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Telomeres protect chromosome ends from damage and their length is linked 
with human disease and aging. We developed a joint telomere length metric, 
combining quantitative PCR and whole-genome sequencing measurements 
from 462,666 UK Biobank participants. This metric increased SNP heritability, 
suggesting that it better captures genetic regulation of telomere length. 
Exome-wide rare-variant and gene-level collapsing association studies 
identified 64 variants and 30 genes significantly associated with telomere 
length, including allelic series in ACD and RTEL1. Notably, 16% of these genes 
are known drivers of clonal hematopoiesis—an age-related somatic mosaicism 
associated with myeloid cancers and several nonmalignant diseases. Somatic 
variant analyses revealed gene-specific associations with telomere length, 
including lengthened telomeres in individuals with large SRSF2-mutant 
clones, compared with shortened telomeres in individuals with clonal 
expansions driven by other genes. Collectively, our findings demonstrate 
the impact of rare variants on telomere length, with larger effects observed 
among genes also associated with clonal hematopoiesis.

Telomeres are repetitive nucleotide sequences that protect the ends 
of chromosomes from degradation and are thus crucial for maintain-
ing genomic integrity. In somatically dividing cells, telomeres shorten 
with each replication cycle until they reach a critical length that trig-
gers cellular senescence and ultimately cell death1,2. Telomere length 
demonstrates considerable interindividual variability modulated by 
heritable3,4, environmental and lifestyle factors such as smoking behav-
ior and stress5. Rare germline mutations linked to telomere shorten-
ing have been associated with severe diseases, including premature 
aging syndromes, interstitial lung disease and immunodeficiencies1,6,7.  

More subtle reductions in telomere length have been associated with 
common, age-related diseases, such as coronary artery disease8. 
Although telomere length is heritable, our current understanding of 
its genetic determinants has been largely limited to the study of com-
mon variants. A greater understanding of the genetic determinants 
of telomere length would provide insights into disease pathogenesis, 
thereby identifying potential new therapeutic targets.

High-throughput telomere length assays have been developed to 
understand telomere biology at the population level. One such method 
uses quantitative PCR (qPCR) to measure the relative abundance of 
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smaller 95% credible SNP sets (median = 8) compared with the separate 
qPCR and WGS GWASs (median = 12 and 11, respectively), highlighting 
that PC1 can more effectively identify potentially causal variants. In 
total for PC1, we identified 192 significant (P < 5 × 10−8) loci (Supplemen-
tary Tables 5 and 6), 70 of which were not within 1 Mb of a previously 
implicated locus. Associations at known loci were also stronger with 
PC1 compared with qPCR or TelSeq, further demonstrating the value 
of the combined metric (Extended Data Fig. 5).

There were also 22 significant loci identified in the PC2 GWAS 
(Supplementary Tables 5 and 6), most of which were driven exclusively 
by a single telomere length metric (Supplementary Fig. 7). Moreover, 
50% of these associations (n = 11 of 22; 3q29:LMLN, 5p15.33:PLEKHG4B, 
6p25.3:DUSP22, 7q36.3:VIPR2, 8p23.3:ZNF596, 11p15.5:BET1L, 
16q24.3:PRDM7, 17p13.13:DOC2B, 18q23:PARD6G, 20p13:DEFB125 and 
20q13.33:RTEL1) were peritelomeric (<2 Mb). There was one qPCR 
association at 11p15.4 (rs1609812) proximal to HBB (P = 6.8 × 10−60, 
β = −0.05 (confidence interval (CI), −0.05 to −0.04)), which is used as 
the reference gene to normalize the qPCR assay and has been previ-
ously thought to be driven by artefactual technical signals8. Consistent 
with this being a putative artifact, this locus was not significant in the 
TelSeq GWAS (P = 0.99, β = 0 (−0.005 to 0.005); Supplementary Fig. 8). 
Collectively, these results demonstrate the superior performance of a 
linear combination of telomere length metrics to detect associations 
and further highlight PC2’s potential to flag spurious associations.

Rare-variant-level associations with telomere length
We observed that rare variants have demonstrably larger effects on 
telomere length than common variants and have also been implicated in 
numerous telomere-related diseases. In the present study, we focused 
on protein-coding variants observed in WGS data from 439,351 UKB 
participants of NFE broad genetic ancestry to examine the effect of 
rare variation on PC-derived telomere length estimates. After remov-
ing individuals with known hematological malignancies at sampling 
(N = 3,073), we performed both variant-level (exome-wide association 
study (ExWAS)) and gene-level (rare-variant-aggregated collapsing) 
analyses16. We observed high concordance (r2 = 0.99) between the 
effect sizes for the common variants included in the ExWAS and our 
separate common variant GWAS (microarray genotyping) analyses. 
Genomic inflation was also well controlled with a median λGC = 1.07 
(Supplementary Fig. 9).

We restricted our downstream analyses of the ExWAS to rare 
(MAF < 0.1%) exonic variants that were too rare to be well represented in 
the GWAS. Based on our previously identified significance threshold of 
P ≤ 1 × 10−8 (ref. 16), there were 62 significant rare-variant germline asso-
ciations across 19 distinct genes (Fig. 2a and Supplementary Table 7) 
for PC1 after excluding variants that were also significantly associated 
with PC2 (Supplementary Fig. 10). Although all of the variants except 
8-84862338-A-G (RALYL.p.Ala165Ala, P = 4.8 × 10−11, β = 2.24 (1.57–2.90)) 
overlapped with a previously identified GWAS locus, the absolute 
effect sizes observed for the ExWAS analyses were generally signifi-
cantly greater than that previously reported for the same loci. Of the 
62 rare-variant germline signals, 16% (10 of 62) were only significantly 
associated with PC1 and not underlying qPCR or TelSeq measurements.

Thirty-nine germline rare variants were associated with longer 
telomere length and clustered in components of the CST (CTC1) and 
Shelterin (ACD, TERF1 and TINF2 POT1) complexes, both of which func-
tion to protect telomere ends and regulate interactions with telom-
erase. Of these, ten were protein-truncating variants (PTVs) in CTC1, 
POT1, SAMHD1, TINF2 and TERF1, all of which are genes implicated in 
telomere-associated diseases. It is interesting that the two PTVs in CTC1 
(17-8237439-GCTTT-G p.Lys242fs: P = 1.35 × 10−24, β = 0.54(0.44–0.65); 
and 17-8229438-AG-A p.Leu1007fs: P = 4.12 × 10−11, β = 0.53 (0.37–0.69)) 
have both been implicated in compound, heterozygous, recessive, 
cerebroretinal microangiopathy with calcifications and cysts (CMCC, 
also known as Coats plus syndrome), which is associated with shorter 

telomere sequences compared with a reference sequence9. More 
recently introduced in silico methods, such as TelSeq, measure aver-
age telomere length from whole-genome sequencing (WGS) data10. The 
advances in genome sequencing of population-scale biobanks provides 
unprecedented opportunities to leverage these approaches to study 
the genetic architecture of telomere length and ultimately its impact on 
human health at a population scale. In a recent study of over 472,174 UK 
Biobank (UKB) participants, a microarray-based, genome-wide associa-
tion study (GWAS) identified >100 independent common variant loci 
associated with qPCR telomere length measurements8. By combining 
these measurements with whole-exome sequencing (WES) data across 
418,401 individuals, Kessler et al. identified rare-variant associations 
for several previously established genes11. Another study applied the 
TelSeq algorithm to estimate telomere length from the whole-genome 
sequences of 109,122 multiancestry individuals from the TopMed 
program and identified 36 associated loci, which largely overlap those 
identified by qPCR-based measures12.

