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a b s t r a c t 

In an island power system, optimizing energy management is fundamental since there are re- 

newable sources with their limitations. This management includes the allocation and capacity of 

energy sources to supply the loads. In this context, optimizing losses in the system contributes to 

improve the efficiency of this management. This paper proposes the losses optimization and en- 

ergy management in the island power system. The authors propose the Natural Logarithm Particle 

Swarm Optimization to solve the problem and compare it with the Attractor Point Algorithm and 

Evolutionary Particle Swarm Optimization. And with that, we also propose a particle initializa- 

tion for the studied particle-based algorithms to guarantee convergence in radial power systems. 

This is because the system configuration influences the response of the algorithm convergence. 

These techniques were applied to the IEEE-34 unbalanced radial island system. 

• Natural Logarithm Particle Swarm Optimization differs from classical PSO in that it does not 

calculate the velocity of the particles. Therefore, the method considers a cloud of particles 

with a natural logarithmic trajectory to solve the reduction of losses in a power system with 

a radial topology. 

• Natural Logarithmic Particle Swarm Optimization uses an initialization equation to minimize 

the initial estimation process, which is relevant to the convergence process. 

 

 

Specifications table 

Subject area: Engineering 

More specific subject area: Electrical and Energy 

Name of your method: Natural Logarithm PSO (NLogPSO) 

Name and reference of original method: N.A. 

Resource availability: IEEE-34 Node Test Feeder ( https://site.ieee.org/pes-testfeeders/resources/ ) 

Background 

Renewable Energy Sources (RES), such as solar, wind, and other micro-sources, can be sustainable, flexible and accessible. How-

ever, the growing application of distributed generations and electric vehicles, which characterizes the Distributed Energy Resource 

(DER), requires a more efficient operation of the elements in the system. Therefore, the microgrid (MG) controls DERs and loads,
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Table 1 

Points covered in the cited references. 

References Optimization of EMS Optimal allocation/capacity of mobile 

generators in the island system 

Minimization of losses in the 

island system 

Harmonic power flow in the 

island system/with DG 

[ 1–4 , 11 , 12 ] Yes No No No 

[ 5–9 , 13 ] Yes Yes No No 

[ 10 ] No No Yes No 

[ 14–16 ] No No No Yes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

maximizing efficiency between generation and demand, whether connected to the grid or island mode [ 1 ]. Isolated microgrids have

renewable energy generators, distributed generation (DG), battery energy storage systems (BESS) and loads. Due to the uncertainty 

scenarios of MG agents, there is an optimization of the energy management strategy (EMS) [ 2–4 ]. 

Energy storage devices have been widely used in loss reduction, expansion deferral, island operation, and voltage control ap-

plications. Mobile generators and MESS (Mobile Energy Storage Systems) can be used in an isolated mode to maintain and restore

the distribution system, such as the reducing operating costs in a 33-bus distribution system and voltage regulation through reac-

tive power support [ 5 , 6 ]. Restoration services with mobile resources can occur due to the mobile emergency generators’ predicted

positioning or real-time allocation. The Renewable Mobile Power Station (RMPS) associated with MG can guarantee energy supply 

in case of a disconnection [ 7 ] and with the PSO (particle swarm optimization) method can be used for its optimal allocation [ 8 ].

Probabilistic methodology was used to optimize the location and capacity of wind and solar generation in island mode for 33-bus

radial system [ 9 ]. And in the context of loss reduction, a heuristic distributed algorithm was developed to calculate the radial power

flow of an island operation and optimize losses in the 9-bus and 25-bus system [ 10 ]. As shown in Table 1 , the problem solved involves

optimizing the operational cost, energy management, allocation and optimal generation capacity, or power flow with the study of

the harmonic content generated by the DGs. 

PSO-based algorithms have been successfully applied to power system optimization. An example of application in radial power 

systems is the analysis of voltage profile and stability index. For the case of multiple DGs, enhanced PSO and Ant-Lion optimization

were applied to a multi-objective function, and the results between the algorithms were similar [ 17 ]. The application of PSO was

compared with Grey Wolf Optimization Algorithm and Whale Optimization Algorithm for loss reduction and optimal DG allocation 

in an IEEE-33 bus radial system with similar results [ 18 ]. Novel PSO (NPSO) was proposed to reduce losses and optimise voltage

deviation in an IEEE-33 bus system. The proposed method created a new solution search space using the cosine function to calculate

the inertia weight to disperse the particles [ 19 ]. Another possible modification to the standard PSO was to add a new part to the

particle velocity equation to reduce losses in IEEE-9 and IEEE-14 bus systems [ 20 ]. Hybrid algorithms based on PSO applied to

electrical systems have been proposed by some authors [ 21–24 ]. 

