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Abstract

An accurate histopathologic diagnosis on surgical biopsy material is necessary for the clinical 

management of patients and has important implications for research, clinical trial design/

enrollment, and public health education. This study used a mixed methods approach to isolate 

sources of diagnostic error while residents and attending pathologists interpreted digitized breast 

biopsy slides. Ninety participants including pathology residents and attendings at major United 

States medical centers reviewed a set of 14 digitized whole slide images of breast biopsies. Each 

case had a consensus-defined diagnosis and critical region of interest (cROI) representing the 

most significant pathology on the slide. Participants were asked to view unmarked digitized slides, 

draw their own participant region of interest (pROI), describe its features, and render a diagnosis. 

Participants’ review behavior was tracked using case viewer software and an eye tracking device. 

Diagnostic accuracy was calculated in comparison to the consensus diagnosis. We measured the 

frequency of errors emerging during four interpretive phases: 1) detecting the cROI, 2) recognizing 
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its relevance, 3) using the correct terminology to describe findings in the pROI, and 4) making 

a diagnostic decision. According to eye tracking data, both trainees and attending pathologists 

were very likely (about 94% of the time) to find the cROI when inspecting a slide. However, 

trainees were less likely to consider the cROI relevant to their diagnosis. Pathology trainees were 

more likely (41% of cases) to use incorrect terminology to describe pROI features than attending 

pathologists (21% of cases). Failure to accurately describe features was the only factor strongly 

associated with an incorrect diagnosis. Identifying where errors emerge in the interpretive and/or 

descriptive process and working on building organ-specific feature recognition and verbal fluency 

in describing those features are critical steps for achieving competency in diagnostic decision 

making.
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Introduction

Diagnostic errors are a critical challenge in all areas of health care1, however the sources of 

error are unique to each specialty/sub-specialty in medicine. While many areas of medicine 

rely on clinical history, physical exam, and lab values to render a diagnosis, the field of 

anatomical/surgical pathology is unique in that integrates the aforementioned information 

with gross, microscopic, and where relevant, molecular findings to render a tissue diagnosis. 

Like other fields of medicine, pathology requires a medical degree, followed by post-

graduate residency training, and then often an organ-specific subspecialty fellowship to 

acquire career-specific expertise. In their daily work, surgical pathologists are tasked 

with recognizing and integrating complex visual images present on microscopic slides 

and assigning clinically actionable organ-specific language/terminology to their diagnostic 

reports. This process relies on the pathologist to identify the area of most significant 

pathology in a background of normal but variable histology, recognize the relevance of 

the pathologic features, then use all available clinical and pathological data to translate the 

visual finding(s) into a written diagnosis using universally accepted terminology. This entire 

process of arriving at a final diagnosis requires the brain to engage in a multitude of complex 

cognitive processes.2,3 Isolating these processes and identifying where errors emerge is 

critical for educating future pathologists and for reducing errors with serious downstream 

clinical implications and monetary costs to the healthcare system.4,5

To isolate and better understand the processes involved in interpreting biopsies, we recruited 

pathology trainees and board-certified attending pathologists to view a set of whole slide 

breast biopsy images while we tracked their eye movements and viewing behavior. Breast 

biopsies were chosen for this study because they are relatively high volume in pathology 

residency training, have a well-established and universally accepted lexicon of terminology, 

and can show a spectrum of pathologic findings (both benign and malignant) that can be 

challenging for trainees to interpret. We developed a conceptual framework (Fig. 1) that 

distinguished four interpretive phases and potential sources of diagnostic error: detecting 
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the critical region of interest, recognizing its relevance in the context of the background, 

accurately applying terminology to describe salient features, and finally reaching a correct 

diagnosis. Detecting a critical region involves visually scanning an image to find regions that 

represent the most significant pathology on the slide. In our study, a failure to detect these 

regions occurs when a participant does not fixate their eyes on a consensus-defined region of 

interest (cROI) measured by eye tracking software.2,6 Recognizing relevance is the process 

of accumulating visual evidence and recognizing patterns that are potentially informative 

to solving a task.7,8 In our study, a failure to recognize relevance occurs when participants 

fixate their eyes on the cROI but the drawn participant region of interest (pROI) does not 

overlap with the cROI. Describing features is the process of using correct terminology 

to describe the microscopic pathologic features in the pROI in a written annotation. We 

consider a failure of description to occur when a participant’s written annotations do not 

correctly describe the features present in the pROI. Finally, diagnostic decision-making 
is the process of developing hypotheses and ultimately deciding to place a case into a 

diagnostic category.9–11 A failure of decision-making occurs when a participant’s diagnosis 

does not match the case consensus diagnosis.

