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Due to the transformation of artificial intelligence (AI) tools
and technologies, AI-driven drug discovery has come to the
forefront. It reduces the time and expenditure. Due to these ad-
vantages, pharmaceutical industries are concentrating on AI-
driven drug discovery. Several drug molecules have been
discovered using AI-based techniques and tools, and several
newly AI-discovered drug molecules have already entered clin-
ical trials. In this review, we first present the data and their re-
sources in the pharmaceutical sector for AI-driven drug discov-
ery and illustrated some significant algorithms or techniques
used for AI and ML which are used in this field. We gave an
overview of the deep neural network (NN) models and
compared them with artificial NNs. Then, we illustrate the
recent advancement of the landscape of drug discovery using
AI to deep learning, such as the identification of drug targets,
prediction of their structure, estimation of drug-target interac-
tion, estimation of drug-target binding affinity, design of de
novo drug, prediction of drug toxicity, estimation of absorp-
tion, distribution, metabolism, excretion, toxicity; and estima-
tion of drug-drug interaction. Moreover, we highlighted the
success stories of AI-driven drug discovery and discussed
several collaboration and the challenges in this area. The dis-
cussions in the article will enrich the pharmaceutical industry.
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INTRODUCTION
Innovation is the backbone of the pharmaceutical industry. Innova-
tion can create life-saving solutions, and it provides society with
life-saving medicines. Therefore, it is essential to innovate new drug
compounds and patent them. Presently, research is at the forefront
of science, and it helps to invent and patent new drugs.1,2 Pharmaceu-
tical industries are following this route to invent and patent new
drugs. Through the drug discovery process, new drugs are discovered
for diseases, even neglected diseases. Pharmaceutical companies are
investing a considerable amount of money in this direction. However,
the drug discovery and development process is very complex. A high
level of expertise and various technologies have been used in drug dis-
covery and development.3 Drug discovery requires a considerable
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amount of time. This process, known as from bench to bedside, en-
compasses the journey from the initial discovery of drug molecules
to their market availability. It has been estimated that the from-
bench-to-the-bedside process typically takes 10–15 years or more.
Therefore, a new innovative technological landscape has emerged
in the field of drug discovery. Innovative technologies help the phar-
maceutical sector by providing faster methods of drug discovery.
Recent advancements in innovative tools and technologies can
make a massive difference in drug discovery and development. To-
day’s innovative tools and technologies have made drug discovery
and development faster. Consequently, new technologies now pro-
vide a faster route to drug discovery. At the same time, the process
is also more productive for the pharmaceutical industry. It is the
utmost need for the pharmaceutical industry. At the same time, the
pharmaceutical industry needs to be more productive in terms of
drug discovery. The innovative technologies help to quickly foster a
very productive way of drug discovery.1,4–6

The drug discovery and development procedure encompasses three
major stages: drug discovery, preclinical development of drug mole-
cules, and clinical development of the therapeutic molecule. Tradi-
tional approaches to drug discovery and development face consider-
able challenges. They are time consuming, expensive, and have low
success rates. It have been noted that developing a new drug molecule
costs approximately US$2.6 billion on average and takes more than
10–15 years to enter the market.7,8 A recent cost analysis of drug
development showed that the capital cost of drug development is
US$1.3. At the same time, the average out-of-pocket success cost is
just US$200 million. Similarly, out-of-pocket failure costs US$1
apy: Nucleic Acids Vol. 35 September 2024 ª 2024 The Authors.
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billion. Therefore, a successful drug’s discovery cost can be reduced if
we reduce the failure costs.9 The failure costs of drug discovery can be
reduced by using new technology like AI. The capital cost of drug
development can be used in new technology development to reduce
the other costs and increase the chance of success. At the same
time, the traditional method is still not optimal for finding a new
drug for many diseases. Researchers worldwide have moved toward
the new technological advancements to minimize these hurdles and
challenges. At the same time, the pharmaceutical industry and its re-
searchers are shifting from traditional approaches to new methods
and using various technologies to foster innovation and improve
outcome. They are using new computational technologies like artifi-
cial intelligence (AI), machine learning (ML), and deep learning (DL)
to perform a new way drug discovery in a new way. These new tech-
nologies mitigate the cost and speed of the drug discovery procedure.
At the same time, they are also more productive. Another disadvan-
tage is that the traditional method of drug discovery is slow and labor
intensive because it relies on identifying and improving existing com-
pounds. In contrast, AI-based approaches can handle and solve the
issue through the rapid and efficient design of new drug compounds.

Since the last decade, AI has been used in different areas of biological
sciences, medical sciences, and general sciences. AI, also known as
machine intelligence, directs computer systems’ capability to learn
from past data and input. AI is generally applied when a machine im-
itates cognitive behavior and behaves like a human. It is associated
with the human brain’s learning and problem-solving capabilities.10

Due to massive multi-omics data and high-performance computer
hardware availability, AI techniques were introduced as a funda-
mental application in various disciplines. Similarly, data digitalization
has increased in the pharmaceutical sector, which has inspired the use
of AI. At the same time, automation was enhanced, and AI was em-
powered to handle large volumes of data. Pharmaceutical industries
have collaborated with the computational industries.11 In the last
few years, progress has been made in drug discovery using AI-enabled
drug discovery technologies. AI has also been used by drug discovery
organizations, which has changed the drug discovery scenario in the
last decade. Various AI techniques have been adopted in the different
areas of drug discovery, such as virtual screening, target selection, and
hit-to-lead generation. Other application areas are bioavailability pre-
diction, retrosynthesis and reaction forecast, de novo drug design.3,7

Many AI techniques, like traditional ML and DL, are associated with
drug discovery and development analyses. After Alan Turing’s Turing
test in 1950, several AI-related breakthrough discoveries were
made, and different AI-related milestone achievements were occa-
sionally created (Figure 1A). However, developing different models
was a significant process in drug discovery and development. There-
fore, model architectures also evolved to mitigate the healthcare
sector. Model architectures such as convolutional neural networks
(CNNs), graph NNs, recurrent NNs (RNNs), and transformers,
were also evolved. At the same time, researchers noted the paradigm
shift from supervised learning to self-supervised learning and rein-
forcement learning in drug discovery and development.
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This article discusses the recent advancement of drug discovery using
AI to DL with different examples. At the same time, we discussed
several success stories and collaborations forAI-driven drug discovery.
The article also noted several challenges in AI-related drug discovery.

AI: OUR UNDERSTANDING
Overview of AI

AI algorithms are widely used in different sectors, from government
to business. AI has been applied from time to time in different do-
mains in the healthcare sector, including the pharmaceutical sector
(Figure 1B). Data digitalization has increased in every sector,
including the pharmaceutical sector, during the last few years. Digita-
lization has assisted in solving complex clinical problems through
data acquisition, scrutinizing, and applying knowledge. It was the
motivation for using AI.12 At the same time, automation was under-
taken to manage the large volume of data. AI can mimic human in-
telligence using advanced technologies that involve several advanced
tools and network systems. Therefore, a paradigm shift has been
noted in every sector, including the pharmaceutical sector. Different
researchers have stated that the rapid advancement of AI-guided
automation will ultimately transform society’s work culture.

Data-driven AI

Data are required for any statistical inferences, including ML. Simi-
larly, different models can be developed using data modalities. Data
come in different forms, such as textual, image, and numerical. Exten-
sive data analysis broadly transforms pharmaceutical and medicinal
fields.13 Presently, data-driven digital transformation is noted in every
sector, which is an emerging phenomenon.

