The Streptomyces K15 DD-peptidase/penicillin-binding protein

Active site and sequence of the N-terminal region

Mélina LEYH-BOUILLE,* Jozef VAN BEEUMEN,† Suzanne RENIER-PIRLOT,* Bernard JORIS,* Martine NGUYEN-DISTÈCHE* and Jean-Marie GHUYSEN*[±]

*Service de Microbiologie, Université de Liège, Institut de Chimie, B6, B-4000 Sart Tilman (Liège 1), Belgium, and †Laboratorium voor Microbiologie, Rijksuniversiteit-Gent, K. L. Ledeganckstraat 35, B-9000 Gent, Belgium

The N-terminal region of the Streptomyces K15 DD-peptidase/penicillin-binding protein shows high homology with that of other penicillin-interactive proteins or domains. The active-site serine residue of the conserved tetrad Ser-Xaa-Xaa-Lys occurs at position 35. There is no indication for the presence of a signal peptide or an N-terminal hydrophobic sequence, suggesting that the Streptomyces K15 enzyme is probably anchored to the membrane by a C-terminal peptide segment.

INTRODUCTION

The membrane-bound $26000 - M_r$ DD-peptidase of Streptomyces K15 catalyses acyl-transfer reactions with cyclic β -lactam and non-cyclic amide and ester carbonyl donors via formation of an acyl-enzyme that involves an essential serine residue [1,2]. The acyl-enzymes formed by reaction with β -lactam antibiotics have long half-lives [3]. Consequently, the DD-peptidase behaves as a penicillin-binding protein (PBP). The peculiarity of the low- M_r , Streptomyces K15 DD-peptidase/PBP is that when acting on an amide substrate such as Ac_a-L-Lys-D-Ala-D-Ala it functions almost exclusively as a strict transpeptidase [1]. In water, hydrolysis is negligible because the D-alanine that is released during enzyme acylation is effectively re-utilized in a transfer reaction that maintains the concentration of the amide carbonyl donor at a constant level. In the presence of an exogenous amino compound such as Gly-Gly, the acceptor activity of which overcomes that of water and D-alanine, the substrate is quantitatively converted into the transpeptidated product Ac₂-L-Lys-D-Ala-Gly-Gly. As a basis for the design of nucleotide probes that would help identifying the gene that encodes the Streptomyces K15 DD-peptidase, the N-terminal region of the purified enzyme was sequenced and the essential serine residue was identified by active-site peptide mapping.

MATERIALS AND METHODS

Sequence of the *N*-terminal region of the DD-peptidase

The enzyme (4.9 nmol in $130 \ \mu$ l), purified in the presence of cetyltrimethylammonium bromide as described previously [4], was supplemented with 5 vol. of cold (-20 °C) acetone and maintained at -20 °C for 30 min, after which time the precipitated enzyme was collected by centrifugation at 20000 g for 30 min. The pellet was washed with 4 vol. of cold acetone, dissolved in trifluoroacetic acid and the solution supplemented with an equal volume of water. Automated sequence analysis of 4.9 nmol of protein was carried out on a

470 A gas-phase Sequenator. The amino acid phenylthiohydantoin derivatives were analysed off-line the sequencer on a 4.6 mm × 250 mm IBM cyanopropyl column (Biotech Instruments, Hertford, Herts., U.K.) as described in ref. [5]. The h.p.l.c. set-up consisted of an Intelink System connected to a 440 fixed-wavelength detector (Waters, Milford, MA, U.S.A.) set at 254 and 313 nm. Automated sequence analysis of 1.4 nmol of protein was also carried out on a 477 A pulsed-liquid Sequenator (Applied Biosystems, Foster City, CA, U.S.A.). The amino acid phenylthiohydantoin derivatives were analysed on-line the sequencer on a 21 mm × 220 mm C₁₈ MPLC Cartridge column (Applied Biosystems) as described by the manufacturer.

Preparation of the acyl- ([³⁵S]benzylpenicilloyl-)enzyme

The enzyme (20 nmol) was incubated for 15 min at 37 °C with [³⁵S]benzylpenicillin (230 nmol; 250 nCi/ nmol; New England Nuclear) in 1100 μ l of 17.5 mmpotassium phosphate buffer, pH 7.5, containing 0.016% cetyltrimethylammonium bromide. Protein acylation was complete. The acyl-enzyme was precipitated with acetone as described above. The pellet was washed with 4.8 ml of cold acetone, dried *in vacuo* and dissolved in 280 μ l of 88% (v/v) formic acid. The solution was supplemented with 32 μ l of a Triton X-100 solution (3%, w/v) and 2 ml of water, and freeze-dried.

