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Abstract
Background  Autism and schizophrenia spectrum disorders (SSDs) both feature atypical social cognition. Despite 
evidence for comparable group-level performance in lower-level emotion processing and higher-level mentalizing, 
limited research has examined the neural basis of social cognition across these conditions. Our goal was to compare 
the neural correlates of social cognition in autism, SSDs, and typically developing controls (TDCs).

Methods  Data came from two harmonized studies in individuals diagnosed with autism or SSDs and TDCs (aged 
16–35 years), including behavioral social cognitive metrics and two functional magnetic resonance imaging (fMRI) 
tasks: a social mirroring Imitate/Observe (ImObs) task and the Empathic Accuracy (EA) task. Group-level comparisons, 
and transdiagnostic analyses incorporating social cognitive performance, were run using FSL’s PALM for each task, 
covarying for age and sex (1000 permutations, thresholded at p < 0.05 FWE-corrected). Exploratory region of interest 
(ROI)-based analyses were also conducted.

Results  ImObs and EA analyses included 164 and 174 participants, respectively (autism N = 56/59, SSD N = 50/56, 
TDC N = 58/59). EA and both lower- and higher-level social cognition scores differed across groups. While canonical 
social cognitive networks were activated, no significant whole-brain or ROI-based group-level differences in neural 
correlates for either task were detected. Transdiagnostically, neural activity during the EA task, but not the ImObs task, 
was associated with lower- and higher-level social cognitive performance.

Limitations  Despite attempting to match our groups on age, sex, and race, significant group differences remained. 
Power to detect regional brain differences is also influenced by sample size and multiple comparisons in whole-brain 
analyses. Our findings may not generalize to autism and SSD individuals with co-occurring intellectual disabilities.
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Background
Autism spectrum disorder (ASD;  hereafter, referred to 
as autism) and schizophrenia spectrum disorders (SSDs) 
share social cognitive impacts that influence functioning 
and quality of life [1, 2]. There are currently no approved 
interventions nor established biomarkers to guide novel 
interventions for social cognitive impairments in either 
condition [3]. Although cross-condition research is 
increasing [4, 5], the extent to which neural correlates 
of social cognition are shared or distinct across the two 
conditions remains unclear.

Social cognition is subserved by partially dissociable 
neural circuits [6], including a ​​lower-level frontoparietal/
mirror neuron simulation network for more basic emo-
tion processing [7], and a higher-level cortical midline 
and lateral temporal mentalizing network for theory of 
mind [8, 9] (e.g., complex mental state inference). Via a 
meta-analysis, we recently found similar levels of behav-
ioral lower- and higher-level social cognitive performance 
in SSDs and autism, though results were heterogeneous 
[4]. Prior autism-control research using functional mag-
netic resonance imaging (fMRI) tasks are suggestive of 
lower-level circuit alterations [10–12], with mixed evi-
dence for higher-level circuit differences in autistic indi-
viduals versus controls [13, 14]. In people with SSDs, 
both lower-level [15] and higher-level [16–18] circuit dif-
ferences versus controls have been shown. Few task-fMRI 
studies have compared autism and SSD samples directly, 
typically in smaller samples (Ns ~ 12-<50/group) using a 
single fMRI task. These studies have reported condition-
specific neural signatures (e.g., increased activation [19] 
or increased connectivity [20, 21] in SSDs versus autism), 
but also a lack of group-level differences across autism 
and SSDs [21–24] in regions implicated in lower-level 
and higher-level social cognition.

Our primary objective was to examine common and 
unique differences in the neural correlates of lower-level 
and higher-level social cognition among individuals with 
autism or SSDs and typically developing controls (TDCs) 
using a group-wise whole-brain approach. We studied a 
unique transdiagnostic sample using harmonized multi-
center neuroimaging and behavioral measures, including 
two different fMRI tasks: the Imitate/Observe (ImObs) 
task, which activates lower-level social cognitive regions 
[7, 25–27], and the Empathic Accuracy (EA) task to 
probe both lower-level simulation and higher-level men-
talizing networks [28]. We hypothesized that the neural 

correlates of social cognition would differ between both 
autism and SSD compared to TDC groups, particularly in 
regions of the simulation and mentalizing networks. Our 
secondary objective was to examine the neural correlates 
of social cognition by stimuli valence (positive/negative), 
based on evidence of distinguishable brain responses to 
task emotional content [21, 29]. We hypothesized that 
neural correlates of social cognition would diverge across 
positive and negative stimuli, but that autism and SSD 
groups would differ from the TDC group, aligning with 
findings from the full tasks. Finally, we performed trans-
diagnostic whole-brain analyses to examine patterns of 
association between brain activity during the ImObs and 
EA tasks and lower- and higher-level social cognitive per-
formance. We hypothesized that brain activation within 
circuitry implicated in lower- and higher-level social 
cognition (i.e., the simulation and mentalizing networks) 
would be dimensionally associated with lower- and 
higher-level social cognitive performance across groups. 
To complement the whole-brain analyses, exploratory 
post-hoc region of interest (ROI)-based analyses were 
conducted to examine effects of social cognitive perfor-
mance and diagnostic group on regional brain activation 
across our sample.