Identifying where errors emerge during the interpretive process is critical for not only 

informing residency curricula and assessments but also to identify diagnostic categories that 

might have inherently high inter-observer variability and are therefore difficult to teach. The 

Accreditation Council for Graduate Medical Education (ACGME) emphasizes competency-

based training and evaluation, and training programs and their residents stand to benefit 

from curricula that can accelerate and expand competency development.12,13 However, one 

challenge facing the realization of competency-based training is understanding precisely 

where competency gaps occur, and therefore which aspects of curriculum and assessment 

require more attention. Our study examines four possible competency gaps in the 

interpretive process: detecting critical regions, recognizing relevance of critical regions, 

describing perceived features, and diagnostic decision-making. Based on our results, we 

provide concrete recommendations for filling identified gaps with pedagogical approaches 

derived from the cognitive and learning sciences.

It is known that inter-observer variability exists even among experienced pathologists in 

certain breast pathology diagnostic categories (e.g., atypia, low-grade ductal carcinoma in 

situ), and these cases may lead to slightly different diagnostic interpretations.14,15 The 

purpose of the current study was to further explore the genesis of diagnostic errors and 

disagreement, particularly during the learning phase of competency. We used our novel 

conceptual framework to examine the nature and frequency of errors in the four interpretive 

phases. We also compared the frequency of these error types among participants with 

relatively low (residents, fellows) versus high (attending physicians) experience levels.

Methods

Human Research Participants Protection

All participants provided written informed consent, and all study procedures were approved 

by the appropriate Institutional Review Boards (IRB), with the University of California, Los 

Angeles acting as the IRB of record (Protocol #18–000327).
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Participating Pathologists

Data were collected from ninety individuals with varying experience in interpreting breast 

pathology, including 70 pathology trainees (residents and fellows), and 20 general surgical 

pathology attending physicians, from nine major United States university medical centers 

(see Supplementary Table 1 for demographic details). Note that 8 of the 9 sites used 

sub-specialty sign-out models in their training programs (with one site transitioning from 

general to sub-specialty within the timeframe of our data collection), with the other site 

using a general sign-out model.

Test Set Development

We used cases from a larger test set of 240 hematoxylin and eosin stained digital whole 

slide images (WSI) developed in earlier research.16,17 Each case was scanned using an 

iScan Coreo Au digital slide scanner18 at 40x objective magnification (0.23 um per pixel 

maximum optical resolution); a single image was created for each case. A subset of 32 

cases was selected for this study, each comprised of one WSI that included one or more 

cROI(s), and a single consensus reference diagnosis previously determined by a panel of 

three fellowship-trained expert breast pathologists using a modified Delphi technique.14,16 

In our prior work, the expert panel members independently reviewed each case and then 

attended four in-person meetings to come to agreement on a consensus reference diagnosis 

for each case and to ensure that each WSI provided all necessary image detail to render a 

primary diagnosis.14 The cROI was agreed upon by the expert panel as the image region(s) 

best representing the most clinically significant consensus diagnosis. None of the expert 

panel members was a participant in this study.

The 32 cases selected included a full range of consensus diagnostic categories and were 

divided into three test sets of 14 cases (one image per case). Five identical cases (one 

from each diagnostic category) were included in all three test sets, and the remaining 9 

cases within each test set were unique. In total, each test set contained two benign cases, 

four atypia cases, four low-grade ductal carcinoma in situ (DCIS) cases, two high-grade 

DCIS cases, and two invasive cases. Within the DCIS category, we used accepted research 

practice19 to parse cases into low-grade versus high-grade based upon nuclear grade and the 

presence of necrosis. As a practice case, we selected one invasive carcinoma case with very 

high rates (93%) of participants agreeing with the consensus diagnosis in prior research.16

Note that cROIs provided less discriminatory power for cases diagnosed as benign; benign 

cases are more likely than the other diagnostic categories to have many different image areas 

that could be interpreted as supporting the benign diagnosis. Thus, eye fixation and pROI 

overlap are more difficult to interpret in the benign category.

Study Equipment

A Dell Precision M4800 laptop and a color-calibrated 22” Dell liquid crystal display 

(LCD) running at 1920 × 1080 resolution were used for data collection. A digital viewer 

software was developed to depict images using the Microsoft, Inc. DeepZoom Silverlight 

application. The viewer displayed the high resolution digital whole slide images, and users 

could zoom (up to 60× magnification equivalent) and pan the image while maintaining high 
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resolution. The viewer software included a rectangle drawing tool (i.e., to draw the pROI), 

and continuously recorded all image navigation data including zooming, panning, and pROI 

markings. The position of the cROI(s) was known to the research team but was not visible to 

participants.

A remote eye tracking device manufactured by SensoMotoric Instruments (Boston, MA; 

Model RED250) was used to collect binocular eye movement data 250Hz while maintaining 

high gaze position accuracy (≤ 0.5°). The eye tracker was attached to the bottom of the 

computer monitor, and we used a 9-point calibration process.