RMPS can work with DG to supply power in an island system due to a contingency. In this case, the objective is to optimize the

RMPS location to attend priority loads, which the EMS will define. This paper aims to improve the efficiency of an island system with

a harmonic source through a combined optimization of the RMPS capacity and loss reduction. Therefore, we propose the Natural

Logarithm PSO algorithm (NLogPSO) to solve this problem. The difference is that NLogPSO uses the particle position in the trajectory

based on the natural logarithm to explore the search space of solutions, so it is not necessary to calculate the particle velocity. For

example, during the NLogPSO tests on the benchmark functions, the gbest of 4.36 × 10–5 was obtained for 𝐹1 ( 𝑥 ) =
∑𝑛 

𝑖 =1 𝑥
2 
𝑖 

with

100 particles in the interval [− 100,100], a function similar to the calculation of losses in the radial power system. For comparison

purposes, this study employs the attractor point algorithm (APA) that works in two layers: the main layer minimizes losses, and

the second determines the optimal capacity of the RMPS. In this context, the two-layer APA algorithm is compared with the two-

layer Evolutionary Self-Adaptative Particle Swarm Optimization (EPSO). The APA and EPSO algorithms are combined to form two 

hybrid algorithms: APA-EPSO and EPSO-APA to evaluate their performance. As the initial particles influence the convergence, we also

propose an equation for initializing the particles in optimizing the radial power flow. Loss reduction is obtained by considering the

temperature of the conductors and harmonic sources in the Backward-Forward Sweep (BFS) power flow to provide more variables and

thus increase numerical complexity. These results, therefore, change the autonomy capacity of the microgrid. It is worth noting that

temperature-dependent power flow for unbalanced radial systems [ 25 ] considers the Carson model [ 26 ], the BFS algorithm, and the

application of temperature-dependent resistances of conductors in the power flow, in which it is regarded the heat transfer processes

in the conductors from the current and environmental conditions, such as wind speed, wind angle, solar radiation, and temperature

[ Anon., 27 ]. In this case, the state variables are the voltage magnitude, voltage angle, and temperature of the conductors. The main

contribution is the NLogPSO algorithm, which allows one to reach the following goals, described as: 

• Losses minimization in an island system: the presence of harmonic sources can increase losses in the system. Considering the calcu-

lation of the temperature of the conductors contributes to improving the accuracy of the losses. Therefore, the addition of these

factors as variables makes it difficult for the algorithms to converge and one of the objectives of this paper is to consider these

variables in the optimization process. 

• Optimal allocation of RMPS: to solve the problem of a programmed disconnection in a system, this paper applied the LSF method

[ 20 ], so that the allocation of RMPS contributes to loss minimization. For this, two conditions are proposed for the application of

this method. 
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• Particle-based optimization: for the optimization of losses in the islanded system for a determined number of hours and optimal

energy management provided by the RMPS. 

• PSO enhancement : the proposed methodology used APA, EPSO and NLogPSO in two layers. This paper also proposes the particle

initialization equation to minimize system losses and optimize the energy supplied by the RMPS. 

Then, NLogPSO, APA, EPSO, APA-EPSO, and EPSO-APA are applied in three cases using the unbalanced 34-bus radial system. 

Method details 

Optimal allocation of RMPS 

In this paper, the buses were selected for DG allocation in an island system based on the temperature-dependent power flow [ 25 ],

while considering the impact on the survival time of the island system. Optimal RMPS allocation was determined by the active loss

sensitivity factor (LSF) method according to (1) [ 28 ]. The proposed application consists of allocating the largest capacity generation

in the first bus listed by the method. The location of the other generations, if their capabilities are less than the first, must follow the

priority listed by the LSF method regardless of their capability. MGs are considered PQ models in power flow. In summary, this paper

proposes the LSF method with the following statements: 

• Statement 1: Place the highest capacity RMPS or DG on the first bus indicated by the LSF method. 

• Statement 2: RMPS that are not in statement 1 can be allocated to any bus indicated by the LSF method regardless of its capacity. 

𝐿𝑆𝐹 =
𝜕𝑃𝐿 

𝜕𝑃𝑠 

= 2
𝑁 ∑
𝑗=1 

(
𝛼𝑠𝑡 𝑃𝑡 − 𝛽𝑠𝑡 𝑄𝑡 

)
(1) 

Where, 

𝑃𝐿 =
𝑁 ∑
𝑠 =1 

𝑁 ∑
𝑡 =1 

[
𝛼𝑠𝑡 

(
𝑃𝑠 𝑃𝑡 + 𝑄𝑠 𝑄𝑡 

)
+ 𝛽𝑠𝑡 

(
𝑄𝑠 𝑃𝑡 − 𝑃𝑠 𝑄𝑡 

)]
(2) 

𝛼𝑠𝑡 =
𝑟𝑠𝑡 ( 𝑇 ) 
𝑉𝑠 𝑉𝑡 

𝑐𝑜𝑠
(
𝛿𝑠 − 𝛿𝑡 

)
(3) 

𝛽𝑠𝑡 =
𝑟𝑠𝑡 ( 𝑇 ) 
𝑉𝑠 𝑉𝑡 

𝑠𝑖𝑛
(
𝛿𝑠 − 𝛿𝑡 

)
(4) 

Ps , Pt are the active powers in bus s and t; Qs , Qt are the reactive powers in bus s and t; Vs , Vt are the voltage magnitudes in bus s and

t; 𝛿s , 𝛿t are the voltage angles in bus s and t . Finally, N is the bus number in the system. LSF values are calculated for all buses and

arranged in descending order, thus establishing a list of candidate buses for RMPS allocation. 

Island system optimization 

Optimizing the island system with RMPS is carried out in two stages: loss minimization (first layer) and adequacy of RMPS

capacity (second layer). The power flow optimization problem consists of a non-linear objective function with non-linear constraints. 

The objective function is given by (5). 