Methods
Participants
Participants with a clinical diagnosis of autism and 
TDCs, aged 16–35 years, were recruited through our 
ongoing National Institute of Mental Health (NIMH) 
funded study (R01  MH114879, Social Processes Ini-
tiative in the Neurobiology of Autism-spectrum and 
Schizophrenia-spectrum Disorders, SPIN-ASD), from 
the Centre for Addiction and Mental Health (CAMH; 
Toronto, Canada) and local community agencies (August 
2018-February 2023). Participants with a clinical SSD 
diagnosis and a TDC cohort, aged 18–59 years, were 
recruited through the completed partner harmonized 
NIMH-funded Research Domain Criteria study (1/3R01 
MH102324, 2/3R0I MH102313, 3/3R01 MH102318): 
Social Processes Initiative in the Neurobiology of the 
Schizophrenia(s) (SPINS) [30–32]. SPINS participants 
were recruited from CAMH, Zucker Hillside Hospital 
(Glen Oaks, NY), and the Maryland Psychiatric Research 
Center (Baltimore, MD) (December 2014-December 
2020). All SPIN-ASD assessments were harmonized to 
the SPINS study on clinical, cognitive, and imaging data 

Conclusions  The lack of whole-brain and ROI-based group-level differences identified and the dimensional EA brain-
behavior relationship observed across our sample suggest that the EA task may be well-suited to target engagement 
in novel intervention testing. Our results also emphasize the potential utility of cross-condition approaches to better 
understand social cognition across autism and SSDs.
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collection, to examine the neurobiology of social cogni-
tion across autism, SSD, and TDC groups. From the total 
SPINS sample of 200 SSDs and 159 TDCs with usable EA 
fMRI data, a subset of SPINS participants, aged 16–35 
and scanned on one of the three 3T Siemens Prisma 
scanners used across the SPINS sites, were included in 
the present study to optimize matching on age and scan-
ner platform with SPIN-ASD. All included imaging data 
were collected on 3T Siemens Prisma scanners using 
matched scanning parameters and standardized oper-
ating procedures to minimize inter-site variance in task 
administration and data collection. Data were collected 
across three visits: screening and clinical assessments; 
MRI; neurocognitive and social cognitive assessments.

Participants with autism met DSM-5 criteria for ASD, 
confirmed based on a clinical interview conducted by 
a trained child and youth psychiatrist (SHA, M-CL, 
or other expert clinician from specialty autism assess-
ment service), using the Autism Diagnostic Observa-
tion Schedule-2 (ADOS-2) [33]. Participants with SSDs 
met DSM-5 criteria for schizophrenia, schizophreniform 
disorder, delusional disorder, schizoaffective disorder, 
or psychotic disorder not otherwise specified, assessed 
using the Structured Clinical Interview for DSM (SCID-
IV-TR). Included autism and SSDs participants were 
clinically stable, and had no changes in antipsychotic 
medication 30 days prior to study enrollment. TDC par-
ticipants had no DSM-5 disorder, and had no first-degree 
relatives with a DSM-5 diagnosis of ASD, SSDs, or other 
psychotic disorders, or a bipolar or depressive disorder 
with psychotic features, confirmed using the SCID-IV-
TR. Participants, regardless of diagnosis, were excluded 
if they: were non-English speakers, pregnant, had MRI 
contraindications (e.g., metal implants, pacemaker), 
IQ < 70 (based on WASI-II [34] or Wechsler Test of 
Adult Reading (WTAR) [35]), substance use/dependency 
disorder within the last 6 months or a positive baseline 
urine drug screen, prior psychosurgery, a history of head 
trauma resulting in unconsciousness for > 30 min, Type 1 
diabetes mellitus, debilitating or unstable medical illness 
(e.g., cardiac, hepatic, renal or pulmonary disease, can-
cer), neurological diseases (e.g., Parkinson’s disease, epi-
lepsy) or any central nervous system disorder. All autism, 
SSD, and TDC participants provided voluntary informed 
consent, and the SPIN-ASD and SPINS protocols were 
approved by the respective research ethics and institu-
tional review boards across sites (CAMH Research Eth-
ics Board, Northwell Health Human Research Protection 
Program, Institutional Review Board at the University of 
Maryland Baltimore).

Social cognitive measures
Social cognition was assessed using EA task performance 
during fMRI, and the Reading the Mind in the Eyes Test 

(RMET), which involves identifying emotional and men-
tal states based on pictures of the eye region only [36], the 
Penn Emotion Recognition Test (ER-40), a static facial 
emotion recognition task [37], and all subscales from the 
Awareness of Social Inference Test–Revised (TASIT), a 
task which probes both lower-level emotion processing 
and higher-level mentalizing via video vignettes [38], out-
side the scanner. Using this battery in the SPINS sample, 
we previously showed very good fit of a two-factor model 
including lower-level ‘simulation’ and higher-level ‘men-
talizing’ factors across individuals with SSDs and TDCs 
[31]. In the current sample, scores from these measures 
were used to estimate lower-level ‘simulation’ (includ-
ing ER-40, RMET, TASIT 3 Lies, and EA task scores) 
and higher-level ‘mentalizing’ (TASIT 2 Simple Sarcasm, 
TASIT 2 Paradoxical Sarcasm, and TASIT 3 Sarcasm) 
scores for each participant using multiple regression 
in the R package lavaan [39]. See Oliver et al., 2019 for 
details [31]. The EA task and out-of-scanner social cogni-
tive tasks were selected based on findings from the Social 
Cognition Psychometric Evaluation (SCOPE) study [40] 
and the Social Cognition and Functioning in Schizophre-
nia project [41]. The ImObs and EA tasks are both estab-
lished fMRI paradigms known to engage regions of the 
lower-level simulation network [7, 25–27], and both the 
lower- and higher-level social cognitive networks [28], 
respectively. The EA task is also considered to be a more 
naturalistic social cognitive task [42].