To record annotations and diagnostic decisions, we developed a histology form using 

the Qualtrics web-based platform. The histology form used an open-ended text entry 

box to collect descriptive text annotations of pROI features (i.e., What are the critical 
histopathological features in the ROI you drew? Be specific.”), the case’s diagnostic 

category and a Likert-based confidence rating. When relevant, the form collected additional 

data such as nuclear grade and the presence or absence of necrosis.

Study Locations and Procedures

Following informed consent and completing a demographic survey, at each of the nine data 

collection sites, participants met with an experimenter (authors TTB or TD) individually (for 

up to 1.5 hours) to review cases in a private office or conference room (Fig. 2). Following an 

eye tracker calibration, all participants practiced navigating the image (zooming, panning), 

marking a critical region of the image (drawing a pROI), providing a textual annotation of 

features found in the pROI (like on a pathology report), and then completing the remainder 

of the histology form using the same practice case. This process was then completed 

for each of the 14 experimental cases (in random order). Each of the experimental cases 

included only standardized and basic clinical history (patient age, biopsy type) that was 

intentionally of limited value for interpreting the histopathological features of a case; this 

allowed our study to focus on information derived solely from review of the case. Upon 

completion of the study session, participants were compensated with a $50USD gift card.

Data Scoring & Analysis

Eye-tracking data were merged with case position information gathered from the case 

viewer software, allowing us to co-register (temporally and spatially) eye fixations to the 

case coordinate system. The eye tracker parses continuous eye movements into fixations and 

saccades; fixations are brief pauses of the eye that exceed a temporal threshold (80 ms), 

and saccades are rapid ballistic movements of the eye between successive fixations. When 

examining eye movements, we used the version signal, a measure that reduces variable error 

by averaging left and right eye positions.20

To assess critical region detection, we assessed whether a participant fixated their eyes at 

least once (for longer than 80 ms) on the cROI during their review. A detection error was 

defined as having zero eye fixations on a case’s cROI(s). To assess recognizing the relevance 

of critical regions, we evaluated whether the pROI overlapped (in pixel area) with the cROI: 

a recognizing relevance error was defined as having zero overlap between the pROI and 

cROI.

Brunyé et al. Page 5

Mod Pathol. Author manuscript; available in PMC 2024 September 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To assess whether participants accurately described features, we asked two board-certified 

anatomic and clinical pathologists (authors DW and AB, with the former being more senior 

than the latter) with over 45 years of combined sub-specialty expertise in breast pathology to 

manually score participants’ written annotations. They viewed each case, the drawn pROIs, 

and the written annotations provided by the participants. They assessed whether the written 

annotation used language that accurately and sufficiently described the features in the drawn 

pROI by selecting one of six assessment categories (Table 1). In the first round, each rater 

independently assessed all interpretations with annotations (1,211 annotations). After the 

first round, the two raters had an overall agreement of 67.8% in categorizing the written 

annotations (821 of the 1,211 annotations; see Supplementary Table 2 for details). The two 

expert raters then re-reviewed the 390 annotations that were categorized differently while 

also being able to view the other rater’s assessments and discussed interpretations among 

themselves. Most disagreements were due to the rater’s interpretations in language when 

non-standard, non-universal terminology was used by participants, and some variability in 

how raters interpreted the “ambiguous” category. In instances where the terminology used in 

descriptors was not universally accepted in the lexicon of breast pathology terms, raters had 

to make inferences about what the participant may have intended with their descriptors. At 

the end of the second round, the two raters achieved 94.2% agreement (1,141 of the 1,211 

annotations; Table 1). See Supplementary Table 3 for example scored annotations.

For analysis, we excluded 136 feature annotations where raters answered “Ambiguous, 
difficult to judge” or disagreed whether the annotation accurately represented features 

(Table 1, light gray shading). The remaining 1,075 assessments (distributed across all 

90 participants) were divided into two categories: one when the annotation accurately 

represented the features (Table 1, white shading, 685 ratings), and one when it inaccurately 

represented the features (Table 1, dark grey shading, 390 ratings).

To assess errors of diagnostic decision making, we compared participant diagnoses to the 

consensus reference diagnosis for each case; an error was defined as the participant response 

for the case mismatching the single consensus (of five) diagnostic category.

To explore the contribution of each interpretive phase towards an accurate diagnosis, we fit a 

generalized estimating equation (GEE) logistic model using SPSS v21 (IBM, Inc., Armonk, 

NY) with diagnostic accuracy as the binary outcome and three binary explanatory variables: 

detecting the lesion, recognizing its relevance, and describing features. We included case ID 

as fixed effects and each participant as a cluster.

Results

All 1,075 interpretations were included in the analyses; Table 2 details the number and 

proportion of successful interpretations within each of the four phases of the interpretive 

process.