𝑓𝑃𝐹 ( 𝑥) = 𝑚𝑖𝑛
(
𝑓𝑙𝑜𝑠𝑠 + 𝑓𝑣 + 𝑓𝑃 + 𝑓𝑄 

)
(5) 

Where, 

𝑓𝑙𝑜𝑠𝑠 =
𝑁 ∑
𝑠 =1 

𝑁−1 ∑
𝑡 =1 

[
𝑟𝑠𝑡 ( 𝑇 ) 

]
𝑥𝐼2 

𝑠𝑡 
(6) 

𝑓𝑣 = 𝑐𝜌

𝑁 ∑
𝑠 =1 

[
𝑚𝑎𝑥

(
𝑉𝑠 − 𝑉𝑚𝑎𝑥 

)]2 + 𝑐𝜌

𝑁 ∑
𝑠 =1 

[
𝑚𝑎𝑥

(
𝑉𝑚𝑖𝑛 − 𝑉𝑠 

)]2 
(7) 

𝑓𝑃 = 𝑐𝜌

𝑁 ∑
𝑠 =1 

[ 

𝑃𝐺,𝑠 − 𝑃𝑑,𝑠 −
𝑁−1 ∑
𝑡 =1 

[
𝑟𝑠𝑡 ( 𝑇 ) × 𝐼2 

𝑠𝑡 

]] 2 

(8) 

𝑓𝑄 = 𝑐𝜌

𝑁 ∑
𝑠 =1 

[ 

𝑄𝐺,𝑠 − 𝑄𝑑,𝑠 −
𝑁−1 ∑
𝑡 =1 

[
𝑥𝑠𝑡 × 𝐼2 

𝑠𝑡 

]] 2 

(9) 

rst (T) and xst are the st branch temperature-resistance and reactance, Vmin and Vmax are the minimum and maximum voltage equal 

to 0.9 and 1.1 pu, respectively, PG,s is the active power generation in the bus s, QG,s is the reactive power generation in the bus s, Pd,s 

is the active power demand in the bus s and Qd,s is the reactive power demand in the bus s and c𝜌 is the penalty coefficient. 

The algorithm applied in this paper works in two layers. The first layer considers branch currents as particles in PSO-based

optimization algorithms, and the secondary layer is the optimization of the RMPS generation capacity to serve the island system. 
3
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Evolutionary PSO optimization 

Evolutionary Self-Adaptative Particle Swarm Optimization (EPSO) [ 29 ] considers the learning parameter 𝜏 in the weights applied 

to the particle velocity and the best global particle. Therefore, the particle position and velocity are calculated according to (10) and

(11), respectively. The best global particle gbest’ is updated in (12), where rand is the random number with Gaussian distribution

within the range [0,1]. In this paper, wi0 = rand and wi1 = wi2 = 2 , where considered. 

𝑥
( 𝑘 +1 ) 
𝑖 

= 𝑥
( 𝑘) 
𝑖 

+ 𝑣
( 𝑘 +1 ) 
𝑖 

(10) 

𝑣
( 𝑘 +1 ) 
𝑖 

= 𝑤𝑖 0 .𝑣
( 𝑘) 
𝑖 

+ 𝑤𝑖 1 .
(
𝑝𝑏𝑒𝑠𝑡𝑖 − 𝑥

( 𝑘) 
𝑖 

)
+ 𝑤𝑖 2 .

(
𝑔𝑏𝑒𝑠𝑡′ − 𝑥

( 𝑘) 
𝑖 

)
(11) 

𝑔 𝑏𝑒𝑠𝑡′ = 𝑔 𝑏𝑒𝑠𝑡 + 𝜏.𝑟𝑎𝑛𝑑 (12) 

Attractor point algorithm 

The particles converge to their attractor point (13) with coordinates in (14) in quantum-behaved particle swarm optimization 

(QPSO) [ 30 , 31 ]. 

𝑝
( 𝑘) 
𝑖 

=
[
𝑝
( 𝑘) 
𝑖, 1 , 𝑝

( 𝑘) 
𝑖, 2 , ... … , 𝑝

( 𝑘) 
𝑖,𝑛 

]
(13) 

𝑝
( 𝑘) 
𝑖,𝑗 

=
𝑐1 .𝑢

( 𝑘) 
𝑖,𝑗 

.𝑝𝑏𝑒𝑠𝑡
( 𝑘) 
𝑖𝑗 

+ 𝑐2 .𝑈
( 𝑘) 
𝑖,𝑗 

.𝑔𝑏𝑒𝑠𝑡
( 𝑘) 
𝑖 

𝑐1 .𝑢
( 𝑘) 
𝑖,𝑗 

+ 𝑐2 .𝑈
( 𝑘) 
𝑖,𝑗 

(14) 

where Ui,j and ui,j are random numbers with Gaussian distribution within the range [0,1]. c1 and c2 are the acceleration factors equal 

to 2, pbest is the best position of particle and gbest is the best global position, k is the iteration and n is the total number of particles.

The particle’s position in the QPSO is updated according to (15). 

𝑥
( 𝑘) 
𝑖,𝑗 

= 𝑝
( 𝑘) 
𝑖,𝑗 

± 𝜅.
|||𝐶 ( 𝑘) 

𝑖 
− 𝑥

( 𝑘 −1 ) 
𝑖,𝑗 

|||.𝑙𝑛( 1∕ 𝑟𝑎𝑛𝑑 ) (15) 

Where C is known as the mbest position, it is the average of the pbest positions of all particles and 𝜅 is the contraction-expansion

coefficient [ 30 , 31 ]. 

