, CHB Septal BiV LV BiV LV BiV
4 SR, LBBB Septal LV-OPT LV-OPT LV-OPT LV-OPT LV-OPT
5 AF, CHB Septal LV LV LV LV LV
6 SR, LBBB Lateral LV-OPT BiV LV-OPT BiV LV-OPT
7 AF, CHB Lateral BiV BiV LV BiV BiV
8 SR, LBBB Lateral LV-OPT LV-OPT LV-OPT LV-OPT LV-OPT
9 AF, CHB Lateral BiV BiV RV BiV BiV
10 AF, CHB Lateral BiV BiV BiV BiV BiV

Yellow denotes empirical BiV pacing; green, empirical LV-only pacing; blue, LV-OPT, ie, LV-only pacing at the electrically optimized AV delay; and red, RV
pacing.

AF, atrial fibrillation; BiV5 biventricular; BIVAT-905 time for 90% biventricular activation; BiVDI5 biventricular dyssynchrony index; CHB, complete heart
block; LBBB, left bundle branch block; LV, left ventricular; LV-OPT, LVP with an optimized atrioventricular delay; SR, sinus rhythm.
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improvement from baseline and 20% improvement
compared to BiVP, with a steep drop-off at nonoptimal de-
lays. By contrast, in a patient with a lateral LV implant, the
optimal delay yielded only a 5% improvement over BiVP,
with modest drop-offs at nonoptimal delays (Figure 6B).
Discussion
This was the first study to perform electroanatomical charac-
terization of leadless CRT and the first to evaluate how treat-
ment efficacy could be optimized. The findings were as
follows:
Figure 2 Mean improvement in each activation metric with BiV pacing and at the
RVP for those with CHB)—septal implant subgroup. *P, .05. BiV5 biventricula
dyssynchrony index; LVAT955 time for 95% left ventricular activation; LVDI5 le
activation.
1. Biventricular leadless endocardial CRT improves ECGi-
derived electrical activation and dyssynchrony metrics.

2. Leadless LV septal endocardial pacing improves ECGi-
derived metrics at the OPM.

3. BiVP may not be the OPM in all patients. The OPM is
dependent on patient factors, such as the underlying
rhythm, and procedural factors, such as the location of
the RE implant.

4. For those receiving leadless LV septal pacing, LVP may
be superior to BiVP.

5. For those with SR and LBBB, AV-optimized LVP may be
superior toBiVP,particularly inpatientswith septal implants.
optimal pacing modality (OPM) compared to baseline (underlying rhythm or
r; BIVAT-905 time for 90% biventricular activation; BiVDI5 biventricular
ft ventricular dyssynchrony index; RVAT905 time for 90% right ventricular



Figure 3 Mean improvement in activation metric with BiV, LV only, and LV only with optimized AV delay compared to baseline (underlying rhythm or RVP
for those with CHB)—septal implant subgroup. *P, .05. AV, atrioventricular; BiV5 biventricular; BIVAT-905 time for 90% biventricular activation; BiVDI
5 biventricular dyssynchrony index; LV, left ventricular; LVAT95 5 time for 95% left ventricular activation; LVDI 5 left ventricular dyssynchrony index;
RVAT90 5 time for 90% right ventricular activation.
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Efficacy of leadless CRT
Our findings are consistent with previous studies exam-
ining the effects of temporary LV endocardial pacing on
ECGi-derived activation. Optimal pacing improved
BiVAT-90 by .40% in the overall study population and
in the septal implant subgroup. This is comparable to find-
ings from Elliott et al,17 who reported that both temporary
BiV endocardial pacing (lateral wall LV stimulation) and
temporary left bundle branch area pacing (LBBAP; LV
septal stimulation) generated an improvement in BiVAT-
90 of w50%, with a 15% improvement in acute hemody-
namic response. In that study, BiV epicardial CRT re-
sulted in less pronounced improvements over baseline
(33%) compared to BiV endocardial pacing or LBBAP.
Studies have reported that LV endocardial pacing may
outperform epicardial pacing because of the higher con-
duction velocity of endocardial tissue and the unrestricted
pacing locations allowing operators to avoid myocardial
scar.20–22 However, uptake of permanent transvenous
endocardial pacing systems is limited by prohibitively
high stroke rates.23 Our study shows for the first time
that endocardial CRT delivered through a permanent lead-
less system can generate a similar degree of electrical acti-
vation and dyssynchrony improvement observed during
temporary LV endocardial pacing. This suggests that lead-
less technology allows the benefits of endocardial pacing
to be safely harnessed in a real-world setting.
Fusion pacing in leadless CRT
Fusion pacing refers to CRT delivery programmed to pre-
serve intrinsic AV conduction via the RBB in patients
with underlying LBBB.24 While long-term outcome data
are awaited, studies using conventional CRT have demon-
strated improvements in ECG and ECGi-derived metrics
of electrical dyssynchrony25,26 and acute hemodynamic
benefits.27 LVP from a coronary sinus branch has also
been shown to generate similar improvements in QRS
duration to conventional BiVP when a rate-adaptive
AVD algorithm to promote fusion is applied.28 Our study
is the first to describe a similar potential utility of leadless
endocardial pacing to deliver LV-only fusion pacing,
which may provide superior resynchronization to BiVP
in selected patients.
Leadless LV septal pacing
Epicardial activation mapping suggests that LV septal endo-
cardial pacing improves BiV and LV activation compared to
baseline; however, RV activation appeared delayed. This is
consistent with previous studies examining transvenous
LBBAP using ECGi29 and ultra-high-frequency ECG,15