For detecting the critical region, participants fixated on the cROI on 1,012 interpretations 

(94%). Overall, errors at this phase were low (6%).
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For recognizing the relevance of a region, participants drew a pROI that overlapped the 

cROI on 727 interpretations (68%); mean area of pROI:cROI overlap was 35%. Except 

for invasive carcinoma, where overlap of ROI was high among all participants, attending 

physicians were 16% more likely to overlap their pROI with the cROI than pathology 

trainees (76% vs 65%).

For describing features, participants successfully described histopathological features in 

drawn ROIs on 685 interpretations (64%). Overall, errors of feature description occurred on 

36% of interpretations; more challenging diagnostic categories (atypia, DCIS) and relatively 

inexperienced participants tended to show higher error rates at this stage of the interpretive 

process.

For diagnostic decision making, participants successfully selected a diagnosis on a case 

that matched the expert consensus diagnostic category on 468 interpretations (44%), 

substantially higher than random chance (20%). Decision making errors were generally 

higher among pathology trainees and in the more difficult diagnostic categories (atypia, 

DCIS).

We plotted Sankey diagrams to visualize where errors tend to occur (Fig. 3). Sankey 

diagrams are used to depict complex flows of information; the width of a flow is 

proportional to its quantity (i.e., the number of interpretations), branches represent change in 

flow (e.g., detecting or not detecting a cROI), and colors represent phases (e.g., detection, 

recognition).21 In the upper panel, the overall error rate during the Detecting the Region 
phase is 5.9% (63 of 1,075 cases), and the dependent (sequential) error rate at Recognizing 
Relevance is 28.4% (287 of 1,012 cases), at Describing Features is 36.1% (262 of 725 

cases), and at the Diagnostic Decision phase is 35.4% (164 of 463 cases). Given the 

challenging categories included in our test set, these overall error rates were expected14,19,22.

Medical decision making is a complicated process. Even without detecting the critical 

image region or accurately describing features, a pathologist can still arrive at the consensus 

diagnosis. These possibilities are detailed in Table 3, organized by the accuracy of the 

diagnosis. In this table, we detail the eight possible paths to a successful diagnosis (rows 

1–8), and the eight paths to a diagnostic error (rows 9–16), both sorted in descending order 

of likelihood.

Of the 63 interpretations when the participants did not detect the critical region (Table 

3 rows 4, 6–8, 13–16), only two recognized the relevance of the cROI (row 15); 

neither resulted in successfully describing features or an accurate diagnosis. Of the 348 

interpretations when the importance of the cROI is not recognized (regardless of whether 

the cROI was detected; rows 2, 4–6, 11–14), participants accurately described features about 

two-thirds of the time (222 of 348 interpretations; 64%). This is the same rate as when the 

cROI overlaps the pROI (463 out of 725 = 64%); recall that recognizing features is assessed 

with respect to each participant’s drawn ROI (not with respect to the consensus cROI).

Finally, interpretations wherein the features are not successfully described (Table 3 rows 

3, 5–7, 11, 14–15) have a very low chance of ending with an accurate diagnosis (50 of 

390; 12.8%). A GEE logistic regression showed that describing features, χ2 = 271.1, OR = 
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10.71 (95% CI: 8.1, 14.2), p < .001, was about eight-times more strongly associated with 

diagnostic accuracy than recognizing relevance of features, χ2 = 2.78, OR = 1.27 (95% 

CI: 0.96, 1.67), p = .10. When including covariates for participant experience level and the 

consensus diagnostic category of the case, describing features remained as the variable with 

the strongest association with diagnostic accuracy, χ2 = 261.8, OR = 10.37 (95% CI: 7.8, 

13.8), p < .001, about eight-times stronger than recognizing relevance, χ2 = 1.69, OR = 1.21 

(95% CI: 0.91, 1.63), p = .19.

A final logistic regression demonstrated that higher experience level was associated with a 

higher likelihood of accurate feature description, with attending physicians showing nearly 

3 times higher odds of accurately describing features compared to trainees, controlling 

for case, χ2 = 16.9, OR = 2.96 (95% CI: 1.8, 4.9), p < .001. For consensus diagnostic 

category, feature description showed lowest accuracy for high-grade DCIS (35.5%; OR 

= 0.14, 95% CI: 0.1–0.2), Atypia (56.3%, OR = 0.35, 95% CI: 0.2–0.5), and low-grade 

DCIS (62.1%, OR = 0.45, 95% CI: 0.3–0.7) categories, χ2 = 124.9, p < 0.001. These 

diagnostic categories historically show high interobserver diagnostic variability14, possibly 

due to challenges associated with subtleties in their histopathologic features and difficulty in 

adequately interpreting and describing those subtle differences.