In the present study, we leverage a larger sample size of WGS data 
from 490,397 multiancestry UKB participants to study the genetic 
architecture of telomere length, including contributions from both rare 
and common variants. Moreover, in comparing qPCR- and WGS-derived 
telomere length estimates in the same individuals, we observed that 
combining both measurements into a single statistical metric sig-
nificantly improved the accuracy of telomere length estimates and 
empowered discovery potential.

Results
A combined telomere length metric increases heritability
Of the 490,397 UKB participants with WGS data, we took forward for 
analysis 462,666 UKB samples (94%) that met our quality control (QC) 
thresholds (Methods) and for whom qPCR telomere length estimates 
were also available (Supplementary Table 1 and Extended Data Fig. 1). 
As an alternative method for estimating telomere length, we also used 
TelSeq (Supplementary Fig. 1), which estimates telomere length from 
the WGS data10.

As expected, telomere length estimated from TelSeq and qPCR 
were both significantly associated with age, sex and ancestry (Sup-
plementary Table 2 and Extended Data Fig. 2). It is interesting that the 
qPCR- and coverage-adjusted TelSeq telomere length estimates were 
only moderately correlated (r2 = 0.29; Fig. 1a) after consideration of 
potential sequencing confounders (Extended Data Fig. 3, Supplemen-
tary Figs. 2–5, Supplementary Table 3 and Supplementary Notes 1 and 2).  
In a joint model, the association between each of the metrics and age 
remained highly significant, suggesting that each captures additional 
information. We derived a principal component analysis (PCA) linear 
combination13 incorporating both qPCR and adjusted TelSeq (Fig. 1b 
and Extended Data Fig. 4). Use of the first principal component, PC1, 
demonstrated a significant (P < 1 × 10−16, linear regression, two-sided 
unadjusted) performance gain in predicting age compared with models 
employing either of the individual measures (Supplementary Fig. 6).

We first sought to determine common variants (minor allele fre-
quency (MAF) > 0.1%) associated with telomere length, focusing on 
438,351 non-Finnish European (NFE) broad genetic ancestry individuals 
with array-based imputed genotypes available (Supplementary Table 1 
and Extended Data Fig. 1). Using REGENIE14, we performed a common 
variant GWAS of telomere length estimates derived from qPCR, WGS, 
PC1 or PC2 (Fig. 1c and Methods) replicating all signals from Codd 
et al.8 (Supplementary Note 3). Linkage disequilibrium (LD)-score 
regression15 revealed that the PC1 vector had the highest heritability 
(h2 = 0.099, s.e.m. ± 0.010; Supplementary Table 4), suggesting that the 
combined telomere length metric explains more telomere length vari-
ance resulting from genetic variation than either qPCR or TelSeq alone.

We undertook single-variant fine-mapping for all significant 
(P < 5 × 10−8) loci (excluding the major histocompatibility region) in the 
qPCR, TelSeq and PC1 GWAS. The PC1 telomere length score resulted in 
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telomeres17,18. Our results indicate that, outside the context of nullizy-
gosity, this PTV is associated with longer telomere length, concordant 
with prior observations of CTC1 depletion promoting excessive telom-
erase activity19. We also observed four PTVs associated with telomere 
length in POT1, which is associated with familial glioma, familial mela-
noma, cardiac angiosarcoma and chronic lymphocytic leukemia20–24.

Remarkably, the remaining 23 rare nonsynonymous germline 
variants associated with shorter telomere length and were clustered 
in genes previously associated with autosomal dominant dyskeratosis 
congenita and/or pulmonary fibrosis (IPF) (ACD (Online Mendelian 
Inheritance in Man (OMIM): 609377), PARN (OMIM: 604212), RTEL1 
(OMIM: 608833), NAF1 (OMIM: 620365) and TERT (OMIM: 613989)). 
In both ACD and RTEL1, we observed independent, rare, nonsynony-
mous variants with opposing effects, indicating a possible allelic 
series in these two genes. For example, in ACD three rare missense 

variants clustering within the POT1-binding domain (16-67659017-C-T 
p.Val269Met, 16-67659046-C-A p.Arg259Leu and 16-67659234-T-C 
p.Asn246Ser) were associated with increased telomere length and 
one (16-67660036-C-T p.Asp120Asn) in the amino-terminal oligo-
nucleotide/oligosaccharide-binding (OB) domain that acted in the 
opposite direction (Table 1). ACD encodes TPP1, a key component of 
the six-protein Shelterin complex. Consistent with our results and 
previous studies25–28, a recent mutagenesis revealed that mutations 
that disrupt POT1 binding promote ectopic initiation of ATR (ataxia–
telangiectasia-mutated (ATM) and Rad3-related)- and ATM-mediated 
DNA damage-repair programs, resulting in longer telomeres29. Recipro-
cally, mutations within the N-terminal OB are associated with disrupted 
telomerase recruitment, leading to progressively shorter telomere 
length29, mirroring the effect of the 16-67660036-C-T variant that we 
detected in this region.

R2 = 0.29
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Fig. 1 | Combining telomere length metrics improves genetic discovery. 
a, Correlation between inverse normal transformed qPCR and WGS TelSeq 
telomere length metrics. The orange dashed line indicates a linear model line of 
best fit. b, Biplot for PCA of qPCR and TelSeq telomere length metrics.  

c, Manhattan plot of common variant analysis of PC1, PC2, qPCR and TelSeq in the 
NFE broad genetic ancestry group. P values (two-sided, unadjusted) are derived 
from REGENIE analysis of 438,351 independent samples; the dotted line indicates 
P = 5 × 10−8 and for clarity y axes are truncated at P < 1 × 10−40.
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Although less frequent than common variants, rare variants can 
still be correlated as a result of LD and, to resolve signal independ-
ence, we performed conditional analyses (Methods) and found that 
four of our signals in SOGA1, PCIF1, MYH11 and MTSS1L are probably 
the result of LD contamination. For example, the variant in SOGA1 
(20-36810011-C-T p.Ala852Thr: P = 1.9 × 10−32, β = 0.46 (0.38–0.54)) 
is probably due to LD with an SAMHD1 20-36898455-C-G signal (Sup-
plementary Table 8).

Rare-variant gene-level collapsing analysis
We performed gene-level collapsing analyses to identify genes associ-
ated with telomere length through the aggregated presence of vari-
ants too rare and thus underpowered to be individually discovered in 
ExWAS analyses. We employed ten qualifying variant (QV) models16 
(Supplementary Table 9), and association statistics were well calibrated 
with a median λGC = 1.12 (Supplementary Fig. 11). After filtering puta-
tive somatic signals, we identified 20 genes significantly (P ≤ 1 × 10−8) 
associated with PC1 telomere length, 2 (10%) of which were uniquely 

identified in PC1 and not the individual qPCR or TelSeq statistics (Fig. 2b, 
Supplementary Table 10 and Extended Data Fig. 6).

Sixteen of the gene-level signals arose from the rare protein- 
truncating ‘PTV’ QV model. Six of these genes were associated  
with telomere shortening (ATM, BRIP1, NAF1, PARN, RTEL1 and TERT), 
five of which have been implicated in known telomere-related clini-
cal diseases, including IPF30–32, Fanconi’s anemia33 and dyskeratosis 
congenita34. The remaining ten PTV collapsing model signals were 
associated with longer telomere length. Seven of these ten genes 
have established biological roles in protection from telomere length 
attrition (POT1, TERF1, TFIN2, CTC1 and STN1), DNA repair (DCLRE1B; 
formerly APOLLO) and thymidine nucleotide metabolism (SAMHD1 
(ref. 35)).