In the pharmaceutical sector, digital transformation is swift and in-
cludes vast amounts of data. It has been noted that digital transforma-
tion through AI methods in the pharmaceutical sector is data driven.
AI algorithms related to drug discovery depend on the pharmaceu-
tical sector’s data. At the same time, AI model training data must
be curated and accurate. Therefore, most pharmaceutical sector data-
sets are curated and accurate.14 Several data resources for AI model
training in pharmacology sectors are the key components for drug
discovery. The pharmaceutical sector’s data resources include high-
quality datasets. These high-quality datasets are open resources.
Therefore, these datasets are frequently used in drug discovery.

However, there is a long history of the use of different data-driven ap-
proaches in drug discovery. Recent advancement of ML and DL algo-
rithms, data-driven approaches are used more in drug discovery and
development.15 More advanced forms of DL take data-driven ap-
proaches to the next level, allowing them to handle more diverse
and much larger datasets.15,16

These datasets are obtained from different data resources. Some data
resources include ChEMBL, ChemDB, DGIdb, DrugBank, DTC,
PubChem, and SIDER (Table 1).3 The drug discovery process can
be performed using all the databases and their big data. The data
quicken the drug discovery process. One example of a data resource
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Figure 1. Timelines illustrate the milestone achievements of AI and milestone of AI-related achievements in the healthcare sector, including the

pharmaceutical sector

(A) The timeline depicts the achievements of AI. (B) The timeline depicts the milestone of AI-related achievements in the healthcare sector, including the pharmaceutical

sector.
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is ChEMBL developed by EMBL-EBI. It currently contains more than
2 million compounds. These compounds show drug-like properties.
It is a manually curated database. The database informs different
properties such as, molecular properties, target interactions, and
mechanisms of action.17,18 Similarly, another drug discovery-related
database is ChemDB, which contains approximately 5 million small
molecules. All these molecules are commercially available. It also in-
cludes their physicochemical properties such as solubility, molecular
weight, and rotatable bond.19,20

Frequent algorithms or techniques used for AI and ML

Several AI-related algorithms have been developed for drug discovery
and development. Drug discovery and associated activities are per-
formed very fast with the help of AI-enabled algorithms or techniques
using different data resources. Two types of AI algorithms or tech-
niques are commonly used in AI-enabled drug discovery and devel-
opment: supervised and unsupervised learning algorithms or tech-
niques.30,31 However, in ML, four algorithms are commonly used:
supervised, semi-supervised, unsupervised, and reinforcement. In
addition to these algorithms, a commonly used modeling regression
analysis algorithm is called multiple linear regression.

AI involves various areas, such as knowledge-based representation,
reasoning-based domain, and solution search domain, and among
them, a fundamental paradigm is ML. Therefore, ML is a subfield
of Al. Similarly, a promising subfield of ML is DL. DL involves
Molecular Therapy: Nucleic Acids Vol. 35 September 2024 3
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Table 1. Different data resources in the pharmaceutical sector for AI-driven drug discovery

Sl. No. Name of database Web address Remarks Reference

1. ChemDB http://cdb.ics.uci.edu/

The chemical database encompasses
approximately 5 million commercially accessible
small molecules.

It also holds the experimentally determined and
predicted physicochemical properties

Chen et al.19

2. STITCH http://stitch.embl.de/
The database of identified and expected molecular
interactions between proteins and chemicals, with
9,643,763 proteins derived from 2,031 organisms

Szklarczyk et al.21

3. INPUT http://cbcb.cdutcm.edu.cn/INPUT/

The network pharmacology web database
dedicated for traditional Chinese medicine
it holds total 29,812 compounds, which was
collected from 4,716 Chinese herbs

Li et al.22

4. DGIdb http://www.dgidb.org/
The specialized database offered information on
drug testing index and druggable genomes over the
30 reliable sources

Freshour et al.23

5. DTC http://drugtargetcommons.fimm.fi/
The crowd-sourcing platform delivers drug-target
bioactivity data and cataloging of its targets

Tang et al.24

6. SIDER http://sideeffects.embl.de/
The database affords information about the
advertised medicines and its recorded adverse
reactions

Campillos et al.25

7. ChEMBL https://www.ebi.ac.uk/chembl/

The database consist of bioactive molecules having
drug-like properties
it collects bioactivity, chemical, and genomic data
to support the translation of genomic evidence into
operative new drugs.

Mendez et al.26

8. PubChem https://pubchem.ncbi.nlm.nih.gov/

The open access chemistry database platform that
delivers significant information about the
molecules, like as chemical structures, identifiers,
chemical status, physical properties, and others
associated biological activities

Kim et al.27

9. COCONUT https://coconut.naturalproducts.net/
The database has 407,270 exclusive natural
products, and it have the evidence about their
molecular properties, molecular descriptors

Sorokina et al.28

10. DrugBank http://www.drugbank.ca/
The database of drugs, its targets, 3D structures,
and additional convenient information

Wishart et al.29
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artificial NN (ANN) algorithms (Figure 3). There are various types of
ANNs, which include CNNs, multilayer perceptron networks,
and RNNs.

Unsupervised learning algorithms or techniques

The unsupervised learning algorithm is very commonly used in
AI-related algorithms. It can perform more complex processing
tasks and efficiently group the unlabeled datasets into a set of clas-
ses. The algorithm can group the members in similar given classes
or separate them into other classes.30–32 Therefore, it can identify
recurring patterns during the grouping of the datasets. One
example is the unsupervised learning algorithm Seq2seq finger-
print, which uses SMILE strings to generate the molecular finger-
print. Therefore, it can be trained with the unlabeled datasets of
SMILE.33

Similarly, Lo et al.34,35 developed the program ShapeAlign for unsu-
pervised three-dimensional (3D) chemical clustering to understand
4 Molecular Therapy: Nucleic Acids Vol. 35 September 2024
similarity. It unites both two-dimensional (2D) and 3D metrics based
on the Obabel PF2 fingerprint. Finally, the program can shape phar-
macophoric points.34,35 The commonly used unsupervised learning
algorithms are K-means clustering, hierarchical clustering, and prin-
cipal component analysis.36

Supervised learning algorithms or techniques

This group of algorithms is very commonly used in AI-related algo-
rithms. It is used to train labeled datasets and estimate outcomes.
Finally, it helps to identify patterns.37,38 Recently, using supervised
learning algorithms, Lo et al. developed a self-organizing map
(SOM)model for QSARmethods in drug discovery and development.
The model is modified using the supervised method and is now enti-
tled as supervised SOM. It can illustrate more precise predictions
than standard QSAR.39 Supervised learning algorithms are multiple
regression analysis, logistic regression, k-nearest neighbor, decision
trees, random forest plots, support vector machines (SVMs), and
so on.36

http://cdb.ics.uci.edu/
http://stitch.embl.de/
http://cbcb.cdutcm.edu.cn/INPUT/
http://www.dgidb.org/
http://drugtargetcommons.fimm.fi/
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Semi-supervised learning algorithms or techniques

The semi-supervised learning group of algorithms is a division of ML.
This model can be trained in both labeled and unlabeled data. There-
fore, the algorithm combines supervised and unsupervised learning to
train AI models for classification and regression tasks.40,41 It uses a
small portion of the data (supervised and unsupervised). Semi-super-
vised algorithms or techniques include co-training, self-training, and
graph-based labeling. The algorithm is used in text classification.
Several semi-supervised learning algorithms have been developed
for drug discovery and development. Recently, Sahoo et al.42 devel-
oped a MultiCon model to estimate the drug function from chemical
structure analysis. The model was developed based on a semi-super-
vised learning algorithm. According to therapeutic applications, the
MultiCon model classifies drugs into 12 categories. It attained an ac-
curacy of 97.74% for class prediction of drugs.42 Similarly, researchers
developed another semi-supervised model for synergistic drug com-
bination prediction. The name of the model is NLLSS. The model
can evaluate the potentiality of combinations of synergistic drugs
by integrating various categories of information.43 Similarly, Wu
et al.44 developed a model based on a semi-supervised learning algo-
rithm to predict drug-disease interactions using a three-layer data-in-
tegrated model. This model was implemented for the case studies on
four diseases. Using the Kyoto Encyclopedia of Genes and Genomes
Comparative Toxicogenomics database (CTD), the researcher
confirmed the top-ranked drug-disease associations.44 Likewise,
Chen et al.45 developed a model to predict the chemical toxicology
of drugs using the semi-supervised learning algorithm. The model
can efficiently perform the prediction tasks using current chemical
databases.
Reinforcement learning algorithms or techniques