Exploratory Analyses

Early research examining error sources during medical image interpretation was conducted 

with radiologists examining x-ray films23. In this research, eye-tracking was used to monitor 

the position of the eyes during medical image inspection, and the investigators studied 

whether radiologists were committing search errors versus recognition and/or decision 

errors. Search errors were operationalized as a failure to fixate the eyes upon a critical 

lesion (e.g., lung nodule), which occurred in about 30% of all errors. Recognition errors 

were operationalized as restricted dwell time on the nodule, which occurred in about 25% of 

all errors. Dwell time is the cumulative amount of time (typically expressed in milliseconds, 

e.g., 600 ms) that the eyes fixated within a circumscribed region (typically within a few 

degrees of a target, e.g., 2.8°). Finally, decision errors were noted (about 45% of the time) 

when a radiologist found (according to eye fixations) and recognized (according to dwell 

time) the nodule, but then did not appropriately map their recognition to diagnostic criteria.

While many subsequent studies adopted a similar recognition metric based on dwell 

time6,24–26, some research challenges the appropriateness of this metric as an indicator 

of successful recognition2,27. Our novel conceptual framework allows us to distinguish 

between recognizing the relevance of features, and accurately describing histopathological 

features. However, it is unknown whether our novel measures are related to traditional 

measures of dwell time, and possibly carry more value than dwell time for predicting 

diagnostic outcomes. We built two GEE models to examine associations between dwell 

time, our novel recognition relevance and description measures, and diagnostic accuracy. 

The first model assessed the association between a binary dwell time measure (i.e., 

greater than or less than 600 ms dwell time on dROI, as done in prior work6,24–26) with 

recognizing relevance and describing features. Binary dwell time was positively associated 

with recognizing the relevance of features, χ2 = 71.1, OR = 44.55 (95% CI: 18.4, 107.7), 
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p < .001, and negatively associated with describing features, χ2 = 11.6, OR = 0.39 (95% 

CI: 0.23, 0.68), p < .001. In other words, the traditional method of using dwell time as a 

measure of recognition appears to be like our recognizing relevance measure (i.e., pROI 

and cROI overlap). However, dwell time appears to be negatively related to accurately 

describing features, possibly because increased dwell time can indicate uncertainty or lead to 

an over-interpretation of features.27–31 In other words, prior work may have misinterpreted 

dwell time as indicative of successful recognition; instead, it appears to more accurately 

indicate uncertainty.

The second GEE model used diagnostic accuracy as a binary outcome with three 

independent variables: recognizing relevance, describing features, and a binary measure of 

dwell time (i.e., greater than or less than 600 ms dwell time). This GEE demonstrated the 

strong positive association between feature description and diagnostic accuracy, χ2 = 264.1, 

OR = 10.6 (95% CI: 7.9, 14.1), p < .001, relative to feature relevance, χ2 = 2.9, OR = 1.4 

(95% CI: 0.9, 1.9), p = .09, or dwell time, χ2 = 0.6, OR = 0.8 (95% CI: 0.5, 1.4), p = .44. 

In other words, our feature description measure is about 13-times more strongly related to 

diagnostic accuracy than the traditional dwell time measure.

Discussion

The present study assessed error sources while trainees and attending pathologists 

interpreted whole slide images of breast biopsies. Participants were very likely, on about 

94% of interpretations, to find critical regions while scanning slides. Likewise, participants 

recognized the importance of critical regions on about 68% of their interpretations. 

Interestingly, neither of these measures was associated with diagnostic accuracy. When 

examining our innovative measure of describing histological features in drawn ROIs, 

participants applied incorrect descriptors on 36% of their cases. This pattern was 

especially pronounced in trainees (41% incorrect) relative to relatively experienced attending 

pathologists (21% incorrect).

Incorrect feature description was the only variable significantly associated with diagnostic 

accuracy. Unsuccessful feature descriptions were associated with an accurate diagnosis only 

13% of the time, whereas successful descriptions were associated with an accurate diagnosis 

61% of the time. The ability to correctly describe histologic features is an important 

determinant of diagnostic accuracy and may be largely determined by the experience level 

of pathologists and their specific experience in an organ system. Teaching pathology trainees 

how to accurately recognize and describe histologic features may have the highest yield for 

achieving diagnostic accuracy during training and clinical practice.