Three genes significantly associated with telomere lengths in the 
rare PTV collapsing model have not been previously described in the 
context of telomere length biology. Of the two associated with longer 
telomere length, G3BP1 (P = 1.2 × 10−9, β = 0.85 (0.57–1.12)), encodes an 
RNA-binding protein involved in RNA metabolism regulation and stress 
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granule formation36. It is also known to bind guanine quadruplexes, 
which are a substrate for human telomerase37,38. The other gene, ZNF451 
(P = 1.2 × 10−11, β = 0.36 (0.25–0.46)), encodes a zinc finger protein that 
acts as a SUMO (small ubiquitin-like modifier) ligase and a DNA repair 
factor that controls cellular responses to TOP2 damage39. Finally, PTVs 
in BRIP1 (P = 7.5 × 10−8, β = −0.18 (−0.24 to −0.12)) were associated with 
shorter telomere length. BRIP1 is a DNA helicase involved in homolo-
gous recombination and has been associated with ovarian cancer, 
breast cancer and Fanconi’s anemia40–42.

There were several other, previously unreported, significant 
associations that arose in the QV models that included PTV effects 
alongside putatively damaging missense variants. TK1 (flexnonsynmtr 
(flexdmg with additional MTR (missense intolerant regions) filter), 
P = 1.08 × 10−11, β = −0.30 (−0.38 to −0.21)) and TYMS (flexdmg (flex-
ible nonsynonymous), P = 1.70 × 10−12, β = −0.35 (−0.44 to −0.25)), 
which have also been observed as hits in a clustered regularly inter-
spaced short palindromic repeats (CRISPR)–Cas9 screen for tel-
omere length35 and causally associated with dyskeratosis congenita43, 
were associated with reduced telomere length. WRAP53 (flexdmg, 
P = 5.9 × 10−9, β = −0.14 (−0.19 to −0.09)), which encodes a component 
of the telomerase holoenzyme complex, was also associated with 
decreased telomere length. The ZSWIM1 (flexnonsynmtr, P = 9.5 × 10−9, 
β = 0.17 (0.11–0.22)) and ZSWIM3 (ptvraredmg (union of PTV and rare 
damaging variants), P = 2.41 × 10−13, β = 0.43 (0.31–0.53)) zinc finger 
proteins were associated with increased telomere length. ZSWIM1 
(flexnonsynmtr, P = 9.45 × 10−9, β = 0.17 (0.11–0.22)), which was also an 
ExWAS hit, and ZSWIM3 are in proximity with each other, sitting within 
a peritelomeric GWAS locus. We thus performed a leave-one-out 
(LOO) analysis (Methods), which showed that no individual vari-
ants in ZWIM1 and/or ZSWIM3 were responsible for driving either 
gene-level association (Supplementary Fig. 12). Moreover, conditional 
analysis indicated that both ZSWIM1 and ZSWIM3 associations were 
independent of each other and of the 20-45884012-G-A ZSWIM1 mis-
sense variant identified from our ExWAS analysis. Altogether, the 
rare-variant, aggregated, gene-level collapsing analysis framework 
uncovered several loci that were not detectable in the variant-level  
analyses.

Causal associations between the proteome and telomere 
length
We integrated protein quantitative trait locus (pQTL) data from the UKB 
Pharma Proteomics Project that examined genetic associations across 
approximately 3,000 plasma proteins44 with our telomere length PC1 
genetic associations. Across all PC1 GWAS significant loci, we identi-
fied 2,905 overlapping pQTLs (P < 1.7 × 10−11) (Supplementary Table 11). 
We used coloc45 to assess each of these and found strong evidence for 
a shared causal variant modulating both telomere length and plasma 
protein abundance at 266 (9%) of these overlaps. Of these, 10 were 
colocalizations in cis and 256 were in trans. For the cis signals we used 
pQTLs as instruments in a Mendelian randomization (MR) analysis 

(Methods) to assess whether plasma proteome abundance might be 
causally related to telomere length. We found evidence for a causal 
interrelationship across nine protein assays and telomere lengths after 
multiple testing correction (Supplementary Table 12 and Supplemen-
tary Fig. 13), including some well-established, telomere-related proteins 
(for example, TK1, CDA and PARP1). For TK1, SPRED2 and BCL2L15, 
MR-Egger analysis highlighted the potential presence of pleiotropy, 
which might invalidate MR assumptions. One protein, RPA2, binds 
single-stranded DNA to protect from instability and breakage and 
recently has been shown to be involved in telomere maintenance46. 
The remaining associations were previously unreported and warrant 
future functional studies to elucidate the mechanism by which they 
mediate telomere length. Of the trans colocalizing proteins, 183 of 
256 (71%) were found in the 12q24.12 locus containing SH2B3, which 
is known to be highly pleiotropic. Of the remaining trans colocaliz-
ing protein assay associations, six exhibited colocalization with more 
than one locus (Supplementary Fig. 14). These included FLT3LG for 
which trans pQTL signals colocalized with variants in ATM, TERT and  
SETBP1 loci.

We also examined the overlap between our rare-variant telomere 
length analyses and rare pQTLs described in ref. 47. At the variant 
level, no germline overlapping variants were identified. At the gene 
level we identified one significant and two suggestive overlapping 
signals between a pQTL and PC1 telomere length. The significant asso-
ciation implicated a trans association between rare loss-of-function 
variants in TERT associated with shorter telomere length (ptvraredmg, 
P = 1.7 × 10−134, β = −0.52 (−0.70 to −0.59)) and increased FLT3LG plasma 
abundance (ptvraredmg, P = 4.68 × 10−9, β = 0.52 (0.35–0.69)). The 
remaining suggestive associations overlapped with trans pQTLs 
for α-fetoprotein (AFP) abundance, with putative loss of function 
for ATM and ZNF451 being associated with shorter telomere length 
(ptvraredmg, P = 5 × 10−27, β = −0.15 (−0.18 to −0.12)) and increased 
AFP (ptvraredmg, P = 1.2 × 10−8 0.25 (0.16–0.34)) and longer telomere 
length (ptv, P = 1.1 × 10−11 0.36 (0.25–0.46)) and decreased AFP (ptv, 
P = 4.9 × 10−7, β = −0.76 (−1.1 to −0.47)), respectively.

Causal gene prioritization
To prioritize putative causal genes in GWAS loci, we generated a list of 
7,334 protein-coding genes overlapping a telomere-length PC1 locus 
and annotated this gene set with data integrated from seven separate 
sources (Supplementary Methods). Assuming equal weighting across 
all seven prioritization categories, we computed a simple sum to pri-
oritize genes within each PC1 GWAS locus. Of the 7,334 protein-coding 
genes considered, 404 had a prioritization score >0 and a single gene 
was prioritized in 94 of the 192 PC1 telomere-length GWAS loci (Supple-
mentary Tables 13 and 14). We found that these prioritized genes were 
more enriched (P = 4.12 × 10−15) for the reactome pathway ‘extension of 
telomeres’ (R-HAS-180786) compared with 50 gene sets of the same 
size derived from randomly sampled closest genes (Pmedian = 5.6 × 10−5) 
(Supplementary Fig. 15 and Supplementary Table 15).