Imaging
MRI data acquisition
MRI data from SPINS used in the present analyses were 
collected across three 3T Siemens Prisma scanners with 
multichannel head coils using harmonized scanning 
parameters, one of which was also used for MRI data 
collection in SPIN-ASD. Though SPINS also collected 
data on three other 3T MRI scanners, only data col-
lected on Prisma scanners were included in our analyses 
to mitigate systematic study-related and scanner manu-
facturer/model measurement biases. Prior work has 
demonstrated the contribution of scanner manufacturer 
to measurement bias and site effects, in structural [43] 
and functional [44] MRI data. A lack of scanner-based 
differences in fMRI patterns has also been found across 
scanners from the SPINS study using traveling human 
phantom data [45]. See Table S1 for the number of scans 
by site, task, and diagnostic group. A T1-weighted ana-
tomical scan (fast gradient sequence; TR = 2300 ms, 
TE = 3 ms, flip angle = 9°, field of view (FOV) = 230  mm, 
in plane resolution = 0.9 mm2, slice thickness = 0.9  mm), 
the EA task, and ImObs task were administered as part of 
the matched SPINS and SPIN-ASD multimodal MRI pro-
tocols [30]. Scans were checked by research staff, which 
included quantitative monitoring (e.g., mean framewise 
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displacement) and qualitative monitoring (e.g., ringing or 
ghosting in scans).

ImObs task  The ImObs fMRI task [7, 10, 46] consists 
of separate counter-balanced Imitate and Observe runs 
(TR = 3000 ms, TE = 30 ms, flip angle = 77°, FOV = 192 mm, 
in plane resolution = 3 mm2, slice thickness = 3 mm). Par-
ticipants viewed color photographs of 16 individuals (8 
males/8 females) expressing five facial expressions (angry, 
fearful, sad, happy, or neutral), and intermittent fixa-
tion trials. During the imitate session, participants were 
instructed to imitate the expression shown on the faces 
in the photographs, and to only use their facial muscles in 
doing so to minimize motion. During the observe session, 
participants were instructed to observe the faces in the 
photographs without moving. Prior to the MRI, partici-
pants were carefully trained to perform the imitate task 
without head motion. In each session, there were 80 faces 
(16/expression) and 16 fixation trials that were presented 
in a pseudorandomized order. Each trial lasted approxi-
mately three seconds, with faces presented for two sec-
onds, and an inter-stimulus interval jittered at 500–1500 
ms. Performance was monitored via a camera positioned 
in the MRI, to ensure participants were performing the 
task correctly. ImObs fMRI data were excluded for partic-
ipants that: (1) were missing data, (2) had a mean frame-
wise displacement (FD) > 0.5 mm for either the imitate or 
observe runs, (3) failed imaging quality control (see Table 
S3).

EA task  The EA fMRI task [28, 41, 47] consists of three 
runs acquired using an echo-planar imaging sequence 
(TR = 2000 ms, TE = 30 ms, flip angle = 77°, FOV = 218 mm, 
in-plane resolution = 3.4 mm2, slice thickness = 4  mm). 
Participants watched 9 videos (~2.0–3.0 min each, three 
per run) of individuals detailing autobiographical events, 
and two interleaved control videos per run (40  s each). 
Using a button box, participants provided continu-
ous ratings of how positive or negative they thought the 
individual felt on a 9-point scale (1 = extremely negative, 
9 = extremely positive). An EA score was calculated for 
each participant by correlating their ratings over time with 
ratings provided by individuals in the videos, followed by 
Fisher r-to-z transformation [28]. As a behavioral control 
condition, participants provided continuous ratings cor-
responding to the lightness/darkness of a greyscale circle 
that changed shades (on a 9-point scale; 1 = extremely 
light, 9 = extremely dark) [30, 48]. A circle block score was 
calculated for each participant by correlating their rat-
ings with standard ratings corresponding to the lightness/
darkness of the circle, followed by Fisher r-to-z transfor-
mation. The control (circles) task was included to confirm 
that participants were engaged throughout the task. EA 
fMRI data were excluded for participants that: (1) were 

missing data for any of the three EA runs, (2) made no 
responses in any of the nine videos, (3) made only one 
(i.e., a single) button press across more than one of the 
nine videos, (4) had a mean circle block score < 0.2, (5) 
had a mean FD > 0.5 mm for any of the three EA runs, (6) 
failed imaging quality control (see Table S2).

MRI preprocessing
MRI preprocessing was performed using fMRIPrep 
1.5.8 [49, 50], based on Nipype 1.4.1 [51]. Anatomical 
T1-weighted images were corrected for intensity non-
uniformity and skull-stripped using ANTs 2.2.0 [52]. 
Brain tissue segmentation of cerebrospinal fluid, white-
matter and gray-matter was performed using FSL 5.0.9 
[53]. Brain surfaces were reconstructed using FreeSurfer 
6.0.1 [54]. For each of the fMRI runs, fieldmap-less dis-
tortion correction was performed using ANTs [55]. 
Functional data was coregistered to the corresponding 
T1-weighted image using Freesurfer’s boundary-based 
registration with six degrees of freedom. Functional data 
underwent slice-timing correction and motion correc-
tion using MCFLIRT (FSL 5.0.9) [56].