This paper proposes calculating the particle’s position only with the attractor point of the radial system (16). Therefore, it is

not necessary to use Eq. (15) for updating the position of the QPSO particle. The second part of (15) does not influence the result,

regardless of the value applied. Thus, we will use the name attractor point algorithm (APA) as a special case of QPSO. 

𝑥
( 𝑘) 
𝑖,𝑗 

= 𝑝
( 𝑘) 
𝑖,𝑗 

(16) 

In radial power flow, the particles are the branch currents that must be checked within the Imax and Imin constraints produced by

the temperature-BFS algorithm according to (17). Equality constraints are used when phases are not used in the single-phase branch

as in (18). 

𝐼𝑚𝑖𝑛 ≤ 𝑥
( 𝑘) 
𝑖,𝑗 

≤ 𝐼𝑚𝑎𝑥 (17) 

𝑥
( 𝑘) 
𝑖,𝑗 
( 𝑝ℎ𝑎𝑠𝑒 ) = 0 (18) 

Natural logarithm PSO 

This paper proposes the Natural Logarithm PSO (NLogPSO) for optimization of radial power systems, where the particles are based

on the natural logarithm and updated according to (19). The Eq. (19) yields a set of logarithmic trajectories as a search space for

the solution. The natural logarithm of rand was used, since the number e is present in many natural processes. The rand is a random

number between 0 and 1 based on the Gaussian distribution. 

𝑥
( 𝑘 +1 ) 
𝑖,𝑗 

= 𝑙𝑛( 𝑟𝑎𝑛𝑑 ) .
[
𝑥
( 𝑘) 
𝑖,𝑗 

−
(
𝑔𝑏𝑒𝑠𝑡𝑖 − 𝑝𝑏𝑒𝑠𝑡𝑖,𝑗 

)]
(19) 

In the EPSO particle velocity equation, three weights have random numbers; in the APA equation, there are two weights and

two acceleration factors. NLogPSO’s proposal is to apply only one weight to its equation, which gives the particle natural behavior

through ln (rand) . 

From a framework, EPSO calculates the difference between the pbest and the most recent particle, which is added in the particle

update. This also happens with gbest and the weights are multiplied by these differences. In the case of APA, the new particles are

calculated with the values of pbest and gbest at each iteration. And the particle update in NLogPSO is performed by subtracting the

most recent particle and the difference between the gbest and pbest of the set, and the result is inserted in a natural logarithm behavior.
4
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Secondary layer: DG/RMPS capacity optimization 

The DG/RMPS capacity optimization problem is a non-linear objective function with non-linear constraints. The objective function 

is given in (20). 

𝑓
(
𝑥, 𝑧, 𝑡𝑚 

)
= 𝑚𝑖𝑛

( 

𝑁𝐺 ∑
𝑖 =1 

𝑃 𝑔𝑖 − 𝑓𝑙𝑜𝑠𝑠 − 𝑃
( 𝑙) 
𝐿 
( 𝑡) 

) 

(20) 

Where x is the system vector state variables, z is the DGs vector and tm 

is the system time in island mode, Pg is the power supplied,

NG is the number of generations, floss are the system losses and PL is the load power. 

In case the DG/RMPS capacity is not enough to supply the load, the consumers must be classified according to their load priority.

The highest priority load is indicated by 1 and the lowest priority by 3 [ 7 ]. Medical assistance, telecommunications and public lighting

are high priority consumers ( l = 1). Industrial and commercial are l = 2 and, residential and rural, l = 3. In this case, the load power

is calculated as in (21). 

𝑃
( 𝑙) 
𝐿 
( 𝑡) =

𝑁 ∑
𝑖 =1 

𝑡𝑝𝑟𝑜𝑔 ∑
𝑡𝑚 = 𝑡𝑖𝑠𝑙 

𝜑
( 𝑙) 
𝑖 

(
𝑖, 𝑡𝑚 

)
𝑃
( 𝑙) 
𝐿,𝑖 

(
𝑡𝑚 
)

(21) 

The operational status matrix 𝜑
⟨𝑙⟩
𝑖 
(𝑖, 𝑡𝑚 ) is related to load priority according to bus and time. The operational status assumes the

value 0 for loads off and 1, for loads on. N is the bus, tisl is the initial system time and tprog is the time programmed in island mode. 

Particle restrictions are checked within each energy source’s minimum and maximum power limits (22). The installed generation 

can be wind, solar, or battery. 

𝑃𝑚𝑖𝑛 ≤ 𝑦
( 𝑘) 
𝑖,𝑗 

≤ 𝑃𝑚𝑎𝑥 (22) 

The second layer optimization can be performed by the EPSO or APA algorithms. For APA, the particles yi,j converge to the

attractor point in the same way as in (13) and (14), resulting in (23). Therefore, the attractor point algorithm was used to optimize

the DG/RMPS capacity. 

𝑦
( 𝑘) 
𝑖,𝑗 

= 𝑃 𝑔
( 𝑘) 
𝑖,𝑗 

(23) 

Initial particles 

Particle-based optimization algorithms demand a collection of initial particles, as with EPSO and APA. Therefore, the determination 

of initial particles plays a key role in convergence. In the case of loss reduction optimization, these particles use the branch current

of the BFS-temperature power flow. For the radial topology of the system, this paper proposed the calculation of the initial particles

according to (24) and used in the EPSO, APA and NLogPSO algorithms. 