Table 1 | Rare variants in ACD modulating telomere length

RS no. Variant ID MAF Effect (95% CI) P value Consequencea Domain

rs139438549b 16-67658960-T-C 0.001 0.43 9.9 × 10−11 Thr205Ala

POT1-binding domain
rs145007645 16-67659046-C-A 1.6 × 10−4 0.85 (0.69–1.01) 6.4 × 10−26 Arg176Leu

rs370512338 16-67659234-T-C 3.8 × 10−4 0.83 (0.72–0.93) 1.2 × 10−55 Asn163Ser

rs249052024 16-67659240-G-A 6.4 × 10−4 −0.30 (−0.38 to 
−0.22)

9.5 × 10−14 Ser161Leu

rs142662151 16-67660036-C-T 7.1 × 10−4 −0.47 (−0.54 to 
−0.39)

6.4 × 10−34 Asp37Asn OB1

Test statistics (two-sided, unadjusted) are derived from a linear model using the PC1 telomere length metric across 436,410 independent participants of broad NFE genetic ancestry. Effect and 
95% CIs are on the unit scale. aProtein coordinates with respect to UniProt (Q96AP0) canonical transcript ENST00000620761.6. bAlso detected through our GWAS.
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Multiancestry rare-variant analysis
Inclusion of individuals of non-European ancestries is critical for health 
equity and bolstering gene discovery48,49. Therefore, we performed 
additional GWAS, ExWAS and collapsing analysis on PC1 in five addi-
tional UKB genetic ancestry groups (admixed American/Hispanic 
(AMR), East Asian (EAS), South Asian (SAS), Ashkenazi Jewish (ASJ) 
and African (AFR); Supplementary Table 1). The broad genetic ancestry 
GWAS revealed a single locus in the AFR cohort that was not detected in 
the NFE cohort analyses (rs7577687, PAFR = 4.26 × 10−8, βAFR = 0.11 (0.07–
0.15)) and there were no non-NFE genetic, ancestry-specific rare-variant 
associations, probably owing to the substantially smaller sample sizes 
of these populations in the UKB. A fixed-effect meta-analysis was then 
performed to combine results across ancestral strata, which detected 
an additional five loci (Supplementary Table 16). For the rare-variant 
ExWAS and collapsing meta-analysis, no additional study-wide signifi-
cant genes were identified. However, there was a consistent improve-
ment in observed statistical power, indicating that future cross-ancestry 
sequencing studies are likely to identify further causal gene telomere 
length associations (Extended Data Fig. 7).

Telomere lengths in CH
Telomere length has been shown to be causally associated with clonal 
hematopoiesis (CH)50,51. In our rare-variant analyses, we identified sev-
eral telomere length associations with five known CH driver genes 
(ExWAS: CALR and JAK2; collapsing: CALR, TET2, ASXL1 and PPM1D) 
(Supplementary Tables 7 and 10), which we reasoned are probably 
driven by somatic events rather than germline inherited variation (Sup-
plementary Fig. 10). To investigate this further, we performed somatic 
variant calling in 15 established CH and myeloid cancer driver genes 
(Supplementary Table 18) using the complementary UKB higher cover-
age exome sequencing data52. Using these somatic CH calls, and adjust-
ing for age, sex and smoking status, we performed collapsing analyses 
with our PC1 metric and replicated the previously described association 
between overall CH and shorter telomere length50,53 (Fig. 3a). By analysis 
of CH driver genes individually, we found that most followed the same 
pattern of association with shorter telomere length, including SF3B1 
(P = 3.3 × 10−15, β = −0.52 (−0.65 to −0.39)) and PRPF8 (P = 9.88 × 10−5, 
β = −0.51 (−0.77 to −0.26)). Conversely, we discovered that CH driven 

by mutations in DNMT3A was significantly associated with longer 
telomere length (P = 1.61 × 10−18, β = 0.08 (0.06–0.10)) (Fig. 3a and  
Supplementary Table 18).

To investigate these associations further, and particularly to dis-
tinguish cause from effect in the context of telomere length measures 
ascertained from bulk blood, we performed subsequent analyses 
stratifying by the size of the mutant CH clone (Supplementary Table 19). 
Specifically, we reasoned that, in individuals with small CH clones (for 
example, VAF < 5%), most blood leukocytes would derive from wild-type 
(non-CH) cells and therefore reflect background telomere length. In 
comparison, in individuals with larger CH clones, average telomere 
length across blood cells would increasingly reflect telomere length 
within the mutant CH clone itself.

Small clones (for example, VAF 3–5%) were associated with longer 
telomere length for overall CH (P = 1.05 × 10−4, β = 0.09 (0.05–0.14)) 
and DNMT3A-mutant CH (P = 8.6 × 10−6, β = 0.13 (0.08–0.19)), con-
sistent with previous reports that longer telomere length promotes 
CH acquisition (Fig. 3b and Supplementary Table 19)20,50. However, 
intriguingly, we discovered the inverse association for some other 
CH drivers, where small clones were associated with shorter telomere 
length, suggesting that acquisition of certain CH subtypes is promoted 
by shorter telomeres. A notable example was PPM1D, consistent with 
reports of high prevalence of PPM1D-mutant CH in individuals with 
inherited short telomere disorders54,55.

Also aligning with previous reports, for CH overall and for most 
individual CH driver genes, we observed progressive shortening of 
telomere length with increasing clone size (any P = 1.3 × 10−14, β = −0.49 
(−0.61 to −0.36)), probably reflecting accelerated telomere attrition 
with cell division in expanding clones (Supplementary Table 19). How-
ever, a striking exception to this pattern was observed in SRSF2-mutant 
CH, in which large clones were unexpectedly associated with longer 
telomere length (P = 2.2 × 10−6, β = 1.36 (0.81–1.91)), suggesting that 
SRSF2 mutations may mediate telomere elongation in CH.

Discussion
The present study of 462,666 multiancestry individuals presents a 
comprehensive, technically robust, genetic interrogation of telomere 
length. Importantly, we discovered that qPCR- and WGS-derived 
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Fig. 3 | Associations between telomere length and CH. a, Collapsing analysis  
of somatic variants in select CH genes with telomere length PC1 metric.  
b, Collapsing analysis of somatic variants in CH genes stratified by VAF intervals 
(colors). Associations not reaching significance are shown with dashed error 

bars. In both plots, ‘Any’ indicates an overall analysis of the selected CH genes 
and estimates and 95% CIs (error bars) and P values (two-sided, unadjusted) are 
derived from fitting a linear model across 388,111 independent samples of broad 
NFE genetic ancestry.
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estimates of telomere length capture additional genetic associations 
with telomere length. Combining these metrics via PCA not only 
enhanced downstream analyses, but also allowed us to discriminate 
artefactual signals (that is, associations with PC2). This has important 
implications for future population-based studies, because it suggests 
that, where possible, the most robust assessments should leverage 
both metrics.

Through both common and rare-variant-oriented studies, we 
described several telomere length loci that give insight into telomere 
biology. For example, we uncovered antagonistic allelic heterogeneity 
in ACD and RTEL1, highlighting the complex role for rare variants in 
telomere homeostasis and their role in disease. Moreover, the disease 
associations with both shorter and longer telomere length underscore 
the challenge of therapy development, where perturbation of bal-
anced antagonistic effects might lead to important off-target effects. 
Integrative analysis of telomere length and proteomic data identified 
a number of putatively causal relationships, identifying known drug 
targets (for example, PARP1) and providing additional support for 
therapeutic modulation of nucleotide metabolism via TK1 and CDA35. 
We also identified a previously undescribed association between PTVs 
in BRIP1 and G3BP1 with shorter and longer telomere length, respec-
tively. Although BRIP1 is a helicase known to be involved in DNA damage 
response and G3BP1 is involved in stress granule formation, their role 
in modulating telomere length is currently unclear and will require 
functional work in future studies.

Previous studies11,50 have highlighted a causal, bidirectional 
relationship between telomere length and CH. In the present study, 
we uncovered driver gene-specific links between CH and telomere 
length, providing additional insights into the mechanisms driving 
clonal expansion. Longer telomeres predispose to DNMT3A-mutant 
CH, perhaps by extending cellular replicative potential, whereas this 
is not the case for some other CH driver genes, including PPM1D. It is 
notable that PPM1D-mutant CH is known to be particularly enriched 
among individuals with inherited short telomere disorders54 and in 
individuals exposed to DNA-damaging chemotherapies that appear 
to shorten telomeres56–58. Taken together, we hypothesize that 
PPM1D mutations are specifically advantageous to blood stem cells 
in the context of critically short telomeres, perhaps by conferring 
resistance to the replicative senescence that would ordinarily occur  
in this setting.