The ciftify bids app (https://github.com/edickie/ciftify) 
[57] was then used to transform the functional data onto 
the cortical surface using a non-linear transform to the 
MNI152 template via FSL’s FNIRT. The ciftify_clean_img 
function from the ciftify toolbox was used to drop four 
TRs for each EA and ImObs scan, and to smooth the 
functional data using a 6 mm full width at half maximum 
Gaussian kernel.

Statistical analyses
EA, simulation, and mentalizing scores were compared 
between autism, SSD, and TDC groups using Kruskal-
Wallis tests due to non-normal distributions, followed by 
pairwise Dunn’s tests with false discovery rate (FDR) cor-
rection where applicable. These models were re-run after 
removing data points detected as outliers in sensitivity 
analyses (see Supplementary Methods).

Individual-level task activity was measured via gen-
eral linear models (GLMs) using AFNI’s 3dDeconvolve 
module in nipype [58, 59]. Both ImObs and EA included 
event regressors using the standard hemodynamic 
response function (HRF), and noise regressors including 
the six head motion correction parameters, mean white 
matter signal, mean cerebral spinal fluid signal, and the 
square, derivative, and square of the derivative for each of 
these regressors (generated by fMRIPrep).

ImObs task  Event regressors for each expression and the 
fixation cross were modeled for each condition (imitate 
and observe). These regressors were fit to each voxel to 
model the stimulus-evoked response. Emotional faces 
were contrasted in the imitate versus the observe run. 

https://github.com/edickie/ciftify
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Contrasts were also generated for imitation versus obser-
vation of negative (sad, angry, fearful) and positive (happy) 
emotional faces separately.

EA task  Stimulus regressors were fit for the duration of 
the EA videos, circle videos, and for each button press. A 
parametric modulator regressor was also fit based on the 
EA score for each video, measuring brain activity asso-
ciated with EA performance [16, 28, 30]. These regres-
sors were fit to each voxel to model the stimulus-evoked 
response. A GLM was also run to model negative and pos-
itive videos separately, with the other regressors remain-
ing the same.

Group-level task activity was assessed using 1000 per-
mutations with Family-Wise Error (FWE)-corrected 
threshold-free cluster enhancement (TFCE: pFWE< 0.05), 
implemented in FSL’s Permutation Analysis of Linear 
Models (PALM) [60]. All PALM models included age and 
sex assigned at birth as covariates. For ImObs, beta maps 
from the imitate-observe contrast for emotional faces 
were examined. For EA, activity related to EA (para-
metric modulation) was examined. Group analyses were 
run separately for autism, SSD, and TDC groups, and 
contrasting autism-TDC, SSDs-TDC, and autism-SSDs. 
Analyses were run across all stimuli, and by valence. 
Across participants, separate PALM models were also 
run for ImObs and EA videos (not modulated by EA 
scores) including simulation and mentalizing scores as 
predictors to identify activity related to social cognitive 
performance.

To complement the transdiagnostic whole-brain find-
ings, exploratory post-hoc ROI-based analyses were 
also conducted. ROIs were defined using meta-analytic 
association test maps generated by Neurosynth for the 
term ‘mentalizing’ (151 studies), and a topic-based map 
which we refer to as ‘simulation’ (96 studies), with top-
loading terms including ‘mirror’, ‘system’, ‘neuron’, ‘obser-
vation’, and ‘mns’ (55 topics) [61, 62] (see Supplementary 
Methods). A topic-based map was used for simulation 
because this term is also used in other fields and termi-
nology varies when referring to this construct, whereas 
mentalizing is more widely agreed upon in the literature. 
ROIs were selected based on implication in lower-level 
simulation from the 55 topic map (left and right inferior 
frontal gyrus [IFG] into premotor cortex [7]) and higher-
level mentalizing from the mentalizing term map (left 
and right temporoparietal junction [TPJ] and left and 
right anterior superior temporal sulcus [STS] [8, 9]). Beta 
weights reflecting brain activity during the EA videos 
were extracted from these six Neurosynth-defined ROIs 
using ciftify [57].

For each ROI, exploratory regression models were run 
to estimate the effects of relevant social cognitive perfor-
mance (i.e., either simulation or mentalizing scores) on 

ROI-based brain activity, with FDR correction applied. 
Simulation scores were used in models for the lower-level 
ROIs (left/right IFG), and mentalizing scores were used 
in models for the higher-level ROIs (left/right TPJ and 
STS) to limit the number of comparisons. To evaluate 
whether a model including diagnostic group information 
performed better than the transdiagnostic model includ-
ing only social cognitive performance, linear models were 
also conducted for ROI-based brain activity including 
social cognitive performance (simulation or mentaliz-
ing), diagnostic group, and social cognitive performance 
x diagnostic group, with FDR correction. These models 
were compared to models including only social cogni-
tive performance as a predictor using the Akaike Infor-
mation Criteria (AIC). Additionally, potential scanner 
effects on brain activation patterns were examined using 
ANOVAs for each of the ROIs, with FDR correction. Age 
and sex assigned at birth were included as covariates in 
all models.