This ML algorithm is trained to solve multi-level problems using the
trial and error method for optimal output. It is a feedback-based ML
algorithm. Here, the model learns from the real-life scenarios to
perform the actions. Stahl et al. 46 developed the multiparameter opti-
mization process in drug design. The model can develop the design of
safe compounds. The model was developed using reinforcement
learning algorithms or techniques.46 Pereira et al.47 developed a gener-
ator for de novo drug design. The model was developed to understand
the drugs that can cross the blood-brain barrier. The developed drugs
should have permeability and solubility when crossing the blood-brain
barrier so that the molecule can reach the site of action in the brain. It
can also help in neural drug development. It uses deep reinforcement
learning.47 Liu et al.48 generated a model for the de novo design of a
drug molecule called DrugEx. The model was developed based on
multi-objective reinforcement learning. The model helps to improve
the generated drug molecule. The drug molecule can have one specific
or multiple drug targets, while the molecules avoid off-targets.48
Deep NN of DL models

DLmodels are the modern form of ANNs. However, ANNmodels are
the primary models of AI and were developed a long time ago. If we
look back, in 1943, Warren McCulloch and Walter Pitts described a
NN based on algorithms and mathematics, which they called
threshold logic. It might be the earliest ANN (ANN model).49,50

The basic structure of the ANN was developed from the structure
of the human brain, consisting of a network of interconnected neu-
rons. Depending on the type of ANN, the neuron’s nodes are varied.50

The input and output nodes describe the ANN input and output
values (Figures 2A and 2B). The output value of an ANN is calculated
from its input values, and the equation is shown as follows:

y = g

" Xn
i = 1

xi �wi

!
+ b

#
(Equation 1)

In Equation 1, input values are denoted as �1, �2, �3, �4, . xn.
The output value is denoted as y. Here, w1, w2, w3, w4,. wn are de-
noted as weights, and a bias term, b, has been used. In the above equa-
tion, g is denoted as the activation function. To train an ANN model
effectively, researchers should follow certain steps. In the first step, the
problem should be defined. In the second step, researchers should
collect the datasets. At the same time, the data needs to be divided
into training datasets, testing datasets, and validation sets. Then,
the researchers need to optimize the parameters. The weight values
and biases should be adjusted in the hidden layers. Then, it should
be applied to the ANN model and monitor the preference of the
model. The ANN algorithm was designed from the 1960s to the
1980s and has been applied since then. When researchers used the al-
gorithm, they found that the method has various problems, such as
diminishing gradients and over fitting. Due to this lacuna, ML algo-
rithms such as SVM and RF (random forest) are used to replace
the existing methods in due course.

The models of DL are very sophisticated forms of multi-level NNs
called deep NNs (DNNs). Using large amounts of labeled or unla-
beled training datasets, the DNNs perform the detection.14,51 The dif-
ference between traditional ANN and DNN is the complication of the
networks and the scale used. In ANN, there is an input feature called
the input layer. After that, there are some hidden layers: several
nonlinear transformations. Finally, in an output layer, the predictions
are made. Every output node refers to a task that will be predicted
through the algorithm. Output node refers to a task that is a specific
class. It has been noted that traditional ANN has used one or two hid-
den layers (Figure 2C). Here, powerful hardware is needed to operate
the ANN. In contrast, DNN has several hidden layers (Figure 2D).
DNN uses more powerful hardware in terms of graphics processing
unit (GPU). A critical difference between ANNs and DNNs is the
number of layers. DNNs use a more significant number of hidden
layers, whereas traditional ANNs usually contains one or two. There-
fore, DNNs can use more nodes in each layer due to the more power-
ful GPU and CPU hardware, which allows it to compute more
complicated data. One example is the DropOut and DropConnect
methods, which can address the overfitting problem and solve a
more complicated problem.50,52–55 Using the DropOut and
DropConnect methods, one can either drop the weights of synaptic
connections or drop the states of neural units. These two are
Molecular Therapy: Nucleic Acids Vol. 35 September 2024 5
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Figure 2. The basic architecture and framework of ANNs

It also illustrates basic architecture and framework differences of

ANNs and DNNs. (A) The basic framework of ANN (B) The archi-

tecture of ANN which shows the input, weight, bias, and output. (C)

The ANN with two hidden layers, h1 and h2. (D) An architecture of a

DNN model. It has been noted that an ANN has one or two hidden

layers, while DNN has several hidden layers.
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significant and effective strategies for enhancing ANN inference per-
formance.54,55 Data science researchers use several DL packages, soft-
ware and libraries, the most popular of which are Keras, PyTorch,
Caffe, Caffe2, and TensorFlow. Most of them are open source and
popular DL packages. These open-source packages and libraries
have been developed due to the rapid development of the DL tech-
nique. DNNs have been applied in different areas of drug discovery.
This algorithm is used in the pathological image classification and
analysis,56,57 de novo drug discovery,58,59 prediction of protein-ligand
interaction,60 and target-based drug design.61 Several researchers
have tried to apply DNN in the area of drug discovery.61 Shi et al.61

have developed Pocket2Drug, which will help to design target-based
drugs. This model is significant for the discovery of new bio-
pharmaceuticals. It uses encoder-decoder DNNs.61 Similarly, Shi
et al.62 recently developed a graph-based model called GraphSite,
which can classify ligand binding sites using deep graph learning.
Likewise, Wu et al.63 developed a model for anticancer drug discov-
ery. It performs target-based and cell-based anticancer drug discov-
ery. It is a multipurpose DL platform. In addition to these models,
several others have been applied in drug discovery and development
research, such as DTI-CNN, DeepDTA, WideDTA, PADME,
DeepAffinity, and DeepChem (Table 2). The models are primarily
developed for researchers to generate novel molecules and predict ab-
sorption, distribution, metabolism, excretion, and toxicity (ADMET)
effects. These models are essential for performing translational
research.64,65 The significant problems during the process of drug dis-
covery and development comprise the unfavorable ADMET proper-
ties of the probable drug molecules. This issues are understood to be a
primary reason for the failure of drug candidates during development.
Additionally, estimating ADMET properties consumes substantial
capital, time, and resources.66,67 Therefore, most DL models focus
on the ADMET estimation process. In contrast, DL models are also
successful in building QSAR models and applying these models in
drug discovery and development research.65

ML- and DL-based applications in drug discovery and

development

All ML procedures belong to AI methods that use vast amounts of
data. Over the past decade, ample data availability has successfully
transformed AI methods into improved ML methods to solve critical
problems. ML is considered as one of the best choices for solving is-
sues using various variables and big data.14,67,90,91 ML algorithms are
classified into supervised and unsupervised techniques.90,92

Recently, ML methods have evolved into DL methods, which are
more efficient and powerful tools for handling the vast amounts of
data generated across various fields. DL is a subset of ML, and it
has evolved to deal with high-complex data and decision-making
from the analysis. DLmethods have been applied in modern drug dis-
covery to efficiently deal with the extensive data generated from the
drug discovery and development field.90

Several ML- and DL-based applications have been used occasionally
and applied in drug discovery and development. Some significant
ML-based models are TrixX, LS-align, StackCBPred, DrugFinder,
and LigGrep (Table 2).