It is also notable that mutations in particular splicing genes, such 
as SRSF2, have been shown to drive CH exclusively in older individu-
als59, by which time telomeres have naturally shortened with age. The 
discovery that telomeres in SRSF2-mutant CH do not appear to shorten 
as clones expand, or even to elongate, contrasts starkly with the accel-
erated attrition of telomeres with clonal expansion driven by other 
CH genes. The possibility that SRSF2 mutations confer advantage 
through telomere modulation offers one explanation for the expan-
sion of these mutant clones specifically in older age; however, further 
functional studies are required to validate and elucidate the underlying 
biological mechanisms involved. In summary, our findings support 
a key role for telomere maintenance in the development of CH, via 
mechanisms specific to the mutant gene driving clonal expansion. As 
CH is a causal risk factor for progression to myeloid cancers and for a 
range of nonhematological diseases, with larger CH clones conferring 
higher risks60,61, therapeutic modulation of telomere biology might 
be an important focus as strategies for prevention and treatment of  
CH and its sequelae.
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Methods
Ethics declarations
The protocols for the UKB are overseen by the UK Biobank Eth-
ics Advisory Committee (EAC); for more information see https://
www.ukbiobank.ac.uk/ethics and https://www.ukbiobank.ac.uk/
wp-content/uploads/2011/05/EGF20082.pdf. Informed consent was 
obtained for all participants. The Northwest Research Ethics Commit-
tee reviewed and approved UKB’s scientific protocol and operational 
procedures (REC reference no. 06/MRE08/65). Data for the present 
study were obtained and research conducted under the UKB applica-
tion license nos. 24898 and 68574.

WGS processing, QC and variant calling
WGS data of the UKB participants were generated by deCODE Genetics 
and the Wellcome Sanger Institute as part of a public–private part-
nership involving AstraZeneca, Amgen, GlaxoSmithKline, Johnson 
& Johnson, Wellcome Trust Sanger, UK Research and Innovation and 
the UKB. Sequencing was carried out in two centers (deCODE facility 
in Reykjavik, Iceland and the Wellcome Sanger Institute in Cambridge, 
UK). Genomic DNA underwent paired-end sequencing on Illumina 
NovaSeq6000 instruments with a read length of 2×151 and an aver-
age coverage of 32.5× (refs. 62,63). Conversion of sequencing data 
in BCL format to FASTQ format and the assignments of paired-end 
sequence reads to samples were based on ten-base barcodes, using 
bcl2fastq (v.2.19.0). Initial QC was performed by deCODE and Wellcome 
Sanger, which included sex discordance, contamination, unresolved 
duplicate sequences and discordance with microarray genotyping 
data checks. From a total UKB cohort of 503,310 participants, 807 had 
withdrawn consent before WGS whereas 10,949 had no suitable sample 
for sequencing. The 50,0101 samples were sequenced as part of the 
Vanguard phase of the UKB WGS project such that, in total, 492,729 
samples from 491,554 individuals were sequenced. After removing 
replicates, duplicates and an additional 91 individuals who withdrew 
consent after the sequencing had commenced, a total of 490,397 pri-
mary samples were available.

UKB genomes were processed at AstraZeneca using the provided 
CRAM format files. A custom-built Amazon Web Services cloud com-
pute platform running Illumina DRAGEN Bio-IT Platform Germline 
Pipeline (v.3.7.8) was used to align the reads to the GRCh38 genome 
reference and to call small variants. Variants were annotated using 
SnpEff (v.4.3)64 against Ensembl (Build 38.92)65.

Finally, 490,348 (99.99%) sequences remained after removing 
contaminated sequences (verifybamid_freemix ≥ 0.04) using Verify-
BAMID66 or that had low CCDS coverage (<94.5% of CCDS r22 bases 
covered with ≥10-fold coverage).

UKB WGS cohort definition
For the remaining 490,348 WGS samples. we used KING (v.2.2.3)67 to 
identify individuals with first-degree relatives, which we then ran-
domly pruned such that there were no pairs of samples with a kinship 
coefficient >0.354, to leave 490,216 (99.93%) WGS samples. We used 
peddy (0.4.2)68 and 1000genomes data to classify individuals into 
broad genetic ancestries (peddy_prob ≥ 0.9) using the gnomAD clas-
sifier69 to subdivide European (EUR) into NFE and ASJ individual broad 
genetic ancestries. We performed additional QC on NFE broad genetic 
ancestry samples using peddy-derived PCs, removing samples that fell 
outside 4 s.d. from the mean over the first four PCs. Next, we removed 
sex-discordant samples to leave 482,839 (98.4%) samples with TelSeq 
telomere length estimates (Extended Data Fig. 1). Final cohort sizes 
stratified by ancestry are described in Supplementary Table 1.

WES
Full details of the WES and subsequent variant calling and annotation 
of the UKB cohort are described in Wang et al.16. Briefly, genomic DNA 
underwent paired-end 75-bp WES at Regeneron Pharmaceuticals using 

the IDT xGen v.1 capture kit on the NovaSeq6000 platform. Reads 
were aligned to GRCh38 and small indels (inserts and deletions) and 
SNVs called using running Illumina DRAGEN Bio-IT Platform Germline 
Pipeline v.3.0.7. The resultant catalog of variants was annotated using 
snpEFF v.4.3 (ref. 64), Ensembl v.38.92 (ref. 65), REVEL70 and MTR71 
scores.

Estimating telomere length from WGS data
We used TelSeq10 v.0.0.2 to estimate telomere length using WGS data 
in the quality-controlled cohort of 482,839 UKB individuals. We used 
read length (−r) 150 and k-mer size (−k) 10 to match the proportional 
threshold (40%) for a read to be classified as of telomeric origin, as 
described in Ding et al.10.

Quantitative PCR telomere length estimates
For qPCR telomere length measurements, we used those available 
through UKB (field ID 22191) derived from baseline samples for a total 
of 472,518 participants. We used a rank inverse, normal transformed, 
relative telomer to single copy gene (T:S)-adjusted ratios without fur-
ther adjustment given the extensive QC already performed on these 
measurements72. In total we identified 9,852 (2%) of the qPCR samples 
that lacked a matching TelSeq telomere length estimate from down-
stream analyses. We found that qPCR measurements in this set were 
significantly longer when compared with samples with both TelSeq and 
qPCR metrics (Student’s t-test P = 8.86 × 10−42, two-sided, unadjusted, 
meanTelSeq&qPCR = 5.0 × 10−4, meanqPCR.only = 0.14).

Correcting TelSeq telomere length for technical confounders
We examined the correlation between inverse, normal rank trans-
formed TelSeq- and UKB-adjusted qPCR T:S (UKB showcase field ID 
22191) telomere length estimates finding modest agreement (r2 = 0.16), 
perhaps indicating the presence of technical confounders. To mitigate 
this, for TelSeq telomere length estimates that were derived from WGS, 
we adapted the coverage correction method described in ref. 12. Briefly, 
we used available Mosdepth73 coverage files available across 482,839 
WGS samples, which given the scale were calculated using a ‘quantized‘ 
strategy that merges adjacent bases if they fall in the same coverage bin. 
Overall, four read depth bins were selected ((0–9), (10–19), (20–49) 
and (50+)). To compute overall coverage, we assumed that the cover-
age for a given base was the median of the read depth for that bin. As 
described in Taub et al.12 we split the genome (GRCh38) into 1-kb tiles 
and removed those that overlapped regions with poor mappability, 
which were blacklisted overlapped known structural variants or were 
nonautosomal, resulting in 178,120 1-kb bins (approximately 6% of 
the genome). Then, for each sample we computed the average cover-
age across each bin. To facilitate downstream computation given the 
large size of the coverage matrix (that is, 482,839 × 178,120), we inves-
tigated the performance of randomly batching samples for coverage 
adjustment (Supplementary Note 2). This supported a strategy of 
24 randomized batches (23 batches of 20,000 and 1 batch of 22,839 
participants). For each batch we used a randomized PCA approach 
implemented in the R package ‘rsvd’ v.1.0.5 (ref. 74) to estimate the first 
300 PCs for each batch. To correct TelSeq telomere length estimates, 
we then fit a linear model (TelSeqraw ~ PC1–300), where '~' separates 
response and predictor variables, taking forward the resulting residuals 
as coverage-corrected TelSeq telomere length estimates.