Results
Participants
A total of 226 participants with fMRI data collected on 
one of three 3T Siemens Prisma scanners used across 
SPINS/SPIN-ASD were submitted to quality control. 
Following quality control, matching was undertaken to 
optimize matching between SPIN-ASD and SPINS sam-
ples on age, sex, and race as implemented in the MatchIt 
package in R [63] (see Supplementary Methods and 
Tables S2-S3). Our sample consisted of 174 participants 
with usable EA task data (see Table  1 for demographic 
and clinical characteristics). From this sample, 164 par-
ticipants had usable ImObs task-fMRI data (autism: 
n = 56, 20.9 [3.92] years, 22-female; SSD: n = 50, 24.7 
[4.44] years, 17-female; TDC: n = 58, 25.8 [3.96] years, 
32-female; Table S4). Autism, SSD, and TDC groups dif-
fered in age, race, ethnicity, and education (all p < 0.05).

Social cognitive performance
Autism, SSD, and TDC groups differed on full EA 
task scores (H(2) = 11.65, p = 0.003), EA positive videos 
(H(2) = 6.67, p = 0.04), and EA negative videos (H(2) = 6.90, 
p = 0.03; Fig.  1a). The SSD group had lower scores than 
the TDC (pFDR = 0.003) and autism (pFDR = 0.03) groups 
on the full EA task, and lower scores than the TDC 
group on EA positive (pFDR = 0.03) and EA negative 
(pFDR = 0.03) videos.

Simulation scores also differed across groups 
(H(2) = 20.67, p < 0.001), with both the SSD 
(pFDR < 0.001) and autism (pFDR = 0.001) groups scor-
ing lower than TDCs (Fig. 1b). Groups differed on men-
talizing scores (H(2) = 26.95, p < 0.001), where the SSD 
group scored lower than TDC (pFDR < 0.001) and autism 
(pFDR = 0.01), and the autism group scored lower than 
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TDCs (pFDR = 0.01) (Fig. 1c; Table S5). Patterns of signif-
icant group differences in social cognitive performance 
remained the same in sensitivity analyses following the 
removal of detected outliers (see Supplementary Results).

Group-level fMRI task activity
ImObs: All three groups demonstrated the expected 
pattern of activity during the ImObs task, including 

activation in the frontoparietal mirror neuron system 
(e.g., the IFG, premotor cortex, inferior parietal lobule, 
and posterior STS) [7, 10, 64] (Fig. 2). Results remained 
similar when trials containing positive or negative faces 
were considered separately. There were no significant 
group differences in activation for the full task, or for 
positive/negative faces (Fig. 2).

Table 1  Participant demographic and clinical characteristics for empathic accuracy (EA) sample
Sample with EA fMRI data P-value
Full sample
(n = 174)

Aut
(n = 59)

SSD
(n = 56)

TDC
(n = 59)

Age (years) < 0.001
Mean (SD) 24.1 (± 4.62) 21.2 (± 3.97) 25.3 (± 4.54) 25.8 (± 3.93)
Median [Min, Max] 24.0 [16.0, 34.0] 21.0 [16.0, 33.0] 24.5 [18.0, 34.0] 26.0 [17.0, 34.0]
Sex 0.07
Female 74 (43%) 23 (39%) 19 (34%) 32 (54%)
Male 100 (57%) 36 (61%) 37 (66%) 27 (46%)
Handedness 0.10
Right 144 (83%) 49 (83%) 47 (84%) 48 (81%)
Left 19 (11%) 7 (12%) 2 (4%) 10 (17%)
Mixed 1 (1%) 1 (2%) 0 (0%) 0 (0%)
Missing 10 (5.7%) 2 (3.4%) 7 (12.5%) 1 (1.7%)
Race < 0.001
White 97 (56%) 44 (75%) 18 (32%) 35 (59%)
Black or African American 27 (16%) 1 (2%) 18 (32%) 8 (14%)
Asian 32 (18%) 4 (7%) 13 (23%) 15 (25%)
More than one race 13 (7%) 6 (10%) 6 (11%) 1 (2%)
Other 5 (3%) 4 (7%) 1 (2%) 0 (0%)
Ethnicity 0.02
Hispanic or Latino 16 (9%) 9 (15%) 6 (11%) 1 (2%)
Not Hispanic or Latino 158 (91%) 50 (85%) 50 (89%) 58 (98%)
Education (years) < 0.001
Mean (SD) 14.3 (± 2.47) 12.7 (± 2.13) 13.8 (± 1.76) 16.4 (± 1.86)
Median [Min, Max] 14.0 [10.0, 20.0] 12.0 [10.0, 19.0] 13.0 [10.0, 18.0] 16.0 [11.0, 20.0]
Estimated IQ 0.08
Mean (SD) 113 (± 12.6) 115 (± 13.8) 110 (± 12.3) 113 (± 11.2)
Median [Min, Max] 115 [73.0, 145] 117 [73.0, 145] 113 [77.0, 127] 116 [79.0, 129]
BSFS Total < 0.001
Mean (SD) 147 (± 32.8) 125 (± 25.0) 137 (± 26.1) 178 (± 18.5)
Median [Min, Max] 145 [54.0, 217] 127 [54.0, 180] 136 [75.0, 207] 178 [135, 217]
BPRS Total 0.03
Mean (SD) - 27.2 (± 4.9) 30.8 (± 8.29) -
Median [Min, Max] - 27.0 [18.0, 40.0] 30.0 [19.0, 54.0] -
ADOS-CSS (Aut Only)
Mean (SD) - 6.39 (± 2.21) - -
Median [Min, Max] - 7.00 [1.00, 10.0] - -
SANS Total (SSD Only)
Mean (SD) - - 30.8 (± 8.29) -
Median [Min, Max] - - 30.0 [19.0, 54.0] -
Demographic and clinical characteristics for the full sample with usable empathic accuracy (EA) fMRI data. Age, education, and estimated IQ were compared 
across groups using non-parametric Kruskal-Wallis Rank Sum Tests given non-equal distributions. Sex was compared across groups using Chi-Square Test, whereas 
handedness, race, and ethnicity were compared using Fisher’s Exact Tests given cell values were < 5. Aut: autism; SSD: schizophrenia spectrum disorders; TDC: 
typically developing controls; BSFS: Birchwood Social Functioning Scale; BPRS: Brief Psychiatric Rating Scale; ADOS-CSS: Autism Diagnostic Observation Schedule - 
Calibrated Severity Scores; SANS: Scale for the Assessment of Negative Symptoms
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Fig. 2  Group-level general linear model (GLM) analyses of Imitate/Observe (ImObs) task-fMRI data, conducted using FSL’s permutation analysis of linear 
models (PALM), for autism (Aut), schizophrenia spectrum disorders (SSDs), and typically developing control (TDC) groups. Main effects for each group 
are shown, according to analyses performed using: (a) all faces from the full ImObs task (n = 80); (b) positive emotion faces from the ImObs task (happy; 
n = 16); (c) negative emotion faces from the ImObs task (sad, angry, and fearful; n = 48). No significant group differences were detected