Implications for Postgraduate Pathology Training

While the most impactful errors appeared to emerge during the recognition and description 

of histopathological features, it is important to consider methods for advancing competency 

throughout the interpretive process. During the initial detection and relevance assessment of 

critical slide regions, pathologists may benefit from support in identifying the morphological 

features on cases that should attract immediate attention as potentially pathologic. For 

experienced pathologists, relevant features tend to “pop out” when viewing a case because 
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they have many years of experience reinforcing value-based (i.e., which features are 

rewarding and which are not) assessments of visual features.2,5,32 Visual attention towards 

especially salient (e.g., in color, size, contrast, brightness, form) features is automatic, but 

for residents it can be challenging to recognize and weight visual dimensions that are more 

relevant to the task.33,34 How can trainees be taught to effectively prioritize attention during 

an initial global image analysis, shielding their visual search from the potentially distracting 

effects of salient but irrelevant features?35 Research with eye movement modeling examples 

suggests that when medical trainees view an expert’s eye movements over cases, it can 

help them learn which regions are most informative to their task.36,37 This practice is 

done regularly when trainees view cases with an attending pathologist through a double 

headed microscope at sign out where they have the opportunity to watch them move to 

a higher objective and study certain areas on a slide. The more time a trainee can spend 

at a microscope viewing cases with an attending, the more they can observe this process 

and hone this skill. When residents are multi-tasking (i.e., typing reports, taking notes) 

and not looking through the microscope, they may be missing opportunities to engage in 

this process. Residents benefit from seeing how experienced pathologists navigate a slide, 

helping them learn statistical regularities associated with the informativeness of case regions. 

To supplement this time, rather than looking at static images, trainees may also benefit in the 

future from superimposed heat maps of search patterns on whole slide imaging cases, which 

can visually highlight probable regions of interest.38

When pathologists were asked to describe histopathological features deemed important to 

the diagnostic task, residents tended to show more challenges than attending physicians. It 

is not surprising that attending physicians could extract relevant information from cases 

and more adequately describe it than residents, as this is one hallmark characteristic 

of emergent expertise.38–40 There are several processes involved in this ability, with 

critical reliance on pattern recognition (perceptual learning) and verbal description.41 In 

the cognitive sciences, perceptual learning is regarded as one of the most critical aspects 

of expertise development in nearly any real-world domain, and extended experience is 

often the gold standard method for acquiring pattern recognition skills.42 There are, 

however, a few ways to accelerate the transition from slow to fast recognition, high to 

low attentional load, and serial to parallel processing. Perceptual learning focuses on the 

commonalities and variations in perceived features and have the goal of making pattern 

recognition faster, more generalizable to novel images, and operate at the level of implicit 

(i.e., subconscious) pattern recognition. In general, pattern recognition can be facilitated 

by asking students to repeatedly view contrasting features with immediate feedback,43 

studying structurally similar cases that differ only in superficial features,44 and using 

adaptive learning algorithms that scaffold learning based on ongoing accuracy and response 

latencies.45 The latter is particularly promising in pathology training, with students showing 

significant improvement in recognizing histopathological features following an adaptive 

perceptual learning program.45

Once pathologists learn to accurately recognize histopathological features, they must also 

effectively communicate their findings to others to facilitate diagnosis, prognosis, and 

treatment. This is especially challenging in diagnostic medicine when highly specialized 

nomenclature can vary between individuals, institutions, and regions. Developing expertise 
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in specialized language is challenging, and various attempts have been made to model and 

optimize the syntax, semantics, and pragmatics to facilitate communication in specialized 

domains.46 When learning a new language, it is widely accepted that immersing oneself 

in the language is the fastest way to achieve fluency.47 The more verbal a pathologist 

can be when looking at a case with a trainee, describing salient features out loud (what 

cognitive psychologists call a think-aloud method), repeating terminology, and verbalizing 

their thought process with organ specific terms, the more likely the trainee will benefit 

and acquire fluency.48–50 In contrast, viewing slides with a trainee silently or with minimal 

verbalization of thought processes and merely stating the correct diagnosis after silent 

deliberation is less likely to support organ-specific language development in the trainee. 

Reading pathology books to reinforce the terminology heard at sign out could further 

support fluency.

One relevant aspect of diagnostic decision-making is what cognitive scientists refer to as 

category learning, which involves learning key aspects of members of a category, and 

building mental representations of how categories overlap and diverge.51 In pathology, 

category learning helps physicians differentiate between fuzzy diagnostic boundaries, 

mapping patterns of recognized features (along with clinical context) onto a candidate 

diagnosis. There are several approaches for facilitating category learning that could 

be applied to pathologist training. First, fading approaches initially expose learners to 

exaggerated distinctions between across-category exemplars (e.g., clearly benign with non-

proliferative features, versus invasive); over time, the difference is systematically reduced 

until the categories are very challenging to distinguish (even for experts).52 Second, feature 
highlighting is a strategy that involves marking and describing the diagnostic features 

critical for recognizing category membership; this approach, particularly when combined 

with causal explanations, can be very valuable for learning within- and across-category 

features.53 Finally, research demonstrates that interleaved practice (rather than blocked 

practice) is valuable for facilitating category learning; this type of practice involves 

alternating between the study of category exemplars (e.g., benign, invasive, benign, invasive) 

rather than blocking their study (e.g., benign, benign, invasive, invasive).54 The daily case 

load and sign out of a pathologist reflects the interleaved practice, while study sets of 

malignant breast pathology cases for example are more reflective of blocked practice. These 

three learning sciences approaches may prove valuable for accelerating and expanding 

diagnostic competency in pathology postgraduate training.