To assess coverage-corrected TelSeq telomere length estimates 
we created Bland–Altman plots stratified by sex, ancestry and age 
using inverse normal transformed metrics for 462,666 participants in 
whom both metrics were available (Supplementary Figs. 2–5). Overall, 
we observed little bias in telomere length estimates when compar-
ing qPCR and TelSeq methods. We used logistic regression to assess 
whether outlier status (by difference) was significantly associated 
with any of these biological metrics. Only AFR genetic ancestry was 
significantly associated with outlier status (P = 1.16 × 10−12, odds ratio 
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(OR) = 1.80, two-sided, unadjusted); however, when we added the rare 
HBB-coding variant carrier status into the model this association was 
significantly attenuated (P = 2.65 × 10−5, OR = 1.23) indicating that this 
might be driven by the genetic effects reported for qPCR telomere 
length within the HBB locus.

Finally, we looked for univariate association across 19 WGS 
sequence metrics (Supplementary Table 2) collected on each sample 
and both qPCR- and coverage-corrected telomere length estimates, 
using scaled WGS sequence metrics and inverse normal, rank trans-
formed qPCR and coverage-adjusted telomere length estimates to 
facilitate comparison. We found that, overall, 14 and 16 WGS metrics 
were significantly associated with coverage-adjusted TelSeq and qPCR 
telomere length measurements (Extended Data Fig. 3 and Supplemen-
tary Table 3), respectively. Of these, many were highly correlated; how-
ever, we noted that a combination of coverage uniformity, total WGS 
reads and sequencing pipeline captured these, and so were included 
as covariates in downstream analyses (Supplementary Note 3). We also 
examined how mosaic loss of X or Y might differentially affect TelSeq 
and qPCR telomere length estimates, but did not find evidence for sys-
tematic differences between the two metrics (Supplementary Note 4).

In total 20,173 (4%) samples with TelSeq WGS telomere length 
estimates lacked matching qPCR estimates. There was no significant 
difference between TelSeq telomere length estimates in these samples 
compared with those with both telomere length measurements. A 
comparison of TelSeq measurements for this set and the set where 
both metrics were available did not detect a significant difference (Stu-
dent’s t-test P = 0.17 two-sided unadjusted, meanTelSeq&qPCR = 5.0 × 10−4, 
meanTelSeq.only = 7.0 × 10−3).

Correlation analysis
For the 462,666 samples that had telomere length estimates from 
both TelSeq and qPCR methods, we calculated the pairwise Pearson’s 
correlation using the R ‘cor’ function. To assess the contribution and 
degree of collinearity between TelSeq and qPCR methods we fit the 
following model linear model using inverse rank, normal transformed 
age, TelSeq and qPCR (adjusted T:S ratio—UKB field ID 22191)

Age ∼ Telomere lengthTelSeq + Telomere lengthqPCR + Sex.

We then used the R package olsrr (v.0.5.3) to compute variance 
inflation factors (VIFs) for each of the predictors, finding a mean VIF 
of 1.28 that indicated no evidence of collinearity. Overall removing 
telomere lengthTelSeq or telomere lengthqPCR from the model reduced 
R2 by 0.01 and 0.02, respectively.

PCA telomere length score
Across all 462,666 individuals with both telomere length measure-
ments, we used the R built-in function ‘prcomp’ to combine the adjusted 
TelSeq and adjusted T:S ratio qPCR (UKB field ID 22191) inverse normal, 
transformed telomere length estimates. Each PCA consisted of two 
orthogonal principal axes with sample scores that were considered 
separate telomere length measurements or ‘telomere length scores’, 
with PC1 and PC2 explaining 77% and 23% of the variance, respectively 
(Fig. 1b). Overall PC1 was highly correlated with the standardized mean 
across TelSeq and qPCR metrics, whereas PC2 was correlated with their 
difference (Extended Data Fig. 4).

To assess performance for single and combined telomere length 
metrics we randomly sampled 10,000 participants from the full data-
set. We used this training set to fit a simple linear model of a given 
telomere length metric with age (that is, age ~ telomere lengthmetric). 
Then, using the held-out participants, we used the model to predict 
age and assessed prediction performance as the root mean squared 
error of the age predictions. To perform crossvalidation and obtain CIs 
for these performance estimates, we performed this procedure 100×, 
sampling with replacement (Supplementary Fig. 6).

NFE GWAS
We used UKB-imputed genotypes (UKB field ID 22828) to perform 
GWAS for qPCR, WGS, qPCR + WGS PC1 and qPCR + WGS PC2. Briefly, 
we performed additional QC, only taking forward NFE broad genetic 
ancestry samples with imputed genotypes (INFO > 0.7, MAC > 5) for 
which all telomere length metrics were available (N = 438,351). We 
used REGENIE (v.3.1)14 with additional covariates of age, sex, genotyp-
ing plate, ancestry PCs 1–10 (as supplied by UKB) and WGS site. We 
excluded results for SNPs with the following (0.99 missingness, imputa-
tion INFO < 0.7 and p.Hardy–Weinberg equilibrium (p.HWE) > 1 × 10−5). 
We found no evidence of genomic inflation (Supplementary Table 4). 
We selected sentinel SNPs and EUR-only broad genetic ancestry sum-
mary statistics from Codd et al.8 for comparison (Supplementary Note 3  
and Extended Data Fig. 5).

LD score regression
We used ldsc (v.1.0.1)15 to assess heritability and further assess possible 
stratification for each GWAS. Briefly, we used munge_stats.py on the 
cleaned summary stats (SNPs removed 0.95 missingness, imputation 
INFO < 0.4 and p.HWE > 1 × 10−5), then used ldsc.py to estimate h2 with 
the supplied 1000 Genomes LD score matrices.

Defining GWAS loci
To define loci for each phenotype we selected significant variants 
(P < 5 × 10−8) and created regions ±1 Mb, creating a bespoke region 
(chr6: 25,500,000–34,000,000) for human leukocyte antigen. We 
then merged overlapping regions by phenotype, for each resultant 
region where the most significant variant was selected as the index; 
in the case of ties the variant closest to the middle of the region was 
selected. Finally we used the GenomicRanges75 ‘reduce’ function to 
combine overlapping regions regardless of phenotype to define a set 
of nonredundant loci.

We used GCTA-COJO (v.1.94.1)76 to perform stepwise model selec-
tion to define conditionally independent signals for each autosomal 
locus. Briefly, for each NFE GWAS we selected summary statistics for 
all variants (INFO ≥ 0.7) where P < 1 × 10−6. We then randomly sampled 
50,000 individuals from the NFE cohort as the LD reference using 
BGENIX (v.1.1.7) and QCTOOLS (v.2.0.8)77 to create bgen files for these 
individuals. Finally we used PLINK2 (ref. 78) to convert the resultant 
bgen files to binary PLINK 1.x format suitable for input into GCTA-COJO 
(gcta --cojo-slct) using default settings (--cojo-wind 10000; --cojo-p 
5e-8; --cojo-collinear 0.9). For variants on the X chromosome we applied 
a similar approach but replaced 50,000 reference individuals with 
50,000 randomly sampled female individuals of NFE ancestry and as 
a result of increased LD extended window size to 50 Mb (ref. 79).

To assess a list of previously reported loci, we compiled a list of 
significant (P < 5 × 10−8) variants from refs. 8,11,12 and the GWAS cata-
log80 using the ‘telomere length’ term (EFO_0004505), downloaded on 
11 July 2023. We then defined 2-Mb regions centered on each variant.