DL methods have shown better performance than ML methods.
Therefore, they have recently appeared as one of the most promising
tools in drug discovery research. Some significant DL-based models
are DTI-CNN, DeepDTA, WideDTA, PADME, and DeepAffinity.
All these models are very significant for drug discovery and develop-
ment (Table 2).

Recent landscape of drug discovery: The role of AI to DL

AI-integrated drug discovery has led to a revolution in the drug dis-
covery landscape. Substantial progress has been made in AI-inte-
grated drug discovery. Therefore, significant changes have been
made in the pharmaceutical industry. The pharmaceutical industry,
which focuses on drug discovery, is implementing the AI platform
for drug discovery and development. At the same time, the industries
are trying to collaborate with technology companies.11

The first step of drug discovery is small molecule discovery. AI facil-
itates the development of a large number of drug molecules. AI also
helps hits to lead generation speedily.11,93 Similarly, drug target iden-
tification is a significant step in drug discovery. AI and DL models
have been implemented to identify drug targets faster and more accu-
rately. AI and DL models have occasionally been generated from the
initial to final steps of drug discovery and development (Figure 3).

Similarly, several AI, ML, and DL models have been developed to un-
derstand the different properties of drug-target interactions (DTIs).
At the same time, AI, ML, and DL models have been developed in
different areas of drug discovery and development, such as lead mole-
cule development, drug administration, distribution, metabolism,
excretion, toxicity (ADMET), and drug-drug interaction (DDI), etc
(Figure 4).

Identification of drug target and prediction of its structure

It has been noted that most of the drug targets are proteins. Other
than the experimental and multi-omics approaches, ML and DL ap-
proaches have been applied to target identification. Here, researchers
develop the disease network and perform a high-level analysis. Dur-
ing the network construction, a biological network was developed to
capture the associations between genes, proteins, and molecular en-
tities. Potential targets that involve a disease can be identified from
these networks. AI-identified targets are validated using different
kinds of experiments, and the target validation can be performed
through cell culture experiments and animal models. Several re-
searchers have successfully validated AI-identified targets.94 One
example is Zhang et al.,95 who developed an ML-enabled technique
to determine the association of the KANK1 gene to amyotrophic
lateral sclerosis. Santos et al.66 analyzed 1,578 US Food and Drug
Administration-approved drugs and found that proteins are the sig-
nificant drug target (human and pathogen proteins). The most
important classes of protein-based drug targets in humans are the
G-protein couple receptors (approximately 12%), ion channels
Molecular Therapy: Nucleic Acids Vol. 35 September 2024 7

http://www.moleculartherapy.org


Table 2. ML and DL-based applications in different areas of drug discovery and development

Sl.
No. Software/tools Method Web address Remarks Reference

1. AutoGrow4 Genetic algorithm http://durrantlab.com/autogrow4
It is used for the de novo drug designing and
lead optimization purposes

Spiegel and Durrant68

2. TrixX ML –

The structure-based molecule catalog applied
for extensive virtual screening in sublinear
time

Schellhammer and
Rarey69

3. LS-align ML
http://zhanglab.ccmb.med.umich.
edu/LS-align/

The atomic-level, flexible ligand structural
alignment algorithm used for high-
throughput virtual screening

Hu et al.70

4. StackCBPred ML https://bmll.cs.uno.edu/
The prediction of protein-carbohydrate
binding sites from the available sequence
using the stacking-based

Gattani et al.71

5. DrugFinder ML https://drugfinder.ca/
In silico virtual screening service for search a
drug or medical condition

Lagarde et al.72

6. LigGrep ML http://durrantlab.com/liggrep/
The web tool applied for filtering docked
complex to improve virtual-screening hit
rates

Ha et al.73

7. LSA
Conventional similarity
algorithms

–
The local-weighted structural alignment web
tool used for virtual pharmaceutical screening

Li et al.74

8. DEEPScreen CNNs https://github.com/cansyl/DEEPscreen
The web tool used for high-performance DTI
prediction

Rifaioglu et al.75

9. DLIGAND2 Distance-scaled
https://github.com/sysu-yanglab/
DLIGAND2

This web toll used for analysis of improved
knowledge-based energy purpose for protein–
ligand interactions

Chen et al.76

10. Dr.VAE ML https://github.com/rampasek/DrVAE
It models both the drug response in relations
of viability and the cellular transcriptomic
perturbations

Rampá�sek et al.77

11. SMDIP ML –

It shows the pharmacokinetic and
pharmacodynamic profiles of the drug
molecules

Ibrahim et al.78

12. MoleculeNet ML https://moleculenet.org/
Used for accurate predictions about
molecular properties of drug –and its
comparison

Wu et al.79

13. DTI-CNN DL –

The DTI prediction tool performed to
outperform the prevailing state-of-the-art
methods by the intelligent interface

Nag et al.67

14. DeepDTA DL https://github.com/hkmztrk/DeepDTA

The non-structure-based method and usages
SMILES as input data for drugs. The amino
acids sequences are likewise encoded in
SMILES

Ozturk et al.80

15. WideDTA DL –

The web tool holds text-based sources of
information as input, where the proteins are
signified by smaller lengths of residues are not
identified in full-length sequence

Nag et al.67

16. PADME DL –

This tool predict method, which usages drug
molecules-target landscapes and fingerprints
(as the input)

Feng et al.81

17. DeepAffinity DL –

Structural property sequence representation
that annotates the sequence with structural
information, which are shorter than the other
representations, provides structural details
efficiently and gives higher resolution of the
sequences

Karimi et al.82

(Continued on next page)
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Table 2. Continued

Sl.
No. Software/tools Method Web address Remarks Reference

18. DeepChem DL https://github.com/deepchem/deepchem
The DNNs applied to analyze medicines and
predict drug-related features, including as
bioactivities and physicochemical qualities

Altae-Tran et al.83

19.
DeepConv-
DTI

DL
https://github.com/GIST-CSBL/
DeepConv-DTI.

This tool predict the model capturing local
residue patterns of proteins in identification
of DTIs

Lee et al.84

20. DeepCPI DL
https://github.com/FangpingWan/
DeepCPI

It accurately predict and identification of
compound-protein interactions at a large
scale

Wan et al.85

21. DeepDTnet DL
https://github.com/ChengF-Lab/
deepDTnet

This DL-based tool offers a potent network-
based methodology for identification of target
to expedite drug repurposing and reduce the
translational gap in drug development

Zeng et al.86

22. DeepGRMF DL
https://github.com/renshuangxia/
DeepGRMF

It offers anintegrated graph models, NNs, and
matrix-factorization methods to operate
diverse information from drug chemical
structures and predict cell response to drugs

Ren et al.87

23. DeepLIFT DL https://github.com/kundajelab/deeplift

This tool predicts drug response in cancer cell
lines and their mechanism of action and
evaluated its performance using three cross-
validation schemes

Sada Del Real and
Rubio88

24. DeepSide DL http://github.com/OnurUner/DeepSide
It exploits data concerning the drug targets,
structural fingerprints, and drug side effects