which describe delayed RV activation with nonselective
LBB capture. In our cohort, septal LVP led to improvements
in BiVAT-90 predominantly through improvements in
LVAT-95. However, superior results were observed in pa-
tients in SR when the optimal AVD was set, with significant
improvements in RVAT-90. This suggests that fusion pacing
may be important in achieving the best possible results from
LV septal endocardial pacing supporting prior in silico30 and
in vivo31 evidence demonstrating the benefits of AV optimi-
zation with transvenous LBBAP. Indeed, our results indicate
that BiV activation is particularly sensitive to AVDmodifica-
tion in those receiving LV septal compared to lateral wall



Figure 4 Activation maps for patient 2 (septal implant) at each pacing modality. Top row:Activation time maps. The red and blue areas indicate early and late
activation. Bottom row: Unipolar electrograms for 1 LV and 1 RV location are indicated in pink on the activation maps above. The dots on the electrograms
indicate the annotated activation times. BiV 5 biventricular; BIVAT-90 5 time for 90% biventricular activation; BiVDI 5 biventricular dyssynchrony index;
LV, left ventricular; LVAT955 time for 95% left ventricular activation; LVDI5 left ventricular dyssynchrony index; RVAT905 time for 90% right ventricular
activation.

Figure 5 Activation maps (top row) and unipolar electrograms for 1 LV and 1 RV location (bottom row) for patient 8 (lateral LV implant) at each pacing
modality. BiV 5 biventricular; BIVAT-90 5 time for 90% biventricular activation; BiVDI 5 biventricular dyssynchrony index; LV, left ventricular;
LVAT95 5 time for 95% left ventricular activation; LVDI 5 left ventricular dyssynchrony index; RV, right ventricular; RVAT90 5 time for 90% right ven-
tricular activation.
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pacing. The mechanism of this phenomenon is not clear. We
postulate, however, that at nonoptimal delays, an LV septal
paced wavefront may block intrinsic RBB conduction. Simi-
larly, RV apical pacing may cause distal His-Purkinje tissue
block, thereby inhibiting the propagation of the LV septal
paced wavefront during BiVP. This may explain why BiVP
was less favorable than LVP in this study subgroup. Our re-
sults thus suggest that while leadless LV septal pacing shows
promise, further study into how to clinically deliver LVPmay
be needed to maximize this potential.
Future directions in leadless CRT and leadless CSP
The theoretical benefits of LV endocardial septal pacing
stem from the potential to achieve left-sided conduction
system capture.14,32,33 In our cohort of study patients, in-
traprocedural end points for CSP34 were not targeted; how-
ever, ECG features of CSP were nevertheless observed in
3 patients. The next stage of research would be evaluation
of outcomes when leadless pacing is performed to meet
target parameters such as implantation at the site of an
LBB potential or demonstration of selective and