Single causal variant fine-mapping
For variant fine-mapping, under the single causal variant we selected 
autosomal variants from NFE GWAS and divided these into approxi-
mately independent LD blocks using regions defined in ref. 81. We then 
used the single-variant fine-mapping82,83 approach as implemented 
in https://github.com/ollyburren/rCOGS to assign 95% credible sets.

SuSIE fine-mapping
We used SuSIE84 to perform fine-mapping of all autosomal telomere 
length PC1 GWAS loci. Briefly, we selected a reference panel of 10,000 
unrelated NFE broad genetic ancestry individuals for LD estimation. 
For each autosomal PC1 locus, we selected NFE telomere length sum-
mary stats and used PLINK to compute LD matrices across reference 
panel individuals. We then used the susie_rss function in the R pack-
age ‘susieR’ (v.0.12.35) to perform fine-mapping with L = 10, using the 
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susie_get_cs() function to obtain 95% credible sets (Supplementary 
Table 13).

ExWAS
We carried out a virtual ExWAS of telomere length using WGS genotypes 
stratified by the broad genetic ancestry groupings: NFE (n = 439,491), 
SAS (n = 9,349), AFR (n = 8,162), EAS (n = 2,362), ASJ (n = 1,201) and 
AMR (675) ancestral groups. Briefly we selected unrelated individu-
als within each genetic ancestry stratum with telomere length and 
WGS data using the same method as described in UKB WGS cohort 
definition above. Finally, we removed individuals with a known 
hematological malignancy at sampling (Noverall = 3,196, NFE = 3,073, 
SAS = 42, AFR = 44, EAS = 9, AMR = 0). We took forward variants that 
passed the variant QC as described in Wang et al.16 which had an 
MAC > 5. We used a linear model of the form telomere lengthPC1 ~ geno-
type + age + sex + age2 + PeddyPC1:4 + SequenceSite to assess the associa-
tion of genotype with telomere length using the R ‘PEACOK’ package16. 
In the present study, genotype was coded as a genotypic (AA = 0, AB = 1, 
BB = 2), dominant (AA = 0, AB = 1, BB = 1) or recessive model (AA = 0, 
AB = 0, BB = 1), where A and B are the reference and alternative alleles. 
For the NFE ancestral group, we assessed 326,846, 326,846 and 62,716 
variants for the dominant, genotypic and recessive models, respec-
tively (carrier count ≥5). For the NFE analyses we reported the most 
significant model–variant pair such that variants P ≤ 1 × 10−8 for PC1 and 
P > 1 × 10−8 for PC2 and MAF < 0.1%. For PC1 associated variants passing 
QC we reran association analyses for each variant conditional on other 
significant rare variants within 2 Mb to check for independence.

Collapsing analysis
To assess the contribution of very rare variants we carried out a col-
lapsing burden analysis stratified by broad genetic ancestral groups 
as per the ExWAS analysis, removing individuals diagnosed with a 
hematological malignancy at sampling, using the method described 
in ref. 16. Briefly, we aggregated qualifying variants based within the 
unit of a gene for each ancestral grouping and used these counts in 
a linear regression using the R ‘PEACOK’ (v.1.1.3) package with the 
same covariates as for the ExWAS. We defined ten qualifying variant 
tests (Supplementary Table 9) that include a synonymous model as an 
empirical control. We used the empirical modeling of the null distribu-
tion from Wang et al. to define a genome-wide significant threshold of 
P < 1 × 10−8. In total we assessed 18,930 genes across all 10 models. For 
NFE analyses we report best QV model–gene pair for which P ≤ 1 × 10−8 
for PC1 and P > 1 × 10−8 for PC2.

To assess the leverage of individual variants on collapsing analysis 
genome-wide significant hits we employed a LOO analysis. For each 
gene, and qualifying variant model, we reperformed collapsing analy-
sis, leaving out one variant at a time. In this approach, variants with a 
large influence on the overall collapsing analysis, when excluded, result 
in a concomitant change in statistical significance (Supplementary 
Fig. 12).

Multiancestry meta-analysis
We performed IVW meta-analysis for ExWAS and collapsing across NFE, 
SAS, AFR, EAS, ASJ and AMR broad genetic ancestry groupings for vari-
ants with a carrier count ≥5 within each grouping. In the context of rare 
variants, IVW can be unstable so we compared IVW meta-analysis P val-
ues with those generated from Stouffer’s method, weighting each study 
by the square root of the sample size. We found that both approaches 
generated similar P values, indicating that IVW in this setting was stable 
even for rare variants.

For GWAS multiancestral analysis we used REGENIE with the 
approach described for the NFE ancestry group to generate GWAS 
summary statistics for SAS, AFR, EAS and AMR cohorts. We used the 
locus definition approach described earlier to define significant loci for 
each ancestral strata, considering the PC1 NFE ancestry telomere length 

loci defined in Supplementary Table 5. For GWAS, we used METAL85 to 
perform IVW meta-analyses across all ancestry strata. We selected sig-
nificant variants (Pmeta < 5 × 10−8), removing those that were present in a 
single broad genetic ancestry, using these to define loci and index vari-
ants as described earlier and assessing these for overlap with NFE loci.

Proteogenomic colocalization analysis
We overlapped significant (P < 1.7 × 10−11) pQTLs for the 2,923 Olink 
protein assays reported in ref. 44 with PC1 telomere length loci to 
obtain 2,905 protein–telomere length loci pairs, harboring variants 
associated with both telomere length and one or more plasma protein 
abundances (Supplementary Table 11). To perform colocalization we 
extracted NFE GWAS summary statistics for all matching telomere 
length and pQTL (discovery + replication) variants in the locus. Given 
that both telomere length and pQTL GWAS were performed on inverse 
normal, rank transformed outcome variables, we assumed sdY = 1 
and used ‘coloc’ (v.5.2.3)45 to assess evidence for colocalization with 
the single-variant approximate Bayes’ factor method using default 
priors. We defined ‘strong’ and ‘weak’ evidence for colocalization 
as (PP.H4.abf + PP.H3.abf ) > 0.99 and (PP.H4.abf/PP.H3.abf ) ≥ 5 
and (PP.H4.abf + PP.H3.abf) > 0.90 and (PP.H4.abf/PP.H3.abf) ≥ 0, 
respectively and categorized colocalizations as cis/trans using the 
classifications provided in ref. 44 (within 1 Mb of the gene encoding  
the protein).

For cis-colocalizing signals (n = 10) where there was strong evi-
dence for a shared causal variant between protein abundance and 
telomere length, we performed MR as implemented in the R pack-
age ‘MendelianRandomization’ (v.0.9.0)86. Briefly, For all variants 
(MAF > 1%) in a locus we performed clumping using PLINK78 with a 
reference sample of 10,000 randomly sampled, unrelated NFE ancestry 
UKB samples (----indep-pairwise 100 kb 1 0.3), taking forward these 
pruned variants as instrumental pQTL variables. For MR, we used PLINK 
to compute correlation matrices for pruned variants at each locus. We 
then used the ‘mr_allmethods’ function to assess support for whether 
pQTL instruments were causally associated with telomere length across 
‘simple median’, ‘weighted median’, ‘IVW’ and ‘MR-Egger regression’ 
methods. We took the median, across all four methods, using a mul-
tiple corrected P value (P < 0.005) as indicative of a putative causal 
relationship. Finally, we flagged results where the MR-Egger intercept 
term deviated from 0, indicating the presence of horizontal pleiotropy, 
which might invalidate underlying MR assumptions.

CH analysis
To detect putative CH, we used the pipeline described in ref. 52. Briefly, 
using the same GRCh38 genome reference-aligned reads as for WES 
germline variant calling, we ran somatic variant calling with GATK’s 
Mutect2 (v.4.2.2.0). After QC we focused on a set of 15 genes (Supple-
mentary Table 17) exhibiting age-dependent prevalence for further 
analyses, including only PASS variant calls with 0.03 ≤ VAF ≤ 0.4 and 
allelic depth ≥3 across an annotated set of variants.