Arshed et al.89
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(approximately 19%), kinases (approximately 10%), and nuclear re-
ceptors (approximately 3%). Other than the proteins, other biomole-
cules (human and pathogen proteins) such as DNA, RNA, and pep-
tides are also found as drug targets.96,97 However, protein plays a
significant role in cell-cell transduction and cell signaling. AI
modeling approaches may help to solve the structure of previously
unsolved protein-based drug targets. Presently, AI approaches have
been used for protein structure prediction. ANN-based AlphaFold
is able to forecast the 3D structures of proteins. AlphaFold model
was developed by DeepMind.98,99 The AlphaFold model predicted
the 3D structure of human proteins, which is essential. For a given
protein, using all heavy atoms, it molded the protein’s 3D structure
directly from the primary amino acid sequence, aligned the homolo-
gous sequences, formed the 3D coordinates, and finally developed the
model 3D structure of the protein. During the prediction of the pro-
tein’s 3D structure, AlphaFold uses the ANN and GPU.99 Recently,
AlphaFold 3 has been introduced by Isomorphic Labs and Google
DeepMind. Using a single unified deep-learning framework, the
AlphaFold 3 has the capacity for high-accuracy modeling of the struc-
ture in the biomolecular landscape.100 Therefore, for the advance-
ment of protein structure prediction, AlphaFold has significantly
contributed in the field, and it will revolutionize drug discovery. How-
ever, the change in protein structures has been noted in different en-
vironments. Similarly, under the same conditions, proteins may show
multiple coexisting structures. Recent ML and DLmethods efficiently
determine these structures, which will help in drug discovery and
development.3,101
Design of drug molecules using ML and DL

Drug molecular design is an integral part of drug discovery, and ML,
DL algorithms have helped to design a drug molecule’s structure. DL
algorithms such as RNNs and autoencoders are used in molecular
design during drug discovery and development.102 During the molec-
ular design of drug molecules, molecular representation can be per-
formed using two steps: representations of 3D geometry and molec-
ular graphs. Representations of molecular graphs can be further
developed using some steps: SMILES and string-based representa-
tions, image-based representations, tensor representations, and other
graph-based representations. SMILES-enabled methods often strug-
gle to achieve a high percentage.102–104 One example of a DL-based
tool for small molecular design is the Gypsum-DL. To design com-
pound libraries, it accepts flat SDF formats or SMILES. Different
properties, such as cis/trans isomeric states, chiral, tautomeric, and
ionization, are considered from the input. Then, it predicts the struc-
tural model by changing the structure from a 2D structural model
into a 3D one.105 Another DL-based model, dimorphite DL, can esti-
mate the ionization states of small molecules to understand the drug-
like properties.106 Recently, Ivanenkov et al.107 developed Chemis-
try42, an AI-based platform to design novel small molecules with
optimized properties. Finally, a designed drug-like molecule should
be characterized to understand its properties. The different ML-to-
DL methods of ADMET and DL-based QSAR methods help to char-
acterize the properties of designed drug molecules.108 Several AI-to-
DL-enabled tools have been developed to understand the ADMET
properties of the developed molecules. One such ML-based ADME
Molecular Therapy: Nucleic Acids Vol. 35 September 2024 9

https://github.com/deepchem/deepchem
https://github.com/GIST-CSBL/DeepConv-DTI
https://github.com/GIST-CSBL/DeepConv-DTI
https://github.com/FangpingWan/DeepCPI
https://github.com/FangpingWan/DeepCPI
https://github.com/ChengF-Lab/deepDTnet
https://github.com/ChengF-Lab/deepDTnet
https://github.com/renshuangxia/DeepGRMF
https://github.com/renshuangxia/DeepGRMF
https://github.com/kundajelab/deeplift
http://github.com/OnurUner/DeepSide
http://www.moleculartherapy.org


Figure 3. A schematic diagram shows different steps of drug discovery and development where AI and DL models have been successfully implemented
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platform is ADME-AI. It can predict accurate and fast ADMET prop-
erties. It is an open-source web server.109 Another one is DeepDelta, a
DL-enabled tool that predicts molecules’ ADMET. It performs using
algorithms (random forest plots andothers). Through direct training
on molecular pairs, it predicts molecular properties accurately by
directly training on molecular pairs.110

Estimation of DTI

DTI estimation is one of the critical areas in drug discovery and
development. It illustrates the interaction between protein targets
and chemical molecules.67,98,99 DTI has been determined using several
experimental methods, such as phage display technology, yeast two-
hybrid method, and co-immunoprecipitation techniques.3,111,112 These
wet laboratory methods are time consuming. Using the increasing bio-
logical data and faster prediction, DTI has applied ML and DL to esti-
mate DTI quickly. Several ML and DLmodels have been developed oc-
casionally to predict the DTI estimation.67,113–115 Yang et al.116 have
developed oneML-based model for DTI prediction. The model is enti-
tledML-DTI. Here, they applied four different methods, which yielded
similar results. The model tested common targets and drug interaction
prediction. Orphan-drug and orphan-target interaction is one of the
critical areas of understanding. During the application of this model,
it was found to increase the performance of orphan-drug and
orphan-target intercations.116 Similarly, Rayhan et al.117 developed
another deep CNN-based DTI prediction model called FRnet-DTI. It
10 Molecular Therapy: Nucleic Acids Vol. 35 September 2024
has auto-encoder-based feature manipulation of DTI.117 Likewise,
Zhou et al.118 developed a model related to an augmented graph atten-
tion network (AGAT) to understand a binding site estimation of DTI.
The model is called AGAT-PPIS. It can map the identity and initial
residual.118

DTI identification is not limited to the drug’s or protein’s structural
features. It can capture information about the drug-protein complex
and the feature representation known as hybrid features. These
hybrid features can be constructed using molecular docking, molecu-
lar dynamics simulations, or ML-to-DL models. Other than these
methods, ligand-based, gene ontology-based, network-based, and
text mining-based methods are also important. Bagherian et al.115

have illustrated these methods in a review article. Qian et al.119 devel-
oped a model for DTI using multimodal information of a drug mole-
cule called MCL-DTI. It uses the bidirectional multi-head cross-
attention method to understand the association between drugs and
targets.119 Another model was developed using the DL model, called
EDC-DTI, to predict DTIs, and it attains the low computational costs
and highest predictive performance. As an example, the model was
used to estimate the interaction of drugs and targets such as afatinib
(DB08916), nifedipine (DB01115), and simvastatin (DB00641).120

Lee et al.84 have developed the DeepConv-DTI, where DTI can be
predicted using DL. For DTIs, the model has some advantages, like
identifying the binding sites of proteins.84

http://www.moleculartherapy.org


Figure 4. A schematic diagram is depicted as an overall framework, visually demonstrating the application of AI technology in drug discovery

www.moleculartherapy.org

Review
Estimation of drug-target binding affinity

The interactions between drug-target pairs have been studied in the
context of binding affinity prediction. This illustrates the potency of
the drug-target pair and is broadly enlightening for the field of drug
discovery. Binding affinity can be predicted through computational
methods.

Understanding the binding affinity among a drug molecule and its
target is one of the areas in drug discovery and development. How-
ever, researchers have not studied this area much. Experimentally,
analysis of drug-target binding affinity is expensive and time
consuming. Therefore, computational methods are essential to
reduce the time and cost. First, Ozturk et al.80 developed the
drug-target binding affinity model in 2018. The work is represented
as compound 1D form and modeled protein sequences. The predic-
tion method uses the CNNs.80 Similarly, Pu et al.59 developed a
model for the affinity prediction of drug-target binding. The model
is entitled DeepFusionDTA. The two-stage DNN model was devel-
oped based on the Hybrid Deep-Learning Ensemble Model. The
model was tested on the two datasets i.e., Davis and KIBA. The
model shows a 1.0% Concordance Index (CI) increase in the first
dataset and a 1.5% increase in the second dataset.59 Using co-regu-
larized variational autoencoders, Li et al.121 developed another
model for the affinity prediction of drug-target binding. It consists
of two VAEs for generating target sequences and drug SMILES
strings.121 Other ML/DL-based models have been proposed in this
area, such as DeepAffinity82 and WideDTA.122 All these ML/DL-
based models are helpful for the estimation of drug-target binding
affinity. Recently, Thafar et al.123 designed a model called
Affinity2Vec to predict the binding affinity of drug targets. Re-
searchers have tested the model using a weighted heterogeneous
graph incorporating different data, such as drug-target binding af-
finities, target-target similarity, and drug-drug similarity-related
data.123 Another model uses cross-scale graph contrastive learning
to estimate the drug binding affinity to targets. The model is called
CSCo-DTA, which was proposed by Wang et al.124 Using the erlo-
tinib molecule, the model verified the analyzed targets with the
docking.

Design of de novo drug

It refers to the design of drug-like molecules through computational
methods. The method started the design of drug-like molecules
without a starting template. The boom in AI techniques has opened
new possibilities for de novo drug design and accelerated drug discov-
ery. In this case, novel molecular structures are generated from atomic
building blocks with no previous relations. However, there are some
main differences between conventional drug design and de novo drug
design. In the case of conventional design, a structure-based approach
was considered, and it depends on the active site’s properties of a bio-
logical target.

AI, including ML or DL, is an emerging field that has influenced
the drug discovery process. Therefore, the de novo drug design
approach was also influenced by AI.125 It designs novel chemical
entities based on information such as receptors and ligands.
Here, the biological targets are called receptors or their active
binders, known as ligands. In de novo drug design, the receptor
active site or ligand pharmacophore modeling is the main element
in constructing the molecule.125,126 Several ML/DL-based models
have been proposed for de novo drug design. During this
decade, several DL-based models have been developed occasionally
for de novo drug design. Some exciting models are MolRNN,
an RNN-based model,127 and GraphINVENT, a GAN-based
model,128 ChemVAE, an encoder-decoder-based model,129 and
ReLeaSE, a reinforcement learning-based model.130 Another de
novo drug molecule design model, druGAN, was recently noted.
The method applied a deep generative adversarial autoencoder
(AAE) model for developing new molecules with anticancer ef-
fects.131 Similarly, combining reinforcement learning algorithms
with hybrid VAE, another model was developed for de novo
Molecular Therapy: Nucleic Acids Vol. 35 September 2024 11
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drug design, known as PaccMannRL. This model efficiently de-
signs anticancer molecules using transcriptomic data.132 Recently,
Macedo et al.133 developed a de novo drug design model using
graph convolutional networks. The model efficiently develops
novel quinoline scaffold molecules and analyzes drug-related
properties such as synthetic accessibility, toxicity, and pharmaco-
kinetics.133 Therefore, all of these examples reflect that ML/DL
models offer new openings in the de novo drug design and, thus,
accelerate and revolutionize the drug discovery and development
process.

Several other recent de novo drug designmodels have been developed,
exploiting evolutionary algorithms occasionally. Some of these signif-
icant models are Dock_GA,134 MoleGear,135 AutoGrow4,68 and
SECSE.136

Prediction of drug toxicity

Drug toxicity estimates undesirable or adversative effects of drug-
like molecules. It is one of the main contributors to the costly pro-
cess of drug development.137 This attribute is related to drug safety.
During drug development, prediction of side effects and drug safety
measurement are significant components.138 However, laboratory
estimation of drug toxicity studies during the drug development
process is time consuming. Therefore, computational models reduce
time and cost in this case. Recently, using three-layer DNN, a model
was developed to predict the toxicity of drug-like molecules or com-
pounds known as DeepTox. In this model, the input of DNN has
been used as 0D to 3D molecular descriptors.139 Recently, a DL-
based toxicity prediction model known as Deep-PK has been devel-
oped. This model estimates the toxicity and pharmacokinetics of
small molecules.140 Therefore, ML/DL models are essential for pre-
dicting drug toxicity.

Estimation of ADME

Over the past decade, drug discovery and development have evaluated
the ADME property, one of the most critical issues. Previously, exper-
imental evaluation methods (in vivo and in vitro) were used, but these
methods are time consuming, laborious, and costly.104 Therefore,
estimation of the ADME properties of drug molecules is essential.
AI models play a significant role in assessing the ADME, and several
AI models have been developed from time to time. It is essential to
understand the drug’s ADME properties, which are essential for the
drug discovery and development process. Therefore, it is necessary
to comprehend these four properties in detail. The four properties
are absorption, distribution, metabolism, and excretion. However,
some scientists have illustrated the ADME as ADMET, where toxicity
has been included in the ADME model as a fifth property. To under-
stand the ADME-toxicity feature of a drug, researchers must under-
stand the inhibition of cytochrome CYP2D6 (P450 2D6), which
commonly affects the molecules passing through the blood-brain bar-
rier. Additionally, studying plasma protein binding is essential.141–143

Recently, Yi et al.144 developed a model for estimating ADME-
Toxicity properties entitled ChemMORT. The model predicts the
ADME-toxicity features of drug molecules using multi-objective par-
12 Molecular Therapy: Nucleic Acids Vol. 35 September 2024
ticle swarm optimization andDL algorithms.144 Gu et al.145 developed
another model for estimating ADME-toxicity properties entitled
asadmetSAR3.0. The web-based model efficiently predicts the
ADME-toxicity.145 Another important web-based model that effi-
ciently predicts the ADME-toxicity model is OptADMET. This
model improves lead compounds’ ADMET properties through sub-
structure alterations.146

Drug toxicity prediction is one of the crucial parameters for humans.
Several types of toxicities have been predicted from time to time, such
as liver toxicity (drug-induced liver injury [DILI]), carcinogenesis,
and heart toxicity.147 Drug-induced cardiotoxicity and DILI are sig-
nificant adverse effects triggered by many essential drugs.148 Using
data-driven approaches to comprehend toxicity is an important
area. In this direction, several data-driven databases or libraries
have been introduced for predicting toxicity, such as ClinTox,149

ToxCast,150 and Tox21.151

Some chemical datasets with SMILE format data are available for
the ADMET for molecule property prediction, such as Llipophilic-
ity, FreeSolv, and ESOL.152 These datasets are essential to predict
the ADMET. From the molecular structure, Delaney153 developed
a method to directly evaluate the aqueous solubility of the molecule.
Similarly, Mobley and Guthrie154 developed a FreeSolv database to
evaluate the calculated and experimental hydration-free energies. It
might help to compute hydration-free energies for small molecules
in water and molecular structures.154 It is beneficial to understand
the properties of a molecule’s structure. Therefore, it may help to
understand the ADME of a drug molecule. Lipophilicity is one of
the critical parameters of the drug that defines solubility, the ability
to penetrate through cell barriers and transport to the molecular
target. Therefore, it is essential for drug discovery and develop-
ment.155 It affects the pharmacokinetics and, ultimately, the
ADME. Waring156 suggested understanding lipophilicity is neces-
sary for drug development. AI-enabled ADME might help in this
direction.

Several AI-, ML-, or DL-enabled tools or models have recently been
developed, focusing on ADME or ADMET. One such ML-based plat-
form is ADMET-AI. It is one of the fastest web-based ADMET pre-
diction platforms using the Python package. It reduces time by
approximately 45% compared with other available platforms per-
forming ADMET analysis.109 One recent tool, Deep-PK, has been de-
signed using DL to comprehend the pharmacokinetics and toxicity of
input drug molecules. In this model, researchers have used graph NN
and graph-based signatures to extract the feature. Finally, it produces
the soundest predictive performance.73

Similarly, Yi et al.144 developed a DL-based automatic platform,
ChemMORT, to optimize ADMET. The analytical platform uses
three modules during optimization: encoder, decoder, and optimizer.
These three modules are an SMILES encoder, a descriptive decoder,
and a molecular optimizer.144 Using AI-, ML-, or DL-enabled
ADME or ADMET tools or models, the researchers can quickly
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comprehend a molecule’s pharmacokinetics and safety properties
during drug discovery and development.