Figure 6 Improvement in BiVAT-90 at varyingAV delays (AVDs) using synchronous LV-only pacing compared to baseline, with example ECGi-derived lead
V1 equivalent electrograms (right panels). BiVAT-90 improvement using BiV pacing is demonstrated with the dashed line. A: Patient 2—septal implant. B:
Patient 8—lateral implant. AV, atrioventricular; BiV5 biventricular; BIVAT-905 time for 90% biventricular activation; BiVDI5 biventricular dyssynchrony
index; ECGi, electrocardiographic imaging; LV, left ventricular; LVAT955 time for 95% left ventricular activation; LVDI5 left ventricular dyssynchrony in-
dex; RVAT90 5 time for 90% right ventricular activation.
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nonselective capture. The upcoming Achieving Conduction
System Activation With Leadless Left Ventricular Endo-
cardial Pacing trial (ClinicalTrials.gov identifier
NCT05659680) aims to prospectively evaluate the feasi-
bility of leadless CSP. A further area requiring attention
is the delivery of LVP through a leadless device, as our
findings suggest that this may be beneficial not only in pa-
tients with septal implants but possibly also in patients
with lateral implants via fusion pacing. Current leadless
devices used for RVP, such as Micra (Medtronic), are
too large to safely pace the LV without adverse effects.35

As technology becomes more compact, the future will
likely see “stand-alone” leadless LVP devices without the
requirement of a coimplant. Of note, the WiSE-CRT
device could potentially deliver LVP by timing its impulse
at a fixed interval after an atrial pacing event rather than
an RVP event. This technique has yet to be demonstrated
in humans; however, testing its feasibility may be useful

http://ClinicalTrials.gov
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in optimizing leadless CRT using currently available tech-
nology.
Limitations
This is a mechanistic study with a small sample size and
heterogeneous patient and procedure characteristics. This
is representative of a real-world cohort of patients with
advanced heart failure who receive these devices and
have a high incidence of characteristics such as AF,
CHB, and ischemic cardiomyopathy. The sample size
also reflects the novelty of the technology being evaluated.
In particular, leadless LV septal pacing has been per-
formed in only 8 patients worldwide, 5 of whom are re-
cruited into this study. As such, at this time it was not
possible to implement more stringent inclusion criteria to
homogenize the study population, for example, the posi-
tion of the LV electrodes. These had been previously im-
planted, with the LV implant location chosen at the
operator’s discretion based on delivery sheath stability
and thresholds. In addition, it was not possible to recruit
a larger pool of patients in SR at the time of testing. As
such, subgroup patient numbers were too small to make
statistical comparisons between BiVP, LVP, or LV-OPT.
However, by defining the OPM, we were able to demon-
strate to a statistically significant degree that leadless CRT
improves electrical activation compared to baseline, if de-
vice settings are optimized on an individualized basis. In
this regard, our findings should be considered hypothesis
generating and open avenues of investigation into which
patients will likely benefit from certain LV implant loca-
tions or device settings.

Regarding ECGi mapping, this has the advantage of be-
ing quick and noninvasive. Its disadvantage is being un-
able to directly visualize the septum, as the maps
generated are the sites of epicardial breakout. Invasive
mapping of the septum would be useful in fully character-
izing modalities such as BiV LV septal pacing and fusion
pacing, and this is one of the aims of the upcoming
Achieving Conduction System Activation With Leadless
Left Ventricular Endocardial Pacing study.
Conclusion
This is the first study to characterize the electroanatomical ef-
fects of BiV endocardial pacing and LV septal pacing using a
permanent system. Our findings demonstrate the acute elec-
trical efficacy of leadless CRT and leadless LV septal pacing
as CRT modalities. While current recipients of this technol-
ogy are a niche cohort of patients with heart failure, the areas
of interest highlighted in this study are applicable moving
forward as the field of leadless pacing in general continues
to evolve and expand.

Developments in pacing techniques and technologies
are vital to unlocking the potential of leadless CRT and
leadless CSP, with individual patient optimization likely
being the key to maximizing system performance.
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