𝑥
( 0) 
𝑖,𝑗 

= 𝐼𝑠𝑡 −
(
𝐼𝑚𝑎𝑥 − 𝐼𝑚𝑖𝑛 

)
×
[ 
− 𝑙𝑛( 𝑟𝑎𝑛𝑑 ) 

𝜆

] 
(24) 

Where i represents the variable position, j is the indication of the particle, Ist is the current in the branch in cartesian coordinates,

rand is the random number in the interval [0,1] with Gaussian distribution, Imax is the maximum current and Imin is the minimum

current calculated by the temperature-BFS radial power flow for the island system, 𝜆 ∈ ℝ . 

The use of 𝜆 in the initial particles is to help the convergence of the algorithm through its adjustment. This is because in some

situations, increasing the number of particles does not produce good results and the algorithm can stall around an undesired solution.

The proposed initial particles are calculated according to (25) for the secondary layer. 

𝑦
( 0) 
𝑖,𝑗 

= 𝑃 𝑔𝑖,𝑗 − 𝑟𝑎𝑛𝑑 ×
(
𝑃𝑚𝑎𝑥,𝑖 − 𝑃𝑚𝑖𝑛,𝑖 

)
×
[ 
− 𝑙𝑛( 𝑟𝑎𝑛𝑑 ) 

𝜆

] 
(25) 

Where yi,j 
(0) is the initial particle, Pgi is the nominal power generation i, Pmax,i is the maximum power generation i, Pmin,i is the 

minimum power generation i, rand is the random number in the range [0,1] with Gaussian distribution. Δt is the time interval in

hours and 𝜆Δ𝑡 > 0 . 

Algorithms 

Fig. 1 presents the algorithm flowchart in its three main steps. In step 1, the system’s temperature-dependent power flow with

harmonics is calculated. The power flow data calculates the optimal allocation points of the DGs/RMPS in step 2. And in step 3,

the power flow is calculated for the island system with the DGs/RMPS, which consists of optimizing losses and DGs/RMPS capacity

depending on the algorithm used: APA, EPSO or NLogPSO. The flowchart in Fig. 1 shows equations I – VII, which are different in the

EPSO, APA and NLogPSO algorithms. Thus, Table 2 presents each algorithm’s equations used in the flowchart. 
5
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Fig. 1. Algorithm flowchart with harmonic temperature-dependent power flow calculation, optimal DG allocation for island operation and power 

flow and DG capacity optimization. 

6
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Table 2 

Equations I-VII of the flowchart in Fig. 1 . 

Algorithms Equations 

I II III IV V VI VII 

APA-APA (14) (16) (17) (18) (23) (22) 

APA-EPSO (10) (11) 

EPSO-EPSO (10) (11) (10) (11) 

EPSO-APA (23) 

NLogPSO–NLogPSO (19) (19) 

Fig. 2. IEEE-34 unbalanced radial bus system [ 29 ]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method validation 

The algorithm was developed in MATLAB© computing environment using Intel® CoreTM i5–8265 U CPU @ 1.60 GHz and 8 GB 

of RAM. It was applied to the IEEE-34 unbalanced radial bus system depicted in Fig. 2 [ Anon., 32 ]. The network configuration data,

three-phase and single-phase, and the spacing and height of the cables necessary to calculate the Carson model, were collected in

reference [ Anon., 32 ]. The method used to calculate the power flow was Backward-Forward Sweep [ 26 ] considering the temperature

of the conductors and the harmonic content (Harmonic Temperature-BFS method). Wind speeds of 0.2 and 2.0 m s-1 were considered 

with an inclination of 45° and conductor type 428-A1/S1A-54/7‘ZEBRA’ [ Anon., 27 ]. 

The IEEE-34 system was employed to simulate three load demands and was isolated from the main grid for 4 h. For the island

system of cases 1 and 2, the optimal location of the energy sources using LSF method was NRPMS = {890,830,844}. For case 3, the

optimal location of the energy sources was NRPMS = {890,830,844,860}. The LSF method indicates the list of buses for optimal RMPS

allocation. The first bus on this list must be allocated to the RMPS with the largest capacity, as proposed in statement 1. RMPS that

do not follow statement 1 may be allocated to any bus indicated in the LSF list. The installed power in case 1 is 1.45 MW, in case 2

is 1.59 MW, and in case 3 is 2.50 MW. 

Two harmonic sources were randomly inserted: an induction motor at bus 828 and a VFD (6-pulse variable frequency drive) at

bus 816. The power flow analysis considered the influence of this harmonic content on the branches adjacent to the buses of these

loads. Thus, the feeders influenced by the harmonic current were (824, 828), (828, 830), (816, 824), (850, 816) and (816, 818). In

these branches, the skin effect due to the harmonic content was considered. The VFD has a active power of 120 kW and a reactive

power of 80 kVAr. The 6-pole induction motor has a shaft power of 229.5 kW, a power factor of 0.853 and an efficiency of 97.5 %.

Table 3 presents the current spectra of VFD [ 16 ] and induction motor [ 33 , 34 ]. 

The method validation is divided into two parts. The first part shows the results of the proposed algorithms optimizations for

harmonic temperature-BFS. The second one deals with considerations about priority loads. 