Estimation of DDI

When we consume two or more drugs, the combination may create
unwanted side effects. Therefore, DDIs are described as the unavoid-
able side effects that result from the intake of two or more drugs.157 It
is associated with treatment failure or clinical toxicity. DDIs can be
studied through an experimental approach using in vitro and in vivo
methods to assess DDI potential.157,158 Predicting DDIs is essential
for human health. Conversely, a substantial amount of cost and
time is required to predict DDIs using an experimental approach.
Presently, using AI, one can analyze the DDIs very quickly. The
advantage of AI is that enabling DDI prediction can take less time
and lower the cost. Therefore, several AI-to-DL models have been
developed in this direction.159

DDIs also need to be understood during drug discovery development,
and this is an emerging area of research. It is an essential threat to
public health. Therefore, researchers are trying to understand the
properties of DDI.160 DDIs were studied through the different models
of AI.159 Recent DNN models can analyze the DDI. Recently, Liu
et al.161 developed a model DANN-DDI to estimate DDIs. Another
model was developed to access DDI. It is a multi-scale feature model
called MUFFIN.162 Another DL model can analyze the DDI, which is
known as AttentionDDI. This multi-modal NN can benefit drug
development through better DDI prediction.163 Pham et al.164 devel-
oped a model for predicting DDI using DL. The model, called
DeepARV, aims to understand the DDI between ARVs and comedi-
cations.164 Similarly, Rohani and Eslahchi165 proposed an NDD
model to study the DDI through the NN using a heuristic similarity
selection process. The model can evaluate unknown DDIs.165 Simi-
larly, another recent DL-enabled DDI model, SSF-DDI, was devel-
oped. The method uses substructure features using the drug molecule
graph and drug sequence for DDI prediction. The model integrates
drug sequence features and structural features from the drugmolecule
graph. The encoder captures sequence features pulled out from drug
molecules using MixAttention and multilayer CNNs. It also uses a
directed message-passing NN to feature the extraction of substruc-
tures.166 However, these DDI models solved the DDI problem in
the future through proper prediction and understanding.

Large language models: From drug target identification to drug

discovery and development

After the release of ChatGPT on November 30, 2022, large language
models (LLMs) gained high interest, and millions of people have been
using them.167,168 LLMs perform human-like conversations with cut-
ting-edge technology. Other LLM-based chatbots include Google’s
Gemini, Models of Meta’s LLaMA family, and Mistral AI’s models.
LLMs can train vast amounts of text through the supervised training
process. It uses several fields of medical science for drug discovery.169

LLMs can help to provide the necessary information during drug dis-
covery and development, such as drug target discovery, pharmacoki-
netics, and pharmacodynamics. It can also help to understand the
AMDE properties of a drug molecule. It also helps to comprehend
DDI during drug discovery and development.8,170 Recently, several
next-generation, domain-specific LLMs have been developed, such
as the DrugChat model. The model uses LLM, an adapter, and a graph
NN. It can produce drug-molecule graphs.169 Now, LLMs have been
used in different areas of drug discovery and development.

However, LLMs have several limitations, such as accuracy and plagia-
rism.168 By addressing those limitations, LLMs can open up immense
future possibilities in drug discovery and development.

AI-designed molecules entering clinical trial: Some success

stories

The preliminary result for AI-designed molecules shows very prom-
ising. Some AI-designed molecules have crossed the preclinical barrier
and entered clinical trials (Table 3). An AI-designed A2A receptor
antagonist molecule EXS-21546 also entered into the clinical trial.
The molecule is an immuno-oncology molecule that will be used to
treat solid tumors carrying high adenosine signatures. It was developed
from the collaborative effect between Evotec and Exscientia.171 Ex-
scientiaAILtd. is a leading pharma-technology company that performs
AI-related drug discovery. Evotec is a biotechnology-based drug dis-
covery company in Germany. Exscientia AI Ltd. developed another
AI-designed molecule, DSP-1181. This 5-HT1a agonist for obsessive-
compulsive disorder.172,173 Exscientia collaborated with Sumitomo
Dainippon Pharma, Japan, to develop this AI-generated drug.

Exscientia developed the next drug candidate, an AI-designed molec-
ular candidate. The molecule is known as EXS4318. The drug candi-
date is a selective protein kinase C-theta inhibitor.171 Another AI-de-
signed molecule, INS018_055, is developed by InSilico Medicine. It is
a biotechnology-based drug design company in Hong Kong. The
molecule is a TRAF2- and NCK-interacting kinase inhibitor. The
molecule is developed for idiopathic pulmonary fibrosis.94,174

Another drug candidate is RLY-4008, developed by BenevolentAI and
a small-molecule phosphodiesterase 10 inhibitor. BenevolentAI per-
forms an AI-based innovation and is a global leader in AI located
in the UK. The molecules are developed for ulcerative colitis.

Collaboration for AI-enabled drug discovery and development

Several collaborations were made occasionally in the pharmaceutical
sector to foster drug discovery and development (Figure 5).175,176

The collaboration between academia-industry is frequently noted in
pharmaceutical companies. It occurs because academia can shine in
the discovery of drugs with fundamental concepts. In contrast, the in-
dustry excels in the translational process of product development.177

However, different types of collaborations were found in the pharma-
ceutical sector for drug discovery and development, such as academia
and pharmaceutical collaboration, a collaboration between two phar-
maceutical companies, and a collaboration between one pharmaceu-
tical company and one venture capitalist.177,178 However, all these col-
laborations were made for faster drug discovery and development
methods with less economic input. Some specific collaboration has
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Table 3. Different AI-designed drugs that enter clinical trials

Sl. No. Drug Clinical trials number Phase Organization/sponsor Remark

1. REC-4881 NCT05552755 1 and 2
Recursion Pharmaceuticals Inc.,
USA

Inhibitor component of mitogen-activated protein
kinase kinase 1 and 2 for individual with familial
adenomatous polyposis

2. BEN-2293 NCT04737304 1 and 2
BenevolentAI,
UK

It is an inhibitor of pan-tyrosine kinase inhibitor
applies to patients who have atopic dermatitis
(mild to moderate)

3. RLY-4008 NCT04526106 1 and 2 Relay Therapeutics, USA

The inhibitor of fibroblast growth factor receptor 2
used against in the patients with unresectable or
metastatic cholangiocarcinoma and other solid
tumors

4. BEN-8744 NCT06118385 1
BenevolentAI,
UK

The phosphodiesterase 10 inhibitor for treating
inflammatory bowel diseases such as ulcerative
colitis

5. REC-2282 NCT05130866 2 and 3
Recursion Pharmaceuticals
Inc., USA

The histone deacetylase inhibitor used for in
patients with progressive NF2-mutated
meningiomas

6. INS018_055 NCT05975983 2
In Silico Medicine Hong Kong
Limited, China

Consider as small molecules inhibitor of adults
with idiopathic pulmonary fibrosis

7. REC-994 NCT05085561 2
Recursion Pharmaceuticals Inc.,
USA

The superoxide scavenger molecule used against
symptomatic cerebral cavernous malformation

8. EXS-21546 NCT05920408 1 and 2
Exscientia AI Limited,
Scotland

Adenosine A2A receptor antagonist molecule used
against advanced solid tumors carrying high
adenosine signatures

9. GTAEXS617 NCT05985655 1 and 2
Exscientia AI Limited,
Scotland

The CD4/CDK6 inhibitor, used for the treatment
of advanced solid tumors

10. ISM3312 CTR20230768 2
Insilico Medicine,
China

Used for the treatment of coronavirus disease 2019
patients as 3CL protease inhibitor compound

11. NDI-010976/GS-0976
NCT02876796,
NCT02856555,
NCT02891408, NCT03987074

1 and 2
Gilead Sciences,
USA

The oral dose administration in against of
nonalcoholic fatty liver disease

12. OPL-0401 NCT05393284 2
Valo Health, Inc,
USA

The drug used for patients with diabetes mellitus
with non-proliferative diabetic retinopathy or mild
proliferative diabetes retinopathy with or without
diabetic macular edema