Pronase digestion of the acyl-([³⁵S]benzylpenicilloyl-)enzyme

Trypsin, subtilisin, thermolysin, *Staphylococcus aureus* proteinase V8 and Pronase were tested as proteolytic agents. Pronase, previously used for similar purposes [6,7], caused the rapid disappearance of the acyl- $([^{35}S]$ benzylpenicilloyl-)enzyme (as monitored by SDS/ polyacrylamide-gel electrophoresis) and the appearance of four major radioactive peptide fragments (as monitored by paper electrophoresis at pH 6.5, 60 V/cm for 1 h). One of these fragments (I) migrated 2 cm towards the cathode, another (II) remained at the origin of the electrophoretograms and the two others migrated 9 cm

Abbreviation used: PBP, penicillin-binding protein.

[‡] To whom correspondence should be addressed.

Fig. 1. Purification of the ³⁵S-labelled active-site-containing fragment (III) of the *Streptomyces* K15 DD-peptidase/PBP by chromatography on Sephadex LH20 (a) and by f.p.l.c. on a PepRPC column (b)

For details see the text. (a) — , Radioactivity. (b) ------, Radioactivity; — , A_{214} ; — , buffer B gradient. Hatched areas indicate the fragment-(III)-containing fractions.

(III) and 28 cm (IV) towards the anode. Compound (IV) was [35 S]benzylpenicilloate. Maximal yield of fragment (III) (31% of total radioactivity) was obtained by incubating 20 nmol of acyl- ([35 S]benzylpenicilloyl-)enzyme for 2 h at 37 °C with 58 µg of Pronase in 1.6 ml of 0.4% NH₄HCO₃. The solution was freeze-dried.

Isolation of the ³⁵S-labelled active-site fragment (III)

Step 1. The Pronase digest was dissolved in 100 μ l of 88 % (v/v) formic acid. After addition of 250 μ l of 95 % (v/v) ethanol, the solution was loaded on a 35 ml column of Sephadex LH20 equilibrated against an 88 % (v/v) formic acid/95 % (v/v) ethanol (1:4, v/v) mixture [8]. Elution with the same mixture yielded three major fractions (Fig. 1a). Fractions 25–30 contained fragment (II), fractions 38–47 contained fragments (I) and (III) and fractions 53–60 contained [³⁵S]benzylpenicilloate (IV).

Step 2. Fractions 38–47 were pooled and freeze-dried and the pellet was dissolved in 1 ml of 0.1% (v/v) trifluoroacetic acid. Purification of fragment (III) was achieved on a f.p.l.c. apparatus (Pharmacia, Uppsala, Sweden) equipped with a 0.5 cm × 5 cm PepRPC column, with various mixtures of buffer A (0.1% trifluoroacetic acid in water) and buffer B [0.1% trifluoroacetic acid in water/acetonitrile (3:7, v/v)]. The gradient started with 1 ml of buffer A, and then went on from 0% to 20% buffer B over 8 ml, from 20% to 40% buffer B over 12 ml and from 40% to 100% buffer B over 5 ml (flow rate 0.5 ml/min; volume of the collected fractions 460 μ l). Fractions 24–26 (Fig. 1b) were pooled and freeze-dried. The final preparation contained 0.72 nmol of purified fragment (III). Paper electrophoresis at pH 5.6 revealed the presence of a single radioactive compound. As shown below, it was, however, contaminated by free glycine.

RESULTS AND DISCUSSION

The sequence of the *N*-terminal region of the protein is shown in Fig. 2. Ambiguity was observed at some cycles following cycle 30 with the gas-phase Sequenator and following cycle 41 with the pulsed-liquid Sequenator. The enzyme preparation was very pure, valine being the only *N*-terminal residue detected.

Although the first cycle of the Edman degradation was made difficult because of the presence of large amounts of glycine, analysis of the active-site peptide fragment (III) yielded the sequence (Ser)-Thr-Gly-Ser-Thr-Xaa-(Lys), thus demonstrating that the active-site serine residue is at position 35 in the native protein. (The amount of glycine phenylthiohydantoin derivative at cycle 1 was so large that, on the basis of the radioactivity of the peptide, it was obviously a contamination. As a result of the wash-out effect, the amount of the glycine phenylthiohydantoin derivative gradually decreased during the subsequent cycles except at cycle 3.)

It has been proposed that all the penicillin-interactive active-site-serine proteins and domains, i.e. the β -lactamases of classes A, C and D, the low- M_r PBPs and the penicillin-binding domains of the high- M_r PBPs,

Streptomyces K15 26000-M, PBP	1 V T K P T I	ΑΑΛ	с с 1	ΥΑΜ	N N G	5 L	г 1 Т	гул	ΚA	A D 7	с К	1 RSJ	c s	ТТ	ΚΙ	4 (Q)	AK	V X I	A Q	N S	51 L N	(T)S	AK	
High- <i>M</i> , PBPs																								
<i>Escherichia coli</i> PBP1A [9]	431 SINPQN	∣GÅ∛	MAI	ΓΛG	GFD	FN	s o d	K 6 K	0 R A	тд	L	** 2	*0 *0	I N	жж	Г	ΥT	A A A	I D K	GΓ	T L	A S	ML	
PBP18 [9]	476 VUDRFS	G E ∜	RAÌ	МИС	C S E	ΡQ	FA	с¥ к	1 R A	νди	*2	*\\ *\\	*0	ΓA	К* К	T	ΥΓ	ΤΑΪ	ر مە	ΡK	1 Y	RL	LN	
PBP2 [10]	295 LFVDGI	SSK	D Y	S A L	L N L	P N	ч +н	L V L	0 R A	тд	>	ΥΡΕ	× ₽	™	Ч Ж	γ	Å V	SAÌ	, s A	C V	0 I	RN	TT	
PBP3 [11]	2/3 LAMANS	ΡSΥ	N P	NNL	SGT	ΡK	E	MRN	I R T	ΙΊΙ	Λ	н Н Н	۰»* ۲	۲ ۲*	к*	ہ ۲*	ΜΛ	TAİ	ð	ΟC	οV	E	ΝS	
Staphylococcus aureus PBP2' [12]	371 Y P F M Y G	M S N	ы ы	х к	LTE	DK	ы К	ΡĽΓ	, N K	F O	н	н х ч	აა აა	о н*	*H *X	H	A M	I C I	N N	КТ	ц 4	DK	TS	
Neisseria gonorrheae PBP2 [13]	276 LALANT	ΡÅΥ	D	NRP	GRA	DS	С Э	R R N	0 * I R A	ΓL	МО	IEF	*0 *0	AI	К *	۲ ۲	ΙΨ	КАĴ	D V V	GK	T	х Г*	DRo	
Low- <i>M</i> , PBPs	ç																							
Escherichia coli PBP5 [14]	PGV PQ1	DAE	SΥ	ILI	ŊΫ́	0% 	КV	LA LA	ΝÒΣ	*Ω *∀	*24 *24	н Д *24	× V S	н * Г	×⊻	⊢ ≍*	SΥ	н *>	Q A	MK	A Q	K	KE	
Bacillus subtilis PBP5 [15]	2 SDPID1	Í N Å S	A A	IWI	ΕAS	0* 00	К	4* L*	K*	4 ¥ 4 D	*8	L P]	× V V	*∺ ⊻	ж Ж*	ם אצ	ΕY	L L	E	ΠD.	0 0	K V	ΚW	
Streptomyces R61 pp-peptidase [16]	28 V R V D D N	ист Î	Ч	ΓSΕ	GVΑ	DR	* ⊥ ∀	G R A	T I V	гт	о К	F R /	*0 *0	*T V	K* S	ы С	۸ ۸*	.[⊲*		ם' שׂ א	*-1 *-1 *-1	с г*	* ¥ S	
β -Lactamases																								
Escherichia coli RTEM [17]	33 A E D Q L G	; * ; A R V	۲ 6*	ΙΕΓ	DLN	0* 0	К	ы ы ы	ы Б С	он Р	*¤	ΕΡ	¥ W	년 년 *	۲0 ۲*	ц ц	C G	ΑV	ы м г.*	A D A	5	с 1 2 2 2 2	ίς	
Salmonella typhimurium OXA-2 [18]	38 FQAKG1	ιιν *	A D	ЕКО	ADF	ΜΥ	ΓΛ	ΕDΗ	γR	s K	*X	¥ S I	×S V S	н Н*	*Л	P H	ТΓ	FA	А А	G A	00	S D F	E Q	
Escherichia coli AmpC [19]	55 * V A V I Y O	Q K P	ΥΥ	ΕT W	сү	ΙΟV	A K	КQІ	Γd	0 0	ц н*	F E I	*0 *0	م م	К* Т	н	ςΛ	C Lo	D A	ΙV	R (н Ц Ц	[K L	
Fig. 2. Amino acid alignments of the	N-terminal re	gions of	f the S	itrepto	myce:	s K15	d-qq	eptids	ase/Pl	BP ai	nd oth	her pe	micil	ii-ii	teract	tive p	rotei	ns an	op p	main) DEV	IXt		

Fig

5 ב Identities (*) and similarities (°) with the *Streptomyces* enzyme are indicated; parentheses indicate an ambiguous residue. VD_LDD (insertion) reads The active-site serine residue is at position 35. EGK EGK form a super-family of evolutionarily related proteins [20]. One of their common features is the occurrence of the conserved tetrad Ser*-Xaa-Xaa-Lys, where Ser* is the active-site serine residue, close to the N-terminus of the proteins or domains. The alignments of Fig. 2 reveal an especially high similarity between the 20-amino-acidresidue stretch around the active-site serine residue of the Streptomyces K15 DD-peptidase/PBP (from Thr-21 to Met-40) and the corresponding regions of the penicillinbinding domain of the high- M_r PBP1B of Escherichia coli (40 % identity), the low- M_r PBP5 of E. coli (45 % identity) and the low- M_r PBP of Bacillus subtilis (50%) identity). The amino acid sequence failed to reveal the presence of a signal peptide or an N-terminal hydrophobic sequence, thus suggesting that the Streptomyces K15 enzyme, like the other known low- M_r PBPs, is probably anchored to the membrane by a C-terminal segment [21,22].

The work in Liège was supported in part by the Fonds de la Recherche Scientifique Médicale (Contract no. 3.4507.83), an Action Concertée with the Belgian Government (Convention 86/91-90), the Fonds de Recherche de la Faculté de Médecine U.Lg. and a contract with the E.E.C. (BAP-0197-B). The work in Gent was supported by the Belgian National Incentive Program of Fundamental Research in Life Sciences, initiated by the Belgian State-Prime Minister's Office-Science Policy Programming Department.

REFERENCES

- Nguyen-Distèche, M., Leyh-Bouille, M., Pirlot, S., Frère, J. M. & Ghuysen, J. M. (1986) Biochem. J. 235, 167–176
- Leyh-Bouille, M., Nguyen-Distèche, M., Bellefroid-Bourguignon, C. & Ghuysen, J. M. (1987) Biochem. J. 241, 893-897
- Leyh-Bouille, M., Nguyen-Distèche, M., Pirlot, S., Veithen, A., Bourguignon, C. & Ghuysen, J. M. (1986) Biochem. J. 235, 177-182
- 4. Nguyen-Distèche, M., Leyh-Bouille, M. & Ghuysen, J. M. (1982) Biochem. J. 207, 109-115

Received 16 January 1989/14 March 1989; accepted 28 March 1989

3

- 5. Hunkapiller, M. W. & Hood, L. E. (1983) Methods Enzymol. 91, 486–493
- Frère, J. M., Duez, C. & Ghuysen, J. M. (1976) FEBS Lett. 70, 257–260
- Duez, C., Joris, B., Frère, J. M. & Ghuysen, J. M. (1981) Biochem. J. 193, 83–86
- Khorana, H. G., Gerber, G. E., Herlihy, W. C., Gray, C. P., Anderegg, R. J., Nihei, K. & Biemann, K. (1979) Proc. Natl. Acad. Sci. U.S.A. 76, 5046–5050
- Broome-Smith, J. K., Edelman, A., Youssif, S. & Spratt, B. G. (1985) EMBO J. 4, 231–235
- Asoh, S., Matsuzawa, H., Ishino, F., Strominger, J., Matsuhashi, M. & Ohta, T. (1986) Eur. J. Biochem. 160, 231-238
- Nakamura, M., Maruyama, I. N., Soma, M., Kato, J., Suzuki, H. & Hirota, Y. (1983) Mol. Gen. Genet. 191, 1–9
- Song, M. D., Wachi, M., Doi, M., Ishino, F. & Matsuhashi, M. (1987) FEBS Lett. 221, 167–171
- 13. Spratt, B. G. (1988) Nature (London) 332, 173-176
- Broome-Smith, J., Edelman, A. & Spratt, B. G. (1983) in The Target of Penicillin (Hakenbeck, R., Höltje, J. V. & Labischinski, H., eds.), pp. 403–498, W. de Gruyter, Berlin
- Todd, J. A., Roberts, A. N., Johnstone, K., Piggot, P. J., Wintr, G. & Ellar, D. (1986) J. Bacteriol. 167, 257–264
- Duez, C., Piron-Fraipont, C., Joris, B., Dusart, J., Urdea, M. S., Martial, J. A., Frère, J. M. & Ghuysen, J. M. (1987) Eur. J. Biochem. 162, 509-518
- 17. Sutcliffe, J. G. (1978) Proc. Natl. Acad. Sci. U.S.A. 75, 3737–3741
- Dale, J. W., Godwin, D., Mossakonska, D., Stephenson, P. & Wall, S. (1985) FEBS Lett. 191, 39–42
- Jaurin, B. & Gründström, T. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 4897–4901
- Joris, B., Ghuysen, J. M., Dive, G., Renard, A., Dideberg, O., Charlier, P., Frère, J. M., Kelly, J. A., Boyington, J. C., Moews, P. C. & Knox, J. R. (1988) Biochem. J. 250, 313-324
- Ferreira, L. C. S., Schwarz, U., Keck, W., Charlier, P., Dideberg, O. & Ghuysen, J. M. (1988) Eur. J. Biochem. 171, 11–16
- Pratt, J. M., Jackson, M. E. & Holland, I. B. (1986) EMBO J. 5, 2399–2405