Relation to Prior Work

Failure to detect the critical region was considerably lower in this study than rates previously 

reported in radiology and pathology (30–35%).23,55 The hematoxylin and eosin (H&E) 

staining used on the present biopsy images tend to make some histopathological features 

visually salient, attracting attention.34,56,57 Also, unlike prior studies, we did not restrict 

interpretation times or the ability to zoom and pan the image. The ability to zoom and pan is 

critical to the clinical relevance of our study, but we acknowledge that this design could have 

increased the likelihood that critical regions were eventually detected.
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Failure to recognize the relevance of critical features was higher in this study than in prior 

work,22 but was not a critical determinant of correctly describing features as successful 

feature descriptions still occurred 64% of the time whether or not there was an overlap 

of pROI and cROI. Our design examined the accuracy of feature description wherever 

the participants’ ROI was drawn, allowing us to examine the possibility that an accurate 

diagnosis could occur without focusing attention on our pre-determined expert consensus 

defined ROIs (i.e., leaving open the possibility that valuable diagnostic information could be 

found elsewhere on a slide).

Limitations

While the present study allowed relatively naturalistic image zooming and panning by 

participants, the interpretations were still done within an experimental context. Viewing, 

annotation, and diagnostic behavior may differ from routine clinical practice, with 

errors arising at different phases of what is very likely an iterative interpretive process. 

Furthermore, while we used a small, standardized set of 14 cases to maximize efficiency and 

minimally interfere with pathologists’ busy schedules, a larger and more diverse set of cases 

is preferable for promoting generalizability. Replication in true clinical settings with more 

diverse cases is important.

Our histology form required participants to select a single most advanced diagnostic 

category, which facilitated statistical analyses but also masks some of the nuance and 

variety of disease discovered during review. In contrast, our open-ended text responses 

allowed for more nuanced descriptions but also introduced subjectivity and variability, 

particularly when interpreted by others (including our raters). While combining these two 

techniques was an important feature of our design, it also highlighted the inherent challenge 

faced by pathologists (especially post-graduate trainees) when describing and effectively 

communicating perceived histopathological features. In clinical contexts, pathologists must 

balance the objectivity and prescriptive value of a categorical diagnosis while also ensuring 

they are communicating the nuances of disease processes. While innovative, we appreciate 

the inherent subjectivity of scoring written annotations. The two-phase scoring procedure 

with independent expert raters increased the reliability of this process, as evidenced by 

the 94% inter-rater agreement. It is possible, however, that our experts developed specific 

terminology and associations for describing histopathological features that may not overlap 

entirely with intended meaning of participants’ descriptions, particularly descriptions 

written by those with less experience. While the raters were intentionally flexible in their 

interpretation of annotations and discussed discrepancies at length, when non-universally 

accepted descriptors were used, judging their intended meaning became more difficult.

Finally, while an established gold standard diagnosis of a case is necessary for 

research purposes, a perfect gold standard for pathology diagnosis is unlikely to exist.14 

The consensus reference diagnoses and consensus cROIs used in the present study 

were established through years of expert pathologist meetings, including three experts 

independently interpreting all cases followed by consensus meetings to come to agreement 

on a reference diagnosis for each case (using a modified Delphi approach).16,17 To our 

knowledge, this process was much more comprehensive than what is typically done to reach 
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consensus (e.g., via second opinions) in clinical practice. Our novel conceptual framework 

for evaluating diagnostic errors in pathology found confirmatory evidence that detecting 

and recognizing the relevance of critical regions are important first steps in the interpretive 

process. In our study, however, the only variable associated with a successful diagnosis 

was the ability to accurately describe the histologic features pathologists deemed most 

important on a slide. Investing educational efforts into developing organ specific vocabulary 

and fluency in feature recognition and description may prove an ideal intervention point 

for continuing pathologist education and training, with potential implications for improving 

diagnostic accuracy.
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Figure 1. 
The four interpretive phases in our framework, along with examples of success and error in 

each phase. Example case depicts consensus atypia. Top panel images depict eye fixation 

sequences (blue rings, black lines) and cROI (red rectangle). Second panel image depicts 

overlapping cROI (red) and pROI (blue). Third panel depicts participant-provided feature 

annotation. Bottom panel depicts participant-decided categorical diagnosis.
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Figure 2. 
A pathology trainee (face blurred for privacy) interpreting a WSI during the study; the eye 

tracker is attached to the bottom of the computer monitor, and the trainee is navigating the 

zoomed case using the computer mouse.
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Figure 3. 
Sankey diagrams showing the flow of the interpretive process through the four interpretive 

phases: detecting the lesion, recognizing importance, describing features, and diagnostic 

decision. The width of a flow is proportional to its quantity (i.e., the number of 

interpretations), branches represent change in flow (e.g., detecting or not detecting a 

cROI), and colors represent phases (e.g., detection, recognition). Upper image displays all 

participants, middle displays pathology trainees, and lower displays attending pathologists.
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Table 1.