 

Fig. 1  Group comparisons of social cognitive performance. (a) Empathic accuracy (EA) task performance from the full task, positive videos, and negative 
videos are shown, as well as (b) lower-level simulation scores and (c) higher-level mentalizing scores. Scores were compared across groups using non-
parametric Kruskal-Wallis tests, followed by pairwise Dunn’s tests with false discovery rate correction. Aut: autism; SSDs: schizophrenia spectrum disorders; 
TDC: typically developing controls. *p < 0.05, **p < 0.01., ***p < 0.001
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EA task: Across the full EA task, all groups demon-
strated widespread activity in the right hemisphere that 
was positively related to EA performance, including in 
expected regions implicated in social cognition (e.g., 
temporal pole, STS, inferior parietal lobule, TPJ). Dur-
ing positive videos, no neural correlates of EA were sig-
nificant in the autism and SSDs groups, though activity 
in visual regions were negatively related to EA in TDCs. 
During negative videos, all groups demonstrated wide-
spread bilateral activity that was positively related to EA 
in brain regions implicated in social cognition. There 
were no significant group-level differences in neural cor-
relates for EA for the full task or for positive/negative 
videos (Fig. 3).

Transdiagnostic brain-behavior associations
Neither simulation nor mentalizing scores were signifi-
cantly associated with brain activity during the ImObs 
task across participants. Both simulation and mentalizing 
scores were transdiagnostically positively related to wide-
spread bilateral activation during the EA task in regions 
of the simulation and mentalizing networks, including 
the IFG, anterior insula, TPJ, and STS (Fig. 4).

Exploratory region of interest (ROI)-based analyses
Exploratory post-hoc ROI-based regression analy-
ses indicated that mentalizing scores were a sig-
nificant predictor of brain activation in the left TPJ 
(b = 0.79, t(170) = 2.98, pFDR = 0.0099), right TPJ 
(b = 0.55, t(170) = 2.23, pFDR = 0.041), left STS (b = 0.56, 

Fig. 4  Transdiagnostic general linear model (GLM) analyses to examine relationships between empathic accuracy (EA) task-fMRI whole block data and 
social cognitive performance. Analyses were conducted using FSL’s permutation analysis of linear models (PALM) across diagnostic groups. Main effects 
shown here indicate regions where EA task activity (without parametric modulation) was related to (a) simulation and (b) mentalizing factor scores

 

Fig. 3  Group-level general linear model (GLM) analyses of empathic accuracy (EA) task-fMRI data, conducted using FSL’s permutation analysis of linear 
models (PALM), for autism (Aut), schizophrenia spectrum disorders (SSDs), and typically developing control (TDC) groups. Main effects for each group are 
shown, according to analyses performed using: (a) all videos from the EA task (n = 9); (b) positive videos from the EA task (n = 4); (c) negative videos from 
the EA task (n = 5). No significant group differences were detected
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t(170) = 3.85, pFDR = 0.001), and right STS (b = 0.34, 
t(170) = 2.72, pFDR = 0.014) across our sample, whereas 
simulation scores did not significantly predict activity in 
the left IFG ROI (b=-0.047, t(170)=-0.27, pFDR = 0.79) 
or right IFG (b = 0.17, t(170) = 1.01, pFDR = 0.37; Fig.  5). 
Exploratory ANOVAs examining the effects of social cog-
nitive performance, diagnostic group, and social cogni-
tive performance x diagnostic group on ROI-based brain 
activity revealed significant effects of mentalizing scores 
for the right TPJ, left STS, and right STS (all pFDR < 0.05), 
but not diagnostic group or social cognition x diagnos-
tic group across ROIs (see Table S6 for details and Fig-
ure S1 for associations between regional brain activity 
and social cognition by diagnostic group). The mod-
els with social cognitive performance alone performed 

better for ROI-based brain activation compared to the 
models including social cognitive performance x diag-
nostic group for the left and right IFG and the right TPJ, 
whereas including mentalizing x group improved model 
performance for the left STS. Models with and without 
interaction terms included performed similarly for the 
left TPJ and right STS (see Supplementary Results for 
details). There were no significant differences by scanner 
in ROI-based activation (see Supplementary Results and 
Figure S2).