Method validation I: algorithms optimization 

The initial particles are calculated according to (24) and are essential for the convergence process. For that reason, it was necessary

to establish a numerical region where 𝜆values would be decisive. It was observed that to obtain loss reduction, the absolute value

of 𝑥
(0) 
𝑖,𝑗 

must be < 0.5. Thus, 𝜆 should be chosen to produce 𝑥
(0) 
𝑖,𝑗 

≤ 0 . 5 .However, the optimal loss reduction value is obtained with

0 . 4 ≤ 𝑥
(0) 
𝑖,𝑗 

≤ 0 . 5 . To minimize losses in the objective function (5) a penalty coefficient of 10–3 was used and tolerance in the algorithms

was 10–3 . 
7
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Table 3 

Current spectra of VFD and induction motor. 

Current spectra of VFD [ 14 ]. Current spectra of induction motor [ Anon., 32 ]. 

Harmonic order Amplitude (%) Phase (°) Harmonic Order Amplitude (%) 

1 100 0 1 100 

5 18.24 − 55.68 5 3.0 

7 11.9 − 84.11 7 2.5 

11 5.73 − 143.56 11 1.5 

13 4.01 − 175.58 13 1.0 

17 1.93 111.39 17 0.2 

19 1.39 68.30 

Fig. 3. Load power demand for case 1. 

 

 

 

 

For case 1 , three RMPS are considered, where the maximum generation power at bus 890 is 1300 kW per phase, 60 kW per phase

at bus 830 and 90 kW per phase at bus 844, PRMPS = {1300,60,90} kW in the buses NRPMS = {890,830,844}. In addition, the induction

motor at bus 828 influences the branch (824,828) due to the skin effect. Fig. 3 shows the load power demand during island operation

for case 1. 

For APA-APA, EPSO-EPSO and NLogPSO–NLogPSO algorithms, the optimal values were obtained with 1000 particles for loss 

minimization in the harmonic temperature power flow. The optimal 𝜆 for loss reduction was 20 and for optimal capacity of DG was

2. Fig. 4 presents a surface of initial values for 𝜆 = 20 . 
Fig. 4. Initial values surface for 𝜆= 20 and resulted of APA-APA algorithm. 
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Table 4 

Results of active and reactive power with harmonic temperature-BFS, EPSO-EPSO, APA-APA and NLogPSO–NLogPSO algorithms for the wind speed 

of 0.2 m s-1 . 

Hour kW Harmonic Temperature-BFS EPSO-EPSO APA-APA NLogPSO–NLogPSO 

kVAr A B C A B C A B C A B C 

1 P 52.0 11.1 23.5 48.2 4.7 9.4 48.4 8.9 15.5 48.4 4.2 4.9 

Q 31.8 6.5 16.3 27.7 2.6 4.6 27.8 5.3 9.5 27.8 2.6 3.2 

2 P 52.0 11.1 23.5 49.0 4.8 9.4 48.5 8.9 15.5 48.5 4.3 4.9 

Q 31.8 6.6 16.3 28.3 2.6 4.7 27.8 5.3 9.6 27.8 2.6 3.2 

3 P 52.1 11.3 23.6 49.1 4.9 9.6 48.5 9.1 15.6 48.5 4.3 5.0 

Q 31.9 6.6 16.4 28.4 2.7 4.7 27.9 5.4 9.6 27.9 2.6 3.2 

4 P 52.2 11.3 23.7 49.1 5.0 9.6 48.6 9.1 15.7 48.6 4.3 5.0 

Q 31.9 6.7 16.4 28.4 2.7 4.8 27.9 5.4 9.7 27.9 2.6 3.2 

Mean active power reduction (%) 6.19 56.70 59.70 6.86 19.64 33.93 6.86 61.60 79.00 

Mean reactive power reduction (%) 11.46 59.84 71.25 12.55 18.93 41.13 12.56 60.60 80.42 

Table 5 

Results of active and reactive power with harmonic temperature-BFS, EPSO-EPSO, APA-APA and NLogPSO–NLogPSO algorithms for the wind speed 

of 2.0 m s-1 . 

Hour kW Harmonic Temperature-BFS EPSO-EPSO APA-APA NLogPSO- NLogPSO 

kVAr A B C A B C A B C A B C 

1 P 50.5 10.8 22.8 46.2 4.5 8.9 45.8 8.4 14.6 45.7 4.1 4.7 

Q 31.8 6.5 16.3 28.3 2.6 4.6 27.8 5.3 9.5 27.8 2.6 3.2 

2 P 50.5 10.8 22.8 46.3 4.5 8.9 45.8 8.4 14.6 45.8 4.1 4.7 

Q 31.8 6.6 16.3 28.3 2.6 4.7 27.8 5.3 9.6 27.8 2.6 3.2 

3 P 50.6 10.9 22.9 46.4 4.6 9.0 45.9 8.6 14.7 45.8 4.1 4.7 

Q 31.9 6.6 16.4 28.4 2.7 4.7 27.9 5.4 9.6 27.9 2.6 3.2 

4 P 50.7 11.0 23.0 46.4 4.7 9.1 45.9 8.6 14.8 45.9 4.1 4.7 

Q 31.9 6.7 16.4 28.4 2.7 4.8 27.9 5.4 9.7 27.9 2.6 3.2 

Mean active power reduction (%) 8.40 57.93 60.76 9.34 21.84 35.84 9.44 62.29 79.45 

Mean reactive power reduction (%) 10.99 59.84 71.25 12.55 18.93 41.28 12.55 60.60 80.42 

 

 

 

 

 

 

 

 

Tables 4 and 5 present the results of active and reactive power considering a wind speed of 0.2 m s-1 and 2.0 m s-1 , respectively, in

the harmonic temperature-BFS algorithm without optimization and with EPSO-EPSO, APA-APA and NLogPSO–NLogPSO algorithms. 