For the analysis, we considered four different VAF cutoffs (3–5%, 
>5–10%, >10–20% and >20%; Supplementary Table 17) across NFE ances-
try individuals. In total, after excluding 3,585 individuals diagnosed 
with either a hematological malignancy predating sample collection or 
a lymphocyte count >5 × 109 cells per liter, we took forward 435,525 indi-
viduals for analysis. For overall CH driver subtype association (as shown 
in Fig. 1a), we fit a linear model telomere lengthPC1 ~ (CHVAF>0.03 + age + 
sex + age)/(sex + age2 + ancestry PC1:4 + ever-smoked + pack-years),  
where telomere lengthPC1 represents the PC1 telomere length esti-
mate and CH the carrier status for a particular CH driver subtype with 
VAF > 3%. We then repeated this analysis stratifying by nonoverlap-
ping VAF cutoffs for each CH driver subtype. Finally, to get an overall 
association statistic between telomere length and VAF stratified by CH 
driver subtype, we repeated this analysis recoding each CH driver gene 
carrier status by VAF as an ordinal variable.
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Statistics and reproducibility
Except where specific software packages are named, all statistical 
analyses and plotting were conducted using R (v.4.1.0). No statistical 
methods were used to predetermine sample size.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Full summary association statistics generated in the present study 
will be made publicly available through our AstraZeneca CGR 
phenotype-WAS (PheWAS) Portal (http://ftp.ebi.ac.uk/pub/databases/
gwas/summary_statistics/GCST90435001-GCST90436000/) or the 
GWAS catalog (GCST90435144 and GCST90435145). All WGS and qPCR 
data described in the present study are publicly available to registered 
researchers through the UKB data access protocol. Genomes can be 
found in the UKB showcase portal: https://biobank.ndph.ox.ac.uk/
showcase/label.cgi?id=100314. The qPCR-derived telomere length 
estimates are available at https://biobank.ndph.ox.ac.uk/ukb/label.
cgi?id=265 and WGS TelSeq estimates will be made available as a 
‘returned dataset’. Additional information about registration for access 
to the data is available at http://www.ukbiobank.ac.uk/register-apply. 
Data for the present study were obtained under resource application 
nos. 26041 and 68601.

Code availability
Code supporting the present study is available from Zenodo via https://
doi.org/10.5281/zenodo.12684065 (ref. 87). PheWAS and ExWAS 
association tests were performed using a customized framework, 
PEACOK (1.0.7). PEACOK is available on GitHub: https://github.com/
astrazeneca-cgr-publications/PEACOK. In addition to the R packages 
mentioned in the text, we used pacman (v.0.5.1), data.table (v.1.14.0), 
magrittr (v.2.03), tidyverse (v.2.0.0), rtracklayer (v.1.54.0), Genomi-
cRanges (v.1.46.1), cowplot (v.1.1.3), patchwork (v.1.2.0), biomaRt 
(v.2.5.3), ggrepel (v.0.9.5) and ggplot2 (v.3.4.4).
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Extended Data Fig. 1 | Flowchart of sample QC and analyses. Abbreviations; WGS = Whole genome sequencing, Dx = Diagnosis, Broad genetic ancestry groupings - 
AFR = African, AMR = Admixed American/Hispanic ASJ = Ashkenazi Jewish, EAS = East Asian, NFE = Non-Finnish European, SAS = South Asian.
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Extended Data Fig. 2 | Age, ancestry, and sex relationships with TelSeq & 
qPCR telomere length measurements. For each panel y-axes denote telomere 
length residuals after regressing out age, sex, or ancestry depending on the x-axis 
variable. In all panels N for qPCR and TelSeq + Coverage is 462,666 and 482,839 
independent UKB participants respectively. For each boxplot the centre is the 
median, the lower and upper hinges indicate the 25th and 75th percentile and 

outliers are represented as individual points. (A) Boxplot of age by telomere 
length residuals. (B) Boxplot for broad genetic ancestry group (AFR = African, 
AMR = Admixed American/Hispanic ASJ = Ashkenazi Jewish, EAS = East Asian,  
NFE = Non-Finnish European, SAS = South Asian) by telomere length residuals.  
(C) Boxplot for sex by telomere length residuals.
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Extended Data Fig. 3 | Association of whole genome sequencing technical 
variables with qPCR and coverage adjusted TL metrics. (A) Forest plot 
of Bonferroni significant associations (P < 1 x 10-3) from a univariate linear 
regression of technical variables (two-sided) with either qPCR (coral) or inverse 
rank normal transformed TelSeq coverage adjusted (azure) telomere lengths 
(n = 462,666 independent samples). All variables have been standardised to 
facilitate effect size comparison on telomere length (x-axis), 95% confidence 

intervals are shown. A full table of all results with descriptions is available as 
Supplementary Table 3. Sequencing pipeline (deCODE, WSI, and WSI_vanguard 
(baseline)) and sex are treated as categorical variables. (B) Pearson correlation 
heatmap of significantly associated WGS technical variables. Variable order is 
derived from hierarchical (complete linkage) clustering of the full correlation 
matrix. Age and sex are included as biological variables with known associations 
with telomere length for comparison.
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Extended Data Fig. 4 | Comparison of PC1 and PC2 rotations. Density plots of 
mean qPCR and TelSeq transformed telomere length estimates vs PC1 rotation 
values (A), mean qPCR and TelSeq transformed telomere length estimates vs PC2 
rotation values (B), difference between qPCR and TelSeq transformed telomere 

length estimates vs PC1 rotation values (C), and difference between qPCR and 
TelSeq transformed telomere length estimates vs PC2 rotation values (D). Dotted 
lines indicate x = y (Top) and x = -y (Bottom) and are included for reference.
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Extended Data Fig. 5 | Comparison of GWAS effect sizes with Codd et al. 
(y-axis) for different TL measurements effect sizes with EUR only effect sizes 
from Codd et al. (x-axis) and NFE from this study (P < 5 ×10−8). P values are derived 

from linear regression and are two sided and unadjusted. Crosses indicate 
95% confidence intervals for each estimated effect size; Pearson’s correlation 
coefficients are labelled on each panel; blue dotted line shows equivalence (x = y).
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Extended Data Fig. 6 | Heatmap of genome-wide significant telomere 
length associated genes from gene collapsing analyses. Shading indicates 
effect size (green = unit increased telomere length, purple = unit decreased 
telomere length), points indicate genome-wide significance (P ≤ 1x10−8). The 
x-axis indicates the different qualifying variant models implemented which are 
described fully in Wang et al. Briefly, ptv= rare protein truncating variants,  
UR = ultra rare variants, URmtr = ultra rare variants in missense intolerant regions 

(MTR), raredmg = rare damaging (REVEL) variants, raredmgmtr = as raredmg but 
with additional MTR filter, flexdmg = flexible non-synonymous, flexnonsynmtr 
= as flexdmg but with additional MRT filter, ptvraredmg = Union of ptv and 
raredmg models, rec = recessive model, syn = synonymous variants (negative 
control). P values are derived from linear regression and are two sided and 
unadjusted.
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Extended Data Fig. 7 | Comparison of p values for NFE and fixed effect cross-
ancestry meta-analysis collapsing analysis (AFR (n = 8,154), ASJ (n = 2,629), 
EAS (n = 2,360), NFE (438,351) & SAS (9,286)) for the PC1 telomere length 

metric. Only variants pNFE < 5 x 10−5 for PC1 are shown, (A) significance -log10(P) 
(B) Telomere length effect size (SD). P-values were derived from inverse-weighted 
meta-analysis and are two-sided.
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