Discussion
In the present study, we examined the neural correlates 
of social cognition across a large sample of research par-
ticipants with a clinical diagnosis of autism or SSDs, and 

Fig. 5  Exploratory associations between region of interest (ROI)-based brain activation and social cognitive performance scores. (a) Neurosynth meta-
analytic maps used to define ROIs based on the term ‘mentalizing’ (red), and a topic-based map which we refer to as ‘simulation’, with top-loading terms 
including ‘mirror’, ‘system’, ‘neuron’, ‘observation’, and ‘mns’ (blue). (b) ROIs were selected from these clustered maps, including the left and right inferior 
frontal gyrus [IFG] into premotor cortex for lower-level simulation (blue) and the left and right temporoparietal junction [TPJ] and left and right anterior 
superior temporal sulcus [STS] for higher-level mentalizing (red). Transdiagnostic associations are shown between beta weights extracted from lower-
level ROIs and simulation scores, and higher-level ROIs and mentalizing scores. Participant data points are colored by diagnostic group. Aut: autism; SSDs: 
schizophrenia spectrum disorders; TDC: typically developing controls
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in TDC participants characterized using harmonized 
protocols including two fMRI tasks (the ImObs task 
and the EA task), and an out-of-scanner social cognitive 
battery. We did not detect any group-level differences 
among autistic participants, people with SSDs, or TDCs 
in activity during the ImObs task, nor in activity modu-
lated by EA task performance using whole-brain analyses 
or within select ROIs. Neural activity across simulation 
and mentalizing network regions during the EA task, but 
not the ImObs task, was positively associated with both 
lower- and higher-level social cognitive performance 
across our transdiagnostic sample.

The first important contribution to the field of the pres-
ent work is the direct comparison of autistic individuals 
and those with SSDs using two well-established social 
brain tasks (ImObs/EA). While the expected pattern 
of activity was detected across groups during ImObs, 
including frontoparietal mirror neuron circuit activa-
tion [7], the lack of group differences detected in neural 
engagement (across the full task and valence-specific 
analyses) contrast with prior positive autism-TDC stud-
ies. A meta-analysis of several of those studies (albeit < 10 
total) using action observation and imitation fMRI tasks, 
found increased simulation network activation in autism, 
though autism-TDC group differences did not survive 
rigorous thresholding [12]. A cross-condition study 
found no differential activation between autism and SSD 
groups during performance of an implicit facial affect 
recognition task; though, diminished activation in face 
processing regions in autism and SSDs versus TDCs was 
reported [24]. Our results, in a relatively large transdiag-
nostic sample, align with a study reporting no significant 
differences between SSDs and controls in activation dur-
ing facial expression imitation versus observation [65].

We also detected no group-level differences in neural 
activity modulated by EA performance, either for the full 
task or analyzed by positive/negative valence. Across the 
full EA task, we observed widespread activity in brain 
regions implicated in lower- and higher-level social cog-
nition within the right hemisphere related to EA perfor-
mance across groups. Our valence-specific findings help 
explain this laterality, as the inclusion of positive EA vid-
eos during the full task may have masked the bilaterality 
of activation present in response to the negative videos. 
In general, negative stimuli are thought to be more com-
plex, requiring greater attention and cognitive effort than 
positive stimuli [66]. Prior social cognitive fMRI research 
in relevant samples have reported inconsistent results. 
A small study found activity in left precuneus, middle 
frontal gyrus, and bilateral thalamus was more corre-
lated with EA task performance in a TDC versus SSD 
group [16]. Opposing activation and functional connec-
tivity patterns in autism versus SSDs, within mentaliz-
ing regions, was reported during a higher-level intention 

understanding task [20]. Others have reported reduced 
modulation of mentalizing regions during a mentalizing 
task [22] and differences in dynamic connectivity in both 
autism and SSD groups versus TDCs while performing 
a task similar to EA [21]. Inconsistencies in these results 
are likely contributed to by inclusion of small heteroge-
neous samples (~ 15–40/group), as well as differences in 
the methods and social cognitive tasks used.

Although individuals diagnosed with autism or SSDs 
often feature reduced social cognitive performance com-
pared to controls, considerable heterogeneity in perfor-
mance levels has been documented among individuals 
diagnosed with either condition [67]. The present lack of 
diagnosis-specific differences in whole-brain activation 
patterns may result from the degree of variability inher-
ent within and across diagnostic groups and TDCs, rather 
than evidence that differences in social cognitive task-
based brain activation, or social cognitive performance, 
do not exist between individuals with autism, SSDs, and 
controls, or subgroups of individuals. Prior work from 
our group suggests that individuals with autism and SSDs 
show greater individual variability in task-based fMRI 
brain activity [68, 69], which may obscure group-based 
statistical differences. Despite no significant group-based 
neural differences being detected at the whole-brain or 
ROI level in the current study, lower simulation and men-
talizing scores were common to SSD and autism groups 
versus TDCs in our sample. Consistently, prior research 
has demonstrated the presence of meaningful differ-
ences in social cognition between individuals with SSDs 
or autism compared to typically developing individuals, 
though prior work also indicates that social cognitive per-
formance can range from normative to very low across 
individuals diagnosed with either condition [67]. Given 
this heterogeneity, our brain-behavior results empha-
size the need to incorporate other approaches alongside 
or in addition to conventional diagnostic group-based 
comparisons in future cross-condition social cognition 
research.

