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Whole-genome sequencing of Helicobacter pylori isolates from 
Native American gastric biopsy specimens
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ABSTRACT Helicobacter pylori infection has been linked to gastrointestinal diseases 
including gastric cancer. High rates of H. pylori infection and gastric cancer have 
been reported in indigenous populations within the United States. We report whole-
genome sequencing of three H. pylori isolates originating from Native American patients 
presenting with gastric disease.
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H elicobacter pylori, a Gram-negative bacterium, is the causative agent of most human 
gastric infections and is linked to gastric cancer (1–3). Indigenous communities 

in the United States have elevated rates of infection and gastric cancer. Members of 
the Navajo Nation have rates of infection ranging between 56% and 70% (4, 5) and 
gastric cancer rates three to four times higher than non-Hispanic white populations (6). 
Navajo patients with gastric symptoms had a gastric biopsy during endoscopy and H. 
pylori culturing or PCR was performed. H. pylori was present in ~23% of these biopsy 
samples (7). We describe whole-genome sequencing of three H. pylori isolates from these 
patients.

Patients were enrolled by informed consent (Navajo Nation IRB #NNR16.263). Gastric 
pinch biopsy samples were collected during a routine scheduled patient endoscopy. 
Samples were ground in sterile phosphate-buffered saline, inoculated onto Columbia 
Agar plates containing 5% defibrinated sheep blood and H. pylori selective supplement 
(Dent), and incubated for 72 h at 37°C under microaerophilic conditions (5% O2, 10% 
CO2, and 85% N2). Minimum inhibitory concentrations (MICs) for clarithromycin and 
metronidazole were determined with ETESTs (bioMérieux) by inoculating 100 µL of 
a 3 McFarland equivalent isolate suspension onto Mueller-Hinton II plates with 5% 
defibrinated sheep blood and incubating at 37°C for 4 days under microaerophilic 
conditions.

Isolate genomic DNA was extracted using a Blood and Tissue Kit (Qiagen) follow­
ing the manufacturer’s protocol with the additional pretreatment for Gram-negative 
bacteria. Whole-genome sequencing libraries were generated as previously described (8, 
9) except quality was assessed with a Fragment Analyzer using the High Sensitivity NGS 
fragment kit. Samples were sequenced on the MiSeq platform. Contaminating sequenc­
ing reads were identified and removed with the BBsplit tool (BBMap v38.93—sour­
ceforge.net/projects/bbmap/) using phiX (J02482.1) and human (GCF_000001405.39) 
genomes as references, followed by assignment of taxonomic classifications to reads 
with kraken2 v2.1.2 (10) and removal of contaminating reads. H. pylori genomes were 
assembled using SPAdes v3.15.3 (--careful, --cov-cutoff auto) (11). Depth of coverage 
was calculated from minimap2 v2.24 (-ax sr) (12) alignments using Samtools v1.16.1 
(13). Contigs with anomalously low depth of coverage were removed. Assembly metrics 
were calculated with the statswrapper.sh tool (sourceforge.net/projects/bbmap/ v39.01). 
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Assemblies were annotated with the NCBI Prokaryotic Genome Annotation Pipeline 
(PGAP) v6.6 (14). Core genome single nucleotide polymorphisms (SNPs) were called 
from nucmer v3.1 (15) alignments (reference = GCA_017821535.1) within NASP v1.2.1 
(16), and a phylogeny was inferred with IQ-TREE v2.2.2.3 (17, 18) from proximity filtered 
SNPs (distance of 5). The vacA and cagA genotypes were determined with in silico PCR 
(usearch v11.0.667_i86linux32 – search_pcr, -maxdiffs 2) (19) using previously described 
primers (20–23). Genomes were screened for antibiotic-resistance markers listed in the 
Comprehensive Antimicrobial Resistance Database (24).

Genome assembly information is presented in Table 1. The three isolates are 
putatively genotyped as cagA− and vacA type s2i2m2. A SNP phylogeny (Fig. 1) indicates 
that the isolates are closely related to isolates originating from Indigenous or Mestizo 

FIG 1 Core genome SNP phylogeny (midpoint rooted) of 186 publicly available H. pylori genomes and 

three newly sequenced H. pylori genomes. Colors indicate the continent of origin for the H. pylori isolates 

included in the tree. The blue box highlights the three newly sequenced isolates (408F, 412F, and 427F) 

and closely related isolates. The three newly sequenced isolates are closely related to isolates collected 

from Indigenous or Mestizo individuals presenting with gastritis in Mexico.
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individuals presenting with gastritis in Mexico (25, 26). ETESTS indicate some isolates are 
resistant to clarithromycin and metronidazole (Table 1).
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TABLE 1 Genome assembly metrics and accession numbers

Isolate 408F-DNA-001 412F-DNA-002 427F-DNA-001

Assembly accession JAYXIY000000000 JAYXIX000000000 JAYXIW000000000
SRA accession SRR27606653 SRR27606652 SRR27606651
Sequencing kit 500-cycle Nano v2 500-cycle Nano v2 600-cycle v3
Sequencing format 2 × 251 bp 2 × 251 bpa 2 × 301 bp
Total number of paired reads 373,565 441,603 1,201,328
Average depth of coverage 113× 124× 436×
Number of contigs 28 19 18
Genome size (bp) 1,570,731 1,570,272 1,570,218
L50 4 3 3
N50 (bp) 176,074 236,910 236,904
Length of longest contig (bp) 266,682 411,760 411,746
Average GC content 0.39 0.39 0.39
Total CDSs (PGAP) 1,502 1,487 1,490
Minimum inhibitory concentration

for clarithromycin (R > 0.25 µg/mL)b

0.125 1.5 0.5

Minimum inhibitory concentration for metronidazole
(R > 8 µg/mL)c

8 16 1

Mutations potentially associated with clarithromycin
resistanced

Mutations within 23S rRNA (ARO:3004134) - T510C, G722A, G760del, T896C, 
T976G, T1024C, C1516del, T1568C, C1648T, T2199C

Genes/mutations potentially associated with metronidazole 
resistancee

Presence of major facilitator superfamily antibiotic efflux pump (ARO:3003964); 
mutations within frxA (ARO:3007059) - V7I, A16T, Q27E, I44V, L71I, F72S, G73S, 
T110A, N111D, N124S, M126I, A154V, E176K, C193S; mutations within rdxA 
(ARO:3007055) - T31E, D59N, L62V, S88P, G98S, A118S, V123T, R131K, E175Q

AReverse reads trimmed to 228 nucleotides due to sequencing quality.
bResistance breakpoint for clarithromycin—EUCAST v13.1.
cResistance breakbpoint for metronidazole—EUCAST v13.1.
dGenomic data queried against features associated with clarithromycin resistance in H. pylori in the Comprehensive Antimicrobial Resistance Database. The mutations in 
Table 1 were identified within the 23S rRNA gene for all three isolates, but specific mutations listed within the CARD were not identified.
eGenomic data queried against features associated with metronidazole resistance in H. pylori in the Comprehensive Antimicrobial Resistance Database. An antibiotic efflux 
pump gene was identified in all three genomes. Mutations were identified within frxA and rdxA in all three genomes; specific mutations listed within the CARD are in bold 
text.
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