The proposed optimization algorithms reduce losses at the same levels for both wind speeds. 

It is observed in Tables 4 and 5 that the reduction of active and reactive power is different between the algorithms. For phase A,

the loss reduction was similar between the studied algorithms. In phase B, the greatest loss reduction was obtained with NLogPSO,

followed by EPSO and finally, APA. And in phase C, the most significant loss reduction was obtained by NLogPSO, followed by EPSO

and APA. The reason is due to the dispersion of particles within their set (equivalent to the dispersion of particles within a cloud).

Each algorithm has a distinct dispersion behavior given by its equation. Therefore, each algorithm makes its best current distribution

between the branches, which directly affects the loss calculation. An important consideration is that the loads are unbalanced in the

system and NLogPSO was the one that best distributed the currents in the branches. 

Figs. 5 shows the histograms of the current magnitudes for hour 1 of the island system by the NLogPSO, EPSO and APA methods,

respectively. Fig. 6 compares current magnitudes at hour 1 in the branches. 
Fig. 5. Histograms of the current magnitude in the branches at hour 1 by (a) NLogPSO, (b) EPSO and (c) APA. 
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Fig. 6. Comparison of the current magnitudes in the branches by NLogPSO, EPSO and APA algorithms. 

Table 6 

Results of DG optimal capacity with EPSO and APA algorithms. 

Algorithm EPSO APA and NLogPSO 

Hour DG 1 (kW) DG 2 (kW) DG 3 (kW) DG 1 (kW) DG 2 (kW) DG 3 (kW) 

1 1208.1 54.7 80.5 1207.8 56.5 78.2 

2 1176.1 53.3 76.4 1171.4 51.0 85.6 

3 1280.0 54.7 61.6 1280.1 54.7 61.6 

4 1281.7 51.6 60.2 1281.7 51.6 60.2 

 

 

 

 

 

 

 

 

Loss reduction by NLogPSO optimization has the advantage of supplying a higher priority load. For example, considering hour 1,

a 10 % reduction in phase A represents a saving of 5.05 kW, a 60 % reduction in phase B represents 6.48 kW and a 70 % reduction

in phase C, 15.96 kW. The reduction in average percentage losses is equivalent to the optimization of power flow with and without

harmonics by NLogPSO. The same is true for the APA and EPSO algorithms. 

The DG optimal capacity was calculated with 100 particles in the second layer of the algorithm for EPSO and APA. Table 6 shows

the values of each DG. 

The computational time to compare the proposed algorithms considers the harmonic temperature-BFS, DG optimal allocation, 

island harmonic temperature-BFS and the optimization in 2 layers. APA-APA, EPSO-EPSO and NLogPSO algorithms’ computational 

time are 76.58 s, 21.49 s and 44.68 s, respectively. All algorithms responded with 1 run and 101 iterations. 

For the APA-EPSO algorithm, the optimal values were obtained with n = {2000,2500,2500} particles, where n represents the 

particle number used in each system phase, n = { nA , nB , nC }. These particles were applied in the APA algorithm for loss minimization.

Optimal 𝜆 = {𝜆𝐴 , 𝜆𝐵 , 𝜆𝐶 } for loss reduction was 𝜆 = {19 , 25 , 25 } and for optimal DG capacity was 2. Tables 7 and 8 present active

and reactive power results with APA-EPSO optimization for wind speeds of 0.2 and 2.0 m s-1 , respectively. The computional time of

the APA-EPSO algorithm is 301.12 s. APA-EPSO showed a difference in the optimization of losses of 6.6 % in phases A and B, and
Table 7 

Results of active and reactive power with harmonic temperature-BFS and APA-EPSO algorithms for the wind speed of 

0.2 m s-1 . 

Hour kW Harmonic Temperature-BFS APA-EPSO 

kVAr A B C A B C 

1 P 52.0 11.1 23.5 48.3 8.4 14.5 

Q 31.8 6.5 16.3 27.8 5.1 8.8 

2 P 52.0 11.1 23.5 48.4 8.4 14.5 

Q 31.8 6.6 16.3 27.8 5.1 8.8 

3 P 52.1 11.3 23.6 48.5 8.5 14.6 

Q 31.9 6.6 16.4 27.8 5.1 8.9 

4 P 52.2 11.3 23.7 48.5 7.2 12.9 

Q 31.9 6.7 16.4 27.9 4.7 8.9 

Mean active power reduction (%) 7.00 27.43 40.07 

Mean reactive power reduction (%) 12.64 24.21 45.87 
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Fig. 7. Percentage reduction of generation for case 1. 

Table 8 

Results of active and reactive power with harmonic temperature-BFS and APA-EPSO algorithms for the wind speed of 2.0 m s-1 . 