Both simulation and mentalizing scores showed a posi-
tive transdiagnostic association with activation in social 
cognitive regions while viewing EA videos in whole-brain 
analyses, suggesting that social cognitive performance 
tracks with brain activity during social processing across 
autism, SSDs, and TDCs to some degree and that dimen-
sional analyses are useful to examine and parse these 
relationships. This aligns with previous work from our 
group demonstrating an association between functional 
connectivity during the EA task and social cognitive 
performance across SSDs and TDCs [48]. It is, however, 
important to note that our post-hoc analyses (comparing 
performance of models with or without a social cogni-
tion by diagnosis interaction term) indicated that models 
with social cognition alone outperformed those including 
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diagnostic group in some, but not all, of the ROIs inter-
rogated. This suggests that diagnostic group can provide 
additional useful information when examining brain 
activation during social processing across autism or 
SSDs groups and typically developing samples. More-
over, social cognitive performance and diagnosis were 
conflated in the current sample, as TDCs tend to score 
higher than participants in either clinical group. While a 
transdiagnostic approach may help distinguish the most 
impacted individuals across SSDs and autism groups 
from those performing more similarly to TDCs, biologi-
cal mechanisms underlying social cognitive impacts may 
differ in different subgroups of participants, or from 
mechanisms underlying normative social cognitive per-
formance and/or in those with/without clinical diagno-
ses, underlining the importance of continued efforts to 
understand the impact of diagnostic status [70, 71]. Fur-
ther, activation during the ImObs task was not signifi-
cantly associated with simulation or mentalizing scores 
across groups. Prior work using the ImObs data across 
SSDs, TDCs, and bipolar disorder identified clusters of 
participants (unrelated to diagnosis), with distinct neural 
activation patterns during this task, which also featured 
differences in social cognitive performance [64]. Taken 
together, our results support the incorporation in future 
cross-disorder research of dimensional brain-behavior 
analyses to understand circuits that underpin social 
cognitive performance across autism and SSDs and/or 
data-driven clustering to generate more homogeneous 
subgroups of participants, consistent with a focus in 
psychiatry towards disentangling heterogeneity [72–74], 
including both the RDoC framework and EU PRISM 
project [71, 75].

Limitations
Despite attempting to match our groups on age, sex, and 
race, significant group differences remained, prompt-
ing our inclusion of age as a covariate in PALM analyses. 
Smaller numbers of females across our autism and SSD 
groups limit the power to test for potential sex effects 
across groups, and gender-related constructs were not 
measured across our sample [76]. While TFCE is a pow-
erful approach for whole-brain analyses [60, 77], sample 
size limitations paired with examination of multiple 
dependent variables and the need to correct for mul-
tiple comparisons reduces statistical power [78]. Such 
factors may have limited the ability to detect diagnostic 
group-based differences in the current study. Though 
group-based differences were not evident in our ROI-
based analyses, these were limited to six ROIs to reduce 
the number of comparisons. Therefore, the absence 
of evidence in our whole-brain analyses of any group-
based differences in the present sample cannot be inter-
preted as evidence of the absence of any true differences 

between autism, SSDs, and TDC groups. Further, our 
findings may not generalize to autism and SSD individu-
als with co-occurring intellectual disability, given WASI-
II/WTAR scores estimating IQ for our autism and SSD 
samples were within the average range. We also did not 
account for medication, though the lack of fMRI group-
based differences suggests that this did not drive our 
results. Though we saw a lack of whole-brain group-
based differences in activation during two observational 
social cognitive fMRI tasks, results may differ based on 
task sensitivity and ecological validity, and social interac-
tion tasks in particular may provide additional insights 
into the neurobiological substrates of everyday social 
interactions [79]. While our study was not designed to 
test the conceptualization that autism and SSDs are dia-
metrically opposed [20, 80], our results do not provide 
support for this hypothesis. While a unique strength of 
our study is the use of shared assessments, including clin-
ical scales, future work needs to examine the influence of 
co-occurring mental health conditions on brain-behavior 
associations found across autism and SSDs [81].

Conclusions
The present study did not identify whole-brain group-
level differences in the functional neural correlates of 
social cognition across two fMRI tasks in autism, SSDs, 
and TDCs. Given the ability of the EA task to detect 
dimensional brain-behavior relationships that cut across 
two major diagnostic groups with relevance to social 
cognitive performance, this task may be particularly 
well-suited for target engagement in novel cross-con-
dition biomarker testing. Further cross-condition work 
is needed based on our results, prior findings, and the 
hypothesized importance of social cognition as a driver 
of functional impact across autism and SSDs [82, 83]. The 
use of data-driven approaches to identify participants 
with more homogeneous neurobiological and clinical 
patterns may yield opportunities for prognostication and 
stratification into clinical trials.
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