Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Jun 1;260(2):583–587. doi: 10.1042/bj2600583

A carboxypeptidase Y pulse method to study the accessibility of the C-terminal end during the refolding of ribonuclease A.

W Teschner 1, R Rudolph 1
PMCID: PMC1138708  PMID: 2764891

Abstract

Carboxypeptidase Y pulses, applied after various times of refolding, were employed to probe the accessibility of the C-terminus of RNAase A during the refolding process. The increase in resistance against proteolytic cleavage was measured by determination of the amount of liberated C-terminal amino acids and by activity assays. The results indicate that the C-terminus of RNAase becomes inaccessible early in the course of refolding, if folding is carried out at low temperatures under conditions that effectively stabilize the native state. At higher temperatures (25 degrees C) or under conditions of marginal stability, intermediates are not populated and protection against proteolytic cleavage is not detectable before the formation of the native state. The method described may be used to monitor the accessibility of the C-terminus of various proteins during refolding. However, intermediates on the folding pathway can only be observed if the native state is stable against carboxypeptidase attack.

Full text

PDF
583

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brandts J. F., Halvorson H. R., Brennan M. Consideration of the Possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry. 1975 Nov 4;14(22):4953–4963. doi: 10.1021/bi00693a026. [DOI] [PubMed] [Google Scholar]
  2. Brems D. N., Baldwin R. L. Protection of amide protons in folding intermediates of ribonuclease A measured by pH-pulse exchange curves. Biochemistry. 1985 Mar 26;24(7):1689–1693. doi: 10.1021/bi00328a018. [DOI] [PubMed] [Google Scholar]
  3. CROOK E. M., MATHIAS A. P., RABIN B. R. Spectrophotometric assay of bovine pancreatic ribonuclease by the use of cytidine 2':3'-phosphate. Biochem J. 1960 Feb;74:234–238. doi: 10.1042/bj0740234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cook K. H., Schmid F. X., Baldwin R. L. Role of proline isomerization in folding of ribonuclease A at low temperatures. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6157–6161. doi: 10.1073/pnas.76.12.6157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Garel J. R., Baldwin R. L. Both the fast and slow refolding reactions of ribonuclease A yield native enzyme. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3347–3351. doi: 10.1073/pnas.70.12.3347. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hayashi R. Carboxypeptidase Y. Methods Enzymol. 1976;45:568–587. doi: 10.1016/s0076-6879(76)45051-6. [DOI] [PubMed] [Google Scholar]
  7. Kim P. S., Baldwin R. L. Structural intermediates trapped during the folding of ribonuclease A by amide proton exchange. Biochemistry. 1980 Dec 23;19(26):6124–6129. doi: 10.1021/bi00567a027. [DOI] [PubMed] [Google Scholar]
  8. Lang K., Schmid F. X. Use of a trypsin-pulse method to study the refolding pathway of ribonuclease. Eur J Biochem. 1986 Sep 1;159(2):275–281. doi: 10.1111/j.1432-1033.1986.tb09864.x. [DOI] [PubMed] [Google Scholar]
  9. Lin L. N., Brandts J. F. Mechanism for the unfolding and refolding of ribonuclease A. Kinetic studies utilizing spectroscopic methods. Biochemistry. 1983 Feb 1;22(3):564–573. doi: 10.1021/bi00272a007. [DOI] [PubMed] [Google Scholar]
  10. Lin L. N., Brandts J. F. Mechanism for the unfolding and refolding of ribonuclease A. Simulations using a simple model with no structural intermediates. Biochemistry. 1983 Feb 1;22(3):573–580. doi: 10.1021/bi00272a008. [DOI] [PubMed] [Google Scholar]
  11. Lin M. C. The structural roles of amino acid residues near the carboxyl terminus of bovine pancreatic ribonuclease A. J Biol Chem. 1970 Dec 25;245(24):6726–6731. [PubMed] [Google Scholar]
  12. Nall B. T., Garel J. R., Baldwin R. L. Test of the extended two-state model for the kinetic intermediates observed in the folding transition of ribonuclease A. J Mol Biol. 1978 Jan 25;118(3):317–330. doi: 10.1016/0022-2836(78)90231-0. [DOI] [PubMed] [Google Scholar]
  13. Schmid F. X. A native-like intermediate on the ribonuclease A folding pathway. 1. Detection by tyrosine fluorescence changes. Eur J Biochem. 1981;114(1):105–109. doi: 10.1111/j.1432-1033.1981.tb06179.x. [DOI] [PubMed] [Google Scholar]
  14. Schmid F. X., Baldwin R. L. Acid catalysis of the formation of the slow-folding species of RNase A: evidence that the reaction is proline isomerization. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4764–4768. doi: 10.1073/pnas.75.10.4764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schmid F. X., Baldwin R. L. Detection of an early intermediate in the folding of ribonuclease A by protection of amide protons against exchange. J Mol Biol. 1979 Nov 25;135(1):199–215. doi: 10.1016/0022-2836(79)90347-4. [DOI] [PubMed] [Google Scholar]
  16. Schmid F. X., Blaschek H. A native-like intermediate on the ribonuclease A folding pathway. 2. Comparison of its properties to native ribonuclease A. Eur J Biochem. 1981;114(1):111–117. doi: 10.1111/j.1432-1033.1981.tb06180.x. [DOI] [PubMed] [Google Scholar]
  17. Schmid F. X., Grafl R., Wrba A., Beintema J. J. Role of proline peptide bond isomerization in unfolding and refolding of ribonuclease. Proc Natl Acad Sci U S A. 1986 Feb;83(4):872–876. doi: 10.1073/pnas.83.4.872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schmid F. X. Mechanism of folding of ribonuclease A. Slow refolding is a sequential reaction via structural intermediates. Biochemistry. 1983 Sep 27;22(20):4690–4696. doi: 10.1021/bi00289a013. [DOI] [PubMed] [Google Scholar]
  19. Schmid F. X. Proline isomerization in unfolded ribonuclease A. The equilibrium between fast-folding and slow-folding species is independent of temperature. Eur J Biochem. 1982 Nov;128(1):77–80. [PubMed] [Google Scholar]
  20. Schmid F., Blaschek H. An early intermediate in the folding of ribonuclease A is protected against cleavage by pepsin. Biochemistry. 1984 May 8;23(10):2128–2133. doi: 10.1021/bi00305a004. [DOI] [PubMed] [Google Scholar]
  21. Udgaonkar J. B., Baldwin R. L. NMR evidence for an early framework intermediate on the folding pathway of ribonuclease A. Nature. 1988 Oct 20;335(6192):694–699. doi: 10.1038/335694a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES