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Webuilt areference panel with 342 million autosomal variants using 78,195

individuals from the Genomics England (GEL) dataset, achieving a phasing
switch error rate of 0.18% for European samples and imputation quality

of #=0.75 for variants with minor allele frequencies aslowas 2 x 10~
inwhite British samples. The GEL-imputed UK Biobank genome-wide
association analysis identified 70% of associations found by direct exome
sequencing (P <2.18 x10™"), while extending testing of rare variants to the
entire genome. Coding variants dominated the rare-variant genome-wide
association results, implying less disruptive effects of rare non-coding

variants.

Akey step ingenome-wide association studies (GWAS) isimputation of
untyped variants from those genotyped using a reference panel, allow-
ing downstream testing of imputed sites. Reference panel quality sub-
stantially impacts results, particularly for low-frequency variants. Here,
we build areference panel withimproved accuracy compared to exist-
ing panels using the Genomics England (GEL) high-coverage sequenc-
ing (30x) dataset, among the largest genetic variation resources yet
collected in the United Kingdom'. We impute the UK Biobank samples
across the whole genome and find several new rare-variant associa-
tions for tested traits. In our genome-wide analyses, high-confidence
associations with large effect sizes only rarely occur away from cod-
ing sequences, suggesting that, although the most of the genome is
non-coding, non-coding variants only occasionally possess effect sizes
comparable to those of the strongest coding variants.

The GEL study design intentionally samples many closely related
individuals. This enhances the power of filters, including the Mendelian
error filter, to eliminate false-positive calls and also allows more accu-
rate phasing andimputation of rare variants. In particular, even variants
foundinonly one or twoindividuals may be phased through transmis-
sion. The resulting GEL reference panel consists of 341,922,205 auto-
somal variants, with 31,502,703 (9.26%) being indels. Most detected
variants arerare: 287.2 million (84.1%) have anallele frequency <0.0001,
including 66.7 million (19.5%) singletons and 91.1 million (26.7%)
doubletons. We compared GEL to the widely used TOPMed r2 (ref. 2)

(we note that the r3 version containing ~30% more variants and sam-
ples was released while this manuscript was in preparation) and HRC?
panels, and found that GEL has 8 times and 1.1times more variants than
HRCand TOPMed, respectively (Fig. 1aand Extended DataFig.1). Owing
to the use of mostly low-coverage sequencing technology, HRC has
limited numbers of rare variants, especially those with allele frequency
(AF) <107*. While the numbers of rare variants captured in TOPMed and
GEL are similar, around half of the ultra-rare variants (AF <10™*) from
GEL and TOPMed are non-shared across the panels. As expected, all
three panels capture a similar set of more common (AF >1072) variants,
with <4% unique to each panel (Extended Data Fig. 1), indicating that
common variants are largely saturated.

The GEL reference panel provides a powerful resource for phasing
European and South Asian samples due to their strong representationin
the dataset. We compared phasing accuracy using the GEL and HRC ref-
erence panelson1000 Genomes (1000 G) Project samples (Methods).
GEL-based phasing achieved lower switch error rates than HRC phas-
ingacross 1000 G populations sampled from most worldwide regions
(Extended DataFig.2), with HRC only showing improved performance
for South American samples, which are largely absent from GEL.

A primary use of the GEL resource will be as a reference panel for
genotype imputation of other datasets. We assessed (Methods) the
accuracy of imputation of 1000 G samples (from UKB single nucleo-
tide polymorphism (SNP) array sites) using the GEL, TOPMed and HRC
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Fig.1| The GEL reference panel variant count and imputation accuracy.

a, Venn diagram comparing numbers of variants from the GEL, HRC and TOPMed
r2 reference panels. The numbers show the variant count (in millions of variants,
M), followed by the Ts/Tv ratio of these variants in brackets. b, Imputation
performance, measured by r? (Methods), forimputation of 1000 Genomes

Project samples with African (AFR), American (AMR), East Asian (EAS), British
(GBR), North European (CEU) and South Asian (SAS) populations, using three
different reference panels (labels). The variants are stratified by gnomAD allele
frequency (v.3.3.1)* of their corresponding population.

reference panels. Squared correlation > between the imputed allele
dosages and true genotypes were calculated, stratified by the inde-
pendently estimated genome aggregation database (gnomAD) (v.3.3.1)
minor allele frequency (MAF)*. GEL achieved higherimputation r*than
HRCinallallele frequency bins for all ancestry groups and outperforms
the TOPMed panel in white British (GBR) and South Asian (SAS) sam-
ples, especially for rarer variants: at MAF <107, the GEL imputation
for GBR samples is 0.6, compared to 0.3 and 0.29 using TOPMed and
HRC, respectively (Fig. 1b). The TOPMed panel outperforms GEL in
African (AFR), American (AMR) and East Asian (EAS) samples due toits
better representation from these groups (Fig. 1b). Examiningimputa-
tionaccuracy using the phased UKB 200 K high-coverage sequencing
data as a reference panel® (Supplementary Note and Extended Data
Fig.3) suggested substantial complementarity with GEL: similar overall
imputation quality at the rarest variants with MAF -1073, slightly better
imputation using UKB 200 K for shared MAF ~10*-1072 variants but
more false-positive and false-negative variants for UKB 200 K com-
pared to GEL. The GEL reference panel alsoimputed indels well: = 0.74
at MAF =107 for GBR samples (Extended Data Fig. 4).

We used the GEL panel to impute 488,315 UK Biobank samples at
342,573,817 variants, producing a ‘GEL-UKB’ dataset. Compared with

the corresponding HRC and UK10K-imputed ‘HRC-UKB”, GEL-UKB has
around 3 times more variants, 3.5 times more missense variants and
6.6 times more ‘high impact consequence’ variants (Supplementary
Table 1). The imputed information scores (Methods) were higher for
GEL-UKB than HRC-UKB for 87% of variants they share, while 98% (78%)
of GEL-imputed variants in the frequency range 10°-10"* (10°-107°)
exceeded athreshold of 0.3 versus 78% (54%) for HRC (Extended Data
Figs. 5 and 6). Finally, we tested the imputation potential from using
the imputed GEL-UKB haplotypes (GELUKB-hap) as a reference panel
in place of GEL itself. Again imputing 1000 G samples, we observed
near-identical results (Extended Data Fig. 7) using GELUKB-hap ver-
sus GEL, implying that GELUKB-hap provides a powerful alternative
imputation resource.

To demonstrate the use of GEL-UKB, we carried out exemplar
GWAS onfour quantitative traits: standing height, body massindex, sys-
tolicand diastolic blood pressure, with variant testing using REGENIE’.
Acrossthese traits, we found 31,699 and 30,711 significant (P< 5 x 1078)
rarer variant associations (MAF < 0.05) from GEL-UKB and HRC-UKB,
respectively. The GEL-UKB imputed common variants also exhibited
fewer likely false associations than HRC-UKB (Supplementary Note,
Supplementary Table 2 and Supplementary Figs. 2-4). The resulting
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Fig.2| GEL-imputed UK Biobank data boost power to find common and rare
associations. a, A set ofindependent genome-wide significant (P<5x107®)
associations identified by step-wise regressions (conditioned joint analysis),
and with INFO > 0.8, are plotted versus theirimputed allele frequency (x axis).
Blue points represent variants that were flagged by step-wise regressionsin one
dataset and also showed a significant GWAS association in the other dataset.
Red pointsindicate variants unique to that dataset. The shape of the data
points reflects the predicted consequences of the variants as determined by
the Ensembl Variant Effect Predictor (release 105)'. Dots represent functional
variants, including stop gained, stop lost, splice donor/acceptor, frameshift,
in-frame insertion/deletion and missense variants and the triangles indicate
non-functional variants. The dashed lines indicate the smallest hypothetical

effect sizes that can be captured by the P-value threshold (P < 5 x 107®) at power of
0.5.b, Comparison of the number of variants in the 95% credible sets for GEL-UKB
and HRC-UKB fine-mapping results for standing height (capped at 20 variants;
Methods). The circle sizes represent the number of fine-mapping regions
showing each combination; plots below the diagonal correspond to GEL-UKB
having fewer variantsin the credible set compared to HRC-UKB. ¢, LocusZoom
plot of ultra-rare-variant association (rs757561770) (in blue triangle) detected

by GEL-UKB. The color indicates the linkage disequilibrium (LD) between

SNPs and the focal SNP rs4931017, showing that rs757561770 isin low linkage
disequilibrium with the focal SNP (= 6.57 x 107°). Blue lines show the regional
recombination rate.

GEL-UKB GWAS Pvalues generally show high correlation with those of
TOPMed-UKB and UKB200K at sites they share (Supplementary Figs. 5
and 6). Compared to TOPMed-UKB, only GEL-UKB found ultra-rare
associations (five at MAF <107°). The number of GEL-UKB-specific
findings substantially exceeds those of TOPMed-UKB in all allele fre-
quency bins (Supplementary Fig.5), even common variants. We saw a
useful improvement in fine-mapping (Methods) using GEL-UKB ver-
sus HRC-UKB; specifically, 44% of GEL-UKB based 95% credible sets

contain fewer SNPs, while only 25% contain more SNPs (Fig. 2b and
Supplementary Table 3).

Arecent UKB exome sequencing-based association study reported
34 rarer (MAF < 0.05) GWAS hits across the four traits (P<2.18 x10™)
(ref. 8). At the same P-value threshold, we discovered 70% of these
associations using GEL-UKB (76% at P < 5 x10°®), compared to 56%
using HRC-UKB (Supplementary Table 4). Comparing to the UKB
whole-exome imputation GWAS results’, all but 4 of the 28 exome
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imputation likely causal rare coding variants associated with standing
height (P < 5 x 107®) were found to be significant using GEL-UKB versus
allbut 9 using HRC-UKB (Extended DataFig. 8). Noticeably, ourimputed
data P values were more significant than those previously obtained
using imputation from 150,000 sequenced UKB samples™ (Supple-
mentary Table 7), perhaps due to the more powerful testing framework
offered by REGENIE’ or improvements in GEL-based imputation.

At very rare variants (MAF < 5 x10™), several independent asso-
ciations are discovered by GEL-UKB (Fig. 2a) but not HRC-UKB. For
example, GEL-UKB identifies a new ultra-rare association signal for
diastolicblood pressure atrs757561770 in FGD4, with allele frequency
9.31 x107°. Common variants in FGD4 have previously been associated
with hypertension (Fig. 2c). Notably, rs757561770 is intronic and
shows no strong linkage disequilibrium (r* > 0.7) with any identified
coding variant (Supplementary Table 6). Because we test the entire
genome, our results allow us toinvestigate whether similar large-effect
variants (whichin our example GWAS are only found at low frequency;
Fig.2b) occurincodingor non-coding DNA more generally. We identi-
fied 27 independent large-effect/rare-variant signals (MAF < 0.001;
P<5x107%),across traits using step-wise regression (Methods). Among
these, 15 are coding or splice site variants (n =9) or in strong linkage
disequilibrium (2 > 0.7) with such a variant. Two more genic variants
occur in 5" untranslated regions (UTRs) (Supplementary Table 6).
These 17 variants comprise 63% of all signals including, 16 of the 18
strongest associations by P value (Supplementary Table 6). If repli-
cated for other phenotypes, this implies that it may be unusual for
variation in non-coding regions, for example enhancers, to achieve
dramatictrait effects—despite such regions dominating GWAS signals
overall”, Because it seems likely that non-coding variants are able to
strongly disrupt the binding of individual transcription factors, this
might imply that (except in 5’ UTR regions), in most cases, no indi-
vidual transcription factor binding site plays an essential functional
role. Nonetheless, we still observed several cases implicating only
non-genic sites—for example, two rare intronic signals for decreased
height (rs773574844 and rs1414220739) near SLCI12A1, a gene known
to be associated with height and Bartter syndrome, whose symptoms
include growth retardation®. We anticipate that, despite their modest
effect sizes and limiting power at present (likely, even if genomes are
fully sequenced), the number of non-coding associations will prob-
ably increase rapidly in the future once sample sizes become larger.
Moreover, our resultsimply thatimputation will be highly effectivein
identifying such associations, even for rare variants.

Oneunexpected finding forincreased height was atight ~1-kilobase
(kb)-wide cluster of fiveindependent low-frequency variants on chro-
mosome 6 (Supplementary Table 7), including the rare missense vari-
ant rs957675208 (HMGA1/LOC124901225), in a region not reported
by previous exome sequencing® and exome imputation’ analyses or
by HRC-UKB (low imputation INFO). Notably, rs957675208 shows the
strongest height-increasing impact of any SNP in the whole genome,
equivalent to gaining 3.5 cmof height. On further examination, three of
the five variants are missense variants in LOC124901225 and the remain-
ing two variants are inthe 5 UTR of HMGA1, in aregion not annotated
inprior exomesstudies. Itisunclear whether these associations reflect
regulatory or direct coding roles. This gives one example of how the
complete genome-wide coverage of the GEL-UKB data allows for more
findings compared to previous approaches.

Online content
Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods

Thiswork was conducted under the approved UK Biobank applications
numbered 48031and 27960 and Genomics England Clinical Interpreta-
tion Partnership project ID RR91.

Genomics England high-coverage sequencing data

The GEL 100,000 Genomes Project was launched in 2013, focusing
on rare diseases and cancer. More than 120,000 genomes have been
sequenced. It comprises genomes from 73,700 patients with rare
diseases (disorders affecting <1in2,000 persons) and their close rela-
tives and 46,539 genomes from patients with cancer’. The GEL refer-
ence panel described in this paper is built on the aggregated dataset
(aggV2), comprising 78,195 samples from both rare disease and cancer
germline genomes. Samples were sequenced with 150 bp (base pair)
paired-endreads on the llluminaHiSeq X platform and processed with
thelllumina North Star Version 4 Whole Genome Sequenced Workflow
(iSAAC Aligner v.03.16.02.19 and Starling small variant caller v.2.4.7)
and aligned to the GRCh38 human reference genome. The individual
gVCF files were aggregated into multisample VCF files using lllumina
gVCF genotyper and normalized with vt v.0.57721. The aggregated mul-
tisample VCF dataset (aggV2) comprises over 722 millioninitial called
SNPs andshortindels (< 50 bp). Multi-allelic variants were decomposed
into biallelic variants. The dataset includes 49,641 samples (63.48%)
fromindividuals self-identifying as white British, 4,100 (5.24%) as ‘Other
white’, 2,885 (3.69%) as Pakistani, 1,860 (2.3%) as Black, 1,751 (2.24%)
as Indian and 12,277 samples (15.7%) as ‘Unknown’. According to the
self-reported data, only 27,346 samples (34.97%) have no relatives in
thereference panel; 11,584 (14.81%), 32,679 (41.79%) and 6,586 (8.43%)
samples possess two, three and more than three family membersin the
dataset, respectively. We identified 12,816 (16.39%) samples as mem-
bers of duo families and 35,106 (44.9%) as members of trio families,
whereas 30,273 (38.71%) samples are treated as unrelated for phasing
(Supplementary Note).

Quality control

Before the quality control (QC) described here, sample-level QC was
carried out by the GEL informatics team on variants called one sample
at atime. We conducted further QC by pooling information across
samples to remove false-positive sites. Specifically, we used aggregated
VCFs, considering genotype quality, depth, missingness, allelic bal-
ance, Mendel errors, Hardy-Weinberg equilibrium and gnomAD* allele
frequency concordance. Because singletons observed in unrelated
samples are difficult to phase accurately, these sites were removed.
We applied two sets of QC rules. First, we applied a stringent rule set
applied toallsites, including those de novo in GEL and very rare sites.
Second, we applied a more lenient group of filters for relatively com-
mon sites (AF > 0.001) that also showed support from independent
external datasets (TOPMed, HRC, 1000 Genomes and gnomAD) to
avoid removing a proportion of genuine sites (for example, for amod-
estnumber of Mendel errors). For thesesites, if they failed our stringent
filters but passed with somewhat less stringent missingness, Mendel
error and gnomAD frequency concordance thresholds, we included
them, after separate phasing conditional on the phase of sites passing
the more stringent thresholds, thatisin amanner that did notimpact
the stringent sites. These sites were incorporated in the final dataset
butwithaQCflagindicatingtheir slightly lower reliability. Overall, our
filtersreduced theinitial number of sites from 722 million to 342 million
(Supplementary Note and Supplementary Table 5).

Phasing the GEL reference panel
We used a multistage phasing strategy leveraging the relatedness
within GEL, in particular allowing phasing of singletons where possible.

(1) We used the makeScaffold software (https://github.com/ode-
laneau/makeScaffold) to determine the phase of duo and trio

samples (Supplementary Note) by direct transmission informa-
tion (this phases most sites in these samples).

(2) Forremaining unphased genotypes in these related samples,
with phases undetermined due to heterozygosity or missing
data, phases were inferred using SHAPEIT4.2.2 (ref. 15), using
the phased genotypes from step 1 as a scaffold.

(3) Tophase genotypes in the unrelated samples, we first phased
the common variants (AF > 0.01) one chromosome at a time,
using SHAPEIT4.2.2 and now using the genotypes (at these com-
mon sites) from step 1and 2 in the related samples as a refer-
ence panel.

(4) Finally, to phase the remaining sites: genotypes at rare variants
inunrelated samples, we use SHAPEIT4.2.2 with the phased
samples from steps 1and 2 as a reference panel and the phased
common variants from step 3 as a scaffold for these samples.

(5) Forsites only passing our lenient filters (‘Quality control’ sec-
tion above and Supplementary Note), we used the results of
step 4, for the sites on the UKB Axiom array sites passing the
stringent filters, as a scaffold and then used SHAPEIT4.2.2 on
the remaining genotypes.

Phasing for steps1and 3was done at the entire chromosome level;
for steps 2 and 4, it was carried out in regions of ~300,000 sites, with
30,000 ssiteson eachside as buffer. The resulting phased regional seg-
ments were merged and concatenated using beftools'. These phasing
steps were computationally intensive and took -6,500 CPU daysin total
toaccomplish. The phased reference panelis storedin VCF format and
hasbeen made available for all GEL registered users onthe GEL trusted
research environment.

Estimation of 1000 Genome trio phasing switch error rate
Phasing accuracy is important for direct biological interpretation of
variants within GEL, as well as ensuring high-quality imputation in
other samples and other downstream applications. We assessed the
ability of the GEL panel to phase such external samples. Specifically,
we phased the parents of mother-father-child trios included in the
1000 Genomes Project (but not HRC or GEL) using the reference panels
from HRC and GEL. We then assessed the resulting phase accuracy by
comparing phased haplotypes to those directly inferred using inher-
itance patterns to the child in each trio. The HRC reference panel was
lifted over from the GRCh37 to the GRCh38 reference genome using
GATK Picard LiftoverVCF". The original GRCh37 HRC reference panel
has 39,131,578 autosomal variants. We removed 13,813 variants either
due to incompatibility between reference genomes or mismatch-
ing chromosome between the two reference genomes. The resulting
autosomal GRCh38 HRC reference panel contains 39,115,765 variants
and 27,165 samples. The 1000 Genome Project samples within the HRC
reference panel were removed.

We analyzed only sites passing 1000 Genome Project data™ filters.
The phasing test was carried out on 589 trio families from diverse ethnic
backgrounds, using SHAPEIT4.2.2 (ref.15). We tested all the heterozy-
gous 1000 Gsites for each individual reference panel, yielding a total
of 1.04 x 10° heterozygous sites (1.76 million per trio family) for the
HRC panel and 1.16 x 10° (1.9 million per trio family) for the GEL panel.

Imputation testing of the 1000 Genomes Project samples

We used 2,405 samples from the 1000 Genomes Project to test the
relative performance of imputation based on the GEL, TOPMed r2
and HRCimputation panels. We first performed quality control on the
1000 Genomes Project data by removing sites which either possess a
missingness >5% or failed a Hardy-Weinberg equilibrium test, by hav-
ing P<107°in any of the 26 populations of the 1000 Genome Project.
We then masked genotypes in 1000 Genomes Project sequencing
samples, except the sites existing in the UK Biobank Axiom array, to
mimic imputation using this array. This gave 716,473 biallelic SNPs
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across all autosomes. The pseudo-SNP array dataset was then phased
one chromosome at atime using SHAPEIT4.1.2 (ref. 15). TOPMed impu-
tation was carried out using the TOPMed imputation server with the
TOPMed r2 reference panel and the imputation software minimac4
1.5.7 (ref.19). IMPUTES (ref. 20) was used to impute from the GEL and
HRCreference panels. We stratified imputation results into six groups:
661 AFR,347 AMR, 504 EAS, 489 SAS, 313 non-Finnish European (NFE)
samples and 91 GBR samples.

UK Biobank imputation using the GEL reference panel

The UK Biobank SNP array data consist of 784,256 autosomal variants.
We removed the set 0of 113,515 sites identified by the previous central-
ized UK Biobank analysis as failing quality control® and an extra set of
39,165 sites failing a test of Hardy-Weinberg equilibrium on 409,703
GBR samples, with the P-value threshold of 107%°. The resulting UK
Biobank SNP array data were mapped from the GRCh37 to GRCh38
genome build, using the GATK Picard LiftOver tool. Alleles with mis-
matching strand but matching alleles were flipped. We removed 495
sites because of incompatibility between the two reference genomes,
resultinginafinal SNP array incorporating 631,081 autosomal variants
that we used for phasing and imputation. Haplotype estimation of the
SNP array datais a prerequisite forimputation. Phasing was carried out
one chromosome at a time using SHAPEIT4.2.2 without a reference
panel, using the full set of UK Biobank samples. We ran SHAPEIT4 using
itsdefault15Markov chain Monte Carloiterationsand 30 threads. The
runtime varied from 2 to 30 hours for each chromosome. Imputation
of normal filter set and lenient filter set SNPs was carried out inde-
pendently. Autosomal imputation using the GEL reference panel was
performed using IMPUTES (v.1.1.4). The SNP array data were divided
into 408 consecutive and overlapping chunks with -5 megabases (Mb)
for each chunk and 2.5 Mb buffer across the genome using the Chun-
ker program in IMPUTES (ref. 20) and each chunk was further divided
into 24 sample batches with each batch containing 20,349 samples.
IMPUTES was run on each of the 9,792 subsets using a single thread
and defaultsettings, at a speed <4 min per genome, resultinginatotal
time of 1,200 CPU days toimpute all UK Biobank samples. The result-
ingimputed genotype dosages are stored in BGEN format and phasing
information is stored in VCF format.

Genome-wide association studies

We selected four quantitative traits to demonstrate the GWAS perfor-
mance of the GEL-imputed UK Biobank data (GEL-UKB), compared to
the HRCUK10K-imputed UKB (HRC-UKB) dataon 429,460 GBR samples.
These traits are standing height (HEIGHT), body mass index (BMI),
systolic blood pressure (SBP) and diastolic blood pressure (DBP).
Variants with minor allele count <5 are not included in testing. The
phenotypesare transformed using rank inverse normal transformation
(RINT) within sexes to ensure normally distributed input phenotypes
and reduce the likelihood of false positives due to outliers. We also
performed GWAS on the raw phenotype measures as a reference but,
in our analyses, we use the RINT results if not otherwise specified. In
addition, we followed the same procedure to perform GWAS using
TOPMed imputed UKB (TOPMed-UKB) and 200,000 UKB sequencing
data (UKB200K) on the UKB research analysis platform.

Samples between 40 and 70 years old are included and for each
phenotype; outliers that are above +4 s.d. from the mean value were
removed®. SBP and DBP values are based on automated blood pres-
sure readings, substituting in manual reading values when automated
readings are not available. We calculated the mean SBP and DBP values
from two automated (n = 418,755) or two manual (n =25,888) blood
pressure measurements. For individuals with one manual and one
automated blood pressure measurement (n =13,521), we used the
mean of these two values. For individuals with only one available blood
pressure measurement (n = 413), we used this single value. After calcu-
lating blood pressure values, we adjusted for blood pressure-lowering

medication (n=94,289) use by adding 15and 10 mmHg to SBP and DBP,
respectively?, for individuals on such medication.

GWAS effect size estimates and Pvalues were obtained using REG-
ENIE’. Throughout the paper, we present two-sided raw P values and
use a widely used significance threshold of P<5x 1078, We used the
UKB SNP array data to estimate the LOCO predictors in REGENIE step
landtheimputed datafor step 2, accounting for sex, age, sex squared,
sex x age and 20 principal components as covariates’. The associa-
tion tests for GEL-imputed UKB (GEL-UKB) and HRCUK10K-imputed
UKB (HRC-UKB) used the identical setup. The HRC-UKB summary
statistics of the association tests were mapped using Picard LiftOver
from GRCh37 to GRCh38 to compare the results with GEL-UKB. In
all analyses, we used an INFO threshold of 0.3 for common imputed
variants (MAF > 0.05) and 0.8 for rare imputed variants (MAF < 0.05).
Supplementary Fig. 1shows that higher INFO thresholds are effective
for detecting false-positive rare associations.

Bayesian fine-mapping

Bayesian fine-mapping credible set size comparison was carried out
on 1,660, 711, 505 and 546 non-overlapping regions for HEIGHT, BMI,
SBP and DBP, respectively, on the basis of HRC-UKB GWAS summary
statistics. These regions were defined by the following procedure.
First, candidate regions were identified with width 0.125 cM plus 25 kb
on each side of a significant marker. Overlapping candidate regions
were successively merged until there were no remaining regions over-
lapping. We removed 60, 30, 33 and 51 regions for the above traits,
respectively, inwhich GEL-UKB showed no significant sites (P<5x 1078
in GWAS) for each trait. The recombination rate is based on the HapMap
genetic map?. A detailed description of this approach can be found
inrefs. 6,23.

For each region, we assume a single causal variant—we call this
model M. Given this, we define model M, to be the model where SNP i
is the causal variant. We seek the probability of M, given the data and
thatmodel Mis true. This posterior Pr(M,|X, M) canbe writtenin terms
ofthe Bayes factor relating the probability of the data given M, versus
the probability of the dataunder the null model with no associated SNP
inthe region, BF,. Further, BF,can be approximated by an asymptotic
Bayesian factor (ABF)):

BF; ABF;

~

Pr (M, X, M) =

M
M=

BF;
1 i=1

ABF;

ABF;canbe calculated using the standard error (V;) and Zscore () esti-
mated by REGENIE®. Ineachregion, the smallest possible 95% credible
set of potential causal markers can be obtained by successively includ-
ing the sites with the highest probabilities, to accumulatively reach
0.95. Model Mrequires a prior (a Gamma distribution) on effect sizes;
we choose this prior W to have parameters 0.22 and 0.022 but found
that theresults are not particularly sensitive to the choice of the prior.

Conditional joint analysis using step-wise regression

A standard GWAS uses a marginal model considering one variant at a
time, while a joint model considers all the selected variants and esti-
mates their joint effect simultaneously to remove rare-variant signals
that are explained by stronger signals at more common nearby SNPs®,
We performed a conditional joint analysis via a step-wise forward
selection procedure, considering each chromosome separately. First,
we defined the set S of genome-wide significant variants in one chro-
mosome (P<5x107®) in the marginal regression using REGENIE. We
initialized a set of variants R as the most significant variantin the mar-
ginalregression. Given the current value of R, we calculate the Pvalue
of all the remaining variants in S one at a time, conditioned on R and
the covariates used for the initial GWAS. We then move the variant with
the smallest conditional Pvalue from S to R, until this smallest Pvalue
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is no longer genome-wide significant. This approach identifies a set
of variants that are independently significant and account for all the
genome-wide association signals (note that this setis not unique), while
also accounting for linkage disequilibrium between sites. To identify
rare causal variants within UKB found using GEL-UKB imputation, we
considered only those variants found by this step-wise forward selec-
tion approach. The full conditional joint analysis results can be found
inSupplementary Table 7.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The GEL haplotype reference panel is available in the GEL Research
Environment (https://re-docs.genomicsengland.co.uk/ox_aggv2/)
to approved researchers in the Genomics England Research Net-
work (https://www.genomicsengland.co.uk/research/academic/
join-research-network). The UK Biobank data imputed using the GEL
haplotype reference panel are available to those with approved access
tothe UK Biobank resource and described on the UK Biobank showcase
(https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=21008). The GWAS
summary statistics can be downloaded from GWAS Catalog under the
study accession codes from GCST90435412 to GCST90435415.

Code availability

Allanalyses were performed using previously published or developed
tools, asindicated in the Methods. SHAPEIT4 (v.4.1.2) was used to phase
the GEL reference panel and the phasing experiment of 1000 Genomes
samples (https://odelaneau.github.io/shapeit4/). The imputation of
UK Biobank samples was carried out by IMPUTES (v.1.1.4), which is
freely available for academic use (https://jmarchini.org/software/).
The imputation experiment using TOPMed reference panel was car-
ried out on the TOPMed imputation server (https://imputation.bio-
datacatalyst.nhlbi.nih.gov/). REGENIE was used to perform GWAS
(https://rgcgithub.github.io/regenie/). The following open source
software was used for the data processing and quality control pipeline:
BCFTools (https://samtools.github.io/bcftools/), GATK Picard Lifto-
verVCF (https://gatk.broadinstitute.org/hc/en-us/articles/3600370
60932-LiftoverVcf-Picard). No custom code was developed or used.
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The GEL haplotype reference panel is available within the GEL Research Environment (https://re-docs.genomicsengland.co.uk/ox_aggv2/) to approved researchers
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https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=21008

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender No sex or gender analyses were conducted in the study. Biological sex of participants (provided by UK Biobank) is used as
covariate for GWAS.

Reporting on race, ethnicity, or  We used the population labels defined by 1000 Genomes and UK Biobank. The imputation accuracy is largely affected by
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groupings the 1000 Genomes samples using the population labels defined by 1000 Genomes to demonstrate the GEL panel has better
overall imputation performance for British samples, since the samples collected in our reference panel are more similar to
that of the British samples.

Population characteristics N/A
Recruitment N/A
Ethics oversight This study has been approved by Genomics England GeCIP RR91 and UK Biobank application 48031 and 27960.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size We used 78,195 Genomics England samples to build the reference panel and 488,315 UK Biobank samples to create the UKB imputed data.
Data exclusions  No specific steps were performed for data exclusion, but we excluded samples who have withdrawn from the UKB from our study.

Replication We validated our GWAS findings using GEL-imputed UKB data through comparing the results to HRC+UK10K imputed (Bycroft et al. 2018),
TOPMed imputed (Taliun et al., 2021) UKB data and 200K WGS UKB data. The resulting p-values of variants in common show high correlation
and improved power for finding rare associations (Supplementary Fig. 5-6). However, a precise replication of GWAS findings is not possible (in
common with many UKB studies), due to the difference in sample sizes and imputation accuracies.

Because our paper is about imputation and testing, we believe this validates the main claims in the paper. For testing of phasing and
imputation accuracy, we were able to replicate our findings across many individuals (from the 1000G), chromosomes, and populations.

Randomization  Thisis not relevant to our study, because we did not select the study participants and we do not examine any treatment or experimental
intervention.

Blinding The identities of study participants are anonymous to us, for both GEL and UKB; because we did not examine any specific treatment, this
question is not otherwise relevant.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies |Z |:| ChiIP-seq
Eukaryotic cell lines |Z |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data
Dual use research of concern

Plants
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Plants

Seed stocks Report on the source of all seed stocks or other plant material used. If applicable, state the seed stock centre and catalogue number. If
plant specimens were collected from the field, describe the collection location, date and sampling procedures.

Novel plant genotypes Describe the methods by which all novel plant genotypes were produced. This includes those generated by transgenic approaches,
gene editing, chemical/radiation-based mutagenesis and hybridization. For transgenic lines, describe the transformation method, the
number of independent lines analyzed and the generation upon which experiments were performed. For gene-edited lines, describe
the editor used, the endogenous sequence targeted for editing, the targeting guide RNA sequence (if applicable) and how the editor
was applied.

Authentication Describe-any-atithentication-procedures for-each-seed-stock-tised-ornovel-genotype-generated—Describe-any-experiments-used-to
assess the effect of a mutation and, where applicable, how potential secondary effects (e.g. second site T-DNA insertions, mosiacism,
off-target gene editing) were examined.
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