13. ISM3091 NCT05932862 1
Exelixis,
USA

The combination therapy with olaparib in patients
with advanced solid tumors

14. RLY-1971/RG-6433 NCT04252339 1
Hoffmann-La Roche,
Switzerland

Used as highly potent and selective SHP2
inhibitor, for advanced or metastatic solid tumors

15. RLY-2608 NCT05216432 1
Relay Therapeutics, Inc.
USA

The single agent in advanced solid tumor patients
and in combination with fulvestrant in patients
with advanced breast cancer

16. ANPA-0073 ACTRN12621000644864 1
Structure Therapeutics,
USA

The testing single incremental doses of oral
capsules used for patient having pulmonary
arterial hypertension,
idiopathic pulmonary fibrosis

17. PHI-101
NCT04842370
NCT04678102

1
Seoul National University Hospital,
South Korea

The PHI-101, and novel FLT3 inhibitor in the
treatment of relapsed or refractory acute myeloid
leukemia for patients who have received standard
therapy

18. SGR-1505 NCT05544019 1
Schrödinger, Inc.
USA

The oral inhibitor of MALT1 used against for the
non-Hodgkin’s lymphoma

19. OPL-0301 NCT05327855 2
Valo Health, Inc,
USA

The supportive impromevnt drug used for the
patients having post-myocardial infarction left
ventricular dysfunction

20. GSBR-1290 NCT05762471 1 and 2
Gasherbrum bio inc.
USA

This drug used for the patients having overweight/
obesity and type 2 diabetes mellitus on metformin
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been noted from time to time. We noted some collaborative efforts for
the neglected or rare disease drug development.179,180 During the
pandemic,we foundseveral collaborations for coronavirusdisease2019
vaccine development and deployment.181–184 However, several mole-
cules have been discovered and entered themarket due to collaborative
efforts, and several examples are noted in this direction.

Big pharma companies have collaborated with computer giants for
AI-enabled drug discovery and development. These collaborations
are fostering the discovery of new drug molecules. Several new drug
molecules have resulted from these collaborations. One example is
the collaboration between Evotec and Exscientia, which resulted in
the molecule EXS-21546. The molecule has entered the clinical trial
and will be used to treat solid tumors. Several other collaborative ef-
forts have been noted for AI-enabled drug discovery. Marck has
collaborated with Exscientia for AI-related drug development. Roche
has collaborated with Owkin to develop an ML-based clinical trial
platform for drug discovery and development.

Similarly, the pharmaceutical giant Pfizer has collaborated with tech-
nology company IBM Watson to speed up drug molecule discovery
and development in immuno-oncology. Pfizer, IBM, and Microsoft
have collaborated to solve healthcare-related problems comprehen-
sively. Sanofi collaborates with Exscientia for AI-related drug devel-
opment in oncology and cardiovascular disease.11 These collabora-
tion efforts have made AI-enabled drug discovery and development
more potent and successful. We will see that these collaborative ef-
forts will result in several new drugs shortly.

Challenges

Researchers have documented several challenges in AI-driven drug
discovery and development, which are as follows.

Issues related to the availability of quality data

Several challenges have been noted in this area of drug development.
AI models need to be trained to high-quality data. The main challenge
is the availability of high-quality and suitable datasets for training the
model. Although chemical and biological data are increasing, the data
quality is not so good. Therefore, data curation can be done. At the
same time, a cost is involved in accessing data from the database. It
is an additional cost to a company and might increase drug develop-
ment costs. However, more high-quality datasets in pharmacological
Molecular Ther
science and pharmaceutical chemistry must be
developed immediately. These datasets can
help to train and test AI models, which might
solve the data availability problem.

Interpretability of AI or DL models

Developed AI or DL-based drug discovery and

development models should be adequately understood and explained.
Understandability and explainability of AI model predictions remain
challenging. DL models deal with a large number of parameters and
multiple layers. It is challenging for nonexpert users to explain the
model in the case of drug discovery and development. Therefore, un-
derstanding and explaining the DL models is vital for drug discovery
and development, but sometimes it is challenging.185–187 High-end
skills and trained workforces with knowledge of both areas, such as
computer engineering with AI specialization and pharmaceutical sci-
ence knowledge, are immediately required. These skills help to
modify algorithms in this direction and understand and predict the
outcomes of algorithms in pharmaceutical science and drug develop-
ment. They might solve the problem of interpretability of AI models.

Similarly, the models developed through the AI technique are not
explainable. Likewise, we cannot explain the AI-derived result due
to its black box nature.188,189

Computational constraints of high-end AI models

These high-end AI models are not feasible for smaller research en-
tities because they need to train for a prolonged time with a large
amount of data. To run these models requires enormous storage re-
sources and vast computational infrastructure. Parallel computation
might be helpful for computing high-end AI models.187,190

In this direction, significant research entities require enormous stor-
age resources, and vast computational infrastructure should be es-
tablished by every country. As the infrastructure cost is too high,
every company might not establish the infrastructure. Therefore,
the country should support it for the companies. However, the
high-end infrastructure must be accessible to companies dealing
with AI-enabled drug discovery. It might solve the infrastructure-
related issues associated with the computational constraints of
high-end AI models.

The need for a more skilled and trained workforce

A skilled and trained workforce is another problem. We need more
software engineers with the knowledge of AI technology and more
skilled data scientists. With an explicit knowledge of these fields
and pharmaceutical expertise, the workforce can efficiently perform
AI-driven drug discovery. However, we also need a more skilled
and trained workforce.
apy: Nucleic Acids Vol. 35 September 2024 15

http://www.moleculartherapy.org


www.moleculartherapy.org

Review
CONCLUSION
AI has made significant progress in disease diagnostics, helping
healthcare professionals such as radiologists and clinical pathologists,
and revolutionizing these fields. AI has also made significant progress
in precision medicine.13,191 Different models developed using AI have
been developed to solve radiological and pathological diagnostics and
precision medicine problems. Such experiences and success stories
might support AI-enabled drug discovery.

Drug discovery is a critical field that deals with multi-step search,
multi-dimensional, and optimization problems. With powerful prob-
lem-solving capacity, AI has been applied in different fields of drug
discovery to solve complicated problems. Over the last decade, AI-
enabled techniques have been vastly used in various drug discovery
and development steps, and we have witnessed it. The revolution of
AI techniques has substantially impacted drug discovery, accelerating
the process. Conversely, recent LLM applications like ChatGPT have
enriched the drug discovery and development field. Researchers are
applying this NPL-based DL model in drug target discovery and
advance it to clinical trials more quickly.8,170,192 Our discussion indi-
cates that an AI-enabled, fast-approaching wave has been created in
the drug discovery field among pharmaceutical companies with the
potential to change drug discovery in the future. Although several
challenges exist, AI techniques and technologies will address and
overcome them. AI techniques will bring drastic changes in AI-driven
drug discovery. DL andML technology-driven research have success-
fully generated several models and platforms for drug discovery
research. Many researchers have developed AI-driven models, tech-
nology, and drug discovery and development tools. In contrast, ven-
ture capitalists invest vast amounts of money in different start-up
companies focusing on AI-based drug development. Therefore, all
factors support the growth of AI-assisted drug discovery and develop-
ment. Therefore, all assume that the sector will likely grow very fast.
At the same time, it is very promising that major pharmaceutical
companies will collaborate with technology giants to enter the market
by leveraging faster drug discovery and development methods
through AI-assisted techniques. Therefore, AI-assisted drug discov-
ery is likely to grow very fast. With faster discovery timelines, AI-
enabled drug discovery might be a game changer for research and
development in the pharmaceutical sector, from small molecules to
therapeutic antibody drug discovery. It will also revolutionize phar-
maceutical research and development. We are very hopeful that
several AI-driven drugs will enter the market very soon.
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