Method used to assess accuracy of participant’s description of histopathologic features

Rater 1 response Rater 2 response

Stated 
feature 
not found

Accurately 
represents 
features

Stated features 
underrepresent 
actual features

Stated features 
overrepresent 
actual features

Stated features 
are 
contradictory

Ambiguous, 
difficult to 
judge

Stated feature not 
found

25a,b 2c 1a 1a 0a 0c

Accurately represents 
features

0c 685b,d 13c 23c 0c 1c

Stated features 
underrepresent actual 
features

0a 8c 172a,b 0a 0a 0c

Stated features 
overrepresent actual 
features

0a 2c 0a 188a,b 0a 1c

Stated features are 
contradictory

0a 1c 0a 1a 2a,b 0c

Ambiguous, difficult 
to judge

1c 12c 3c 0c 0c 69b,c

Agreement/disagreement between expert rater 1 and rater 2 after round 2 of evaluating study participants’ feature annotations of their individually 
drawn pROI. The frequency of agreement between the 2 raters is along the (upper left to lower right) diagonal. The 2 raters’ assessments agreed for 
1141 of 1211 annotations (94.2%).

a
Inaccurate

b
Indicates agreement

c
Excluded from analyses due to disagreement between the 2 raters or ambiguous descriptions from participants

d
Accurate
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Table 2.

Number (and proportion) of successful interpretations within each of the 4 phases of the interpretive process, 

as a function of consensus diagnosis and participant experience level

Interpretive phase Expert consensus diagnostic category of the case Trainees Attending pathologists All participants

Detecting critical 
region

Benign without atypia NA (94 [80%]) NA (28 [88%]) NA (122 [81%])

Atypia 232 (98%) 62 (97%) 294 (98%)

Low-grade DCIS 229 (94%) 63 (97%) 292 (94%)

High-grade DCIS 110 (93%) 30 (88%) 140 (92%)

Invasive carcinoma 128 (100%) 36 (100%) 164 (100%)

Recognizing 
relevance

Benign without atypia NA (36 [31%]) NA (12 [38%]) NA (48 [32%])

Atypia 164 (69%) 53 (83%) 217 (72%)

Low-grade DCIS 178 (73%) 57 (88%) 235 (76%)

High-grade DCIS 71 (60%) 25 (74%) 96 (63%)

Invasive carcinoma 103 (80%) 28 (78%) 131 (80%)

Describing features Benign without atypia NA (90 [76%]) NA (27 [84%]) NA (117 [78%])

Atypia 121 (51%) 48 (75%) 169 (56%)

Low-grade DCIS 143 (59%) 49 (75%) 192 (62%)

High-grade DCIS 30 (25%) 24 (71%) 54 (36%)

Invasive carcinoma 118 (92%) 35 (97%) 153 (93%)

Diagnostic decisions Benign without atypia NA (104 [88%]) NA (29 [91%]) NA (133 [89%])

Atypia 52 (22%) 32 (50%) 84 (28%)

Low-grade DCIS 57 (22%) 18 (28%) 75 (24%)

High-grade DCIS 7 (6%) 11 (32%) 18 (12%)

Invasive carcinoma 122 (95%) 36 (100%) 158 (96%)

DCIS, ductal carcinoma in situ; NA, not applicable.
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Table 3.

Number (and proportion) of interpretations that proceeded through every possible combination of detection 

(yes, no), recognizing importance (yes, no), recognizing features (yes, no), and achieving an accurate 

diagnosis (yes, no)

Row no. Detecting region Recognizing relevance Describing features Diagnosing accurately Frequency (proportion)

1 YES YES YES YES 299 (0.28)

2 YES NO YES 102 (0.09)

3 YES YES NO 28 (0.03)

4 NO NO YES 17 (0.02)

5 YES NO NO 15 (0.01)

6 NO NO NO 7 (0.01)

7 NO YES NO 0 (0)

8 NO YES YES 0 (0)

9 YES YES NO NO 234 (0.22)

10 YES YES YES 164 (0.15)

11 YES NO NO 93 (0.09)

12 YES NO YES 77 (0.07)

13 NO NO YES 26 (0.02)

14 NO NO NO 11 (0.01)

15 NO YES NO 2 (0)

16 NO YES YES 0 (0)

Combinations ending with an accurate diagnosis are presented first (rows 1–8), ordered from most to least frequent. These are followed by 
combinations ending with an inaccurate diagnosis (rows 9–16), ordered from most to least frequent.
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