Hour kW Harmonic Temperature-BFS APA-EPSO 

kVAr A B C A B C 

1 P 50.5 10.8 22.8 45.7 8.0 13.7 

Q 31.8 6.5 16.3 27.8 5.1 8.8 

2 P 50.5 10.8 22.8 45.7 8.0 13.7 

Q 31.8 6.6 16.3 27.8 5.1 8.8 

3 P 50.6 10.9 22.9 45.8 8.1 13.8 

Q 31.9 6.6 16.4 27.8 5.1 8.9 

4 P 50.7 11.0 23.0 45.8 6.8 12.2 

Q 31.9 6.7 16.4 27.9 4.7 8.9 

Mean active power reduction (%) 9.54 28.93 41.63 

Mean reactive power reduction (%) 12.64 24.22 45.87 

 

 

 

 

 

 

 

 

23.52 % in phase C compared to APA-APA and wind speed of 0.2 m s-1 . And regarding reactive power, this difference was 38.97 %

and 14.07 % in phases B and C, respectively. And for a wind speed of 2 m s-1 , the difference in the APA-EPSO loss optimization

concerning the APA-APA was 39.82 % and 19.42 % in phases B and C. And in the case of reactive power was 39.03 % and 14.50 %

in phases B and C, respectively. 

Fig. 7 shows the percentage reduction in each generation, which can be RMPS or DG, concerning its rated capacity. Generation 1

is at bus 890 with a rated capacity of 1300 kW, generation 2 is at bus 830 with a total of 60 kW, and generation 3 is at bus 844 with

a 90 kW rated capacity. 

For the EPSO-APA algorithm, the optimal values were obtained with n = {2000,500,500} particles, where n = { nA , nB , nC }, represents

the particle number used in each system phase. These particles were applied in the APA algorithm for loss minimization. Optimal

𝜆 = {𝜆 , 𝜆 , 𝜆 } for loss reduction was 𝜆 = {25 , 20 , 20 } and for optimal DG capacity was 2. Tables 9 and 10 present the results of
𝐴 𝐵 𝐶 

Table 9 

Results of active and reactive power with harmonic temperature-BFS and EPSO-APA algorithms for the wind speed of 0.2 m s-1 . 

Hour kW Harmonic Temperature-BFS EPSO-APA 

kVAr A B C A B C 

1 P 52.0 11.1 23.5 48.9 4.8 9.8 

Q 31.8 6.5 16.3 28.3 2.7 6.3 

2 P 52.0 11.1 23.5 48.9 4.8 9.9 

Q 31.8 6.6 16.3 28.5 2.7 6.4 

3 P 52.1 11.3 23.6 49.0 5.0 10.0 

Q 31.9 6.6 16.4 28.6 2.8 6.4 

4 P 52.2 11.3 23.7 49.0 7.4 10.0 

Q 31.9 6.7 16.4 28.6 4.4 6.5 

Mean active power reduction (%) 6.00 50.94 57.90 

Mean reactive power reduction (%) 10.52 52.36 60.86 
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Fig. 8. Load power demand for case 2. 

Table 10 

Results of active and reactive power with harmonic temperature-BFS and EPSO-APA algorithms for the wind speed of 2.0 m s-1 . 

Hour kW Harmonic Temperature-BFS EPSO-APA 

kVAr A B C A B C 

1 P 50.5 10.8 22.8 46.1 4.6 9.3 

Q 31.8 6.5 16.3 28.5 2.7 6.3 

2 P 50.5 10.8 22.8 46.2 4.6 9.3 

Q 31.8 6.6 16.3 28.5 2.7 6.4 

3 P 50.6 10.9 22.9 46.3 4.7 9.4 

Q 31.9 6.6 16.4 28.6 2.8 6.4 

4 P 50.7 11.0 23.0 46.3 7.0 9.5 

Q 31.9 6.7 16.4 28.6 4.4 6.5 

Mean active power reduction (%) 8.60 52.01 59.02 

Mean reactive power reduction (%) 10.36 52.36 60.86 

 

 

 

 

 

 

 

active and reactive power with EPSO-APA optimization for wind speeds of 0.2 and 2.0 m s-1 , respectively. The computational time

of EPSO-APA algorithm is 43.14 s. Loss reduction is similar between EPSO-APA and EPSO-EPSO. 

For case 2 , the maximum generation power of RMPS at bus 890 is 1300 kW per phase, 90 kW per phase at bus 830 and 200 kW

per phase at bus 844 bus, PRMPS = {1300,90,200} kW in the buses NRPMS = {890,830,844}. Due to the skin effect, the induction motor

is at bus 828 and influences the branch (824,828). Fig. 8 shows the load power demand during island operation for each phase. 

For APA-APA, EPSO-EPSO and NLogPSO–NLogPSO algorithms, the optimal values were obtained with 1000 particles for 

the loss minimization in the harmonic temperature power flow. The optimal 𝜆 for losses reduction was 30 for APA-APA and

NLogPSO–NLogPSO algorithms, and 25 for EPSO-EPSO. The optimal DG capacity was 2. Table 11 presents the average loss opti-

mization in the 4 h of island mode when comparing the EPSO-EPSO, APA-APA and NLogPSO–NLogPSO algorithms with a harmonic

temperature-BFS algorithm without optimization. The optimal DG capacity was calculated with 100 particles in the second layer of

the algorithm for EPSO and APA. Table 12 shows the values of each DG. 
Table 11 

Average losses percentage reductions with EPSO-EPSO, APA-APA and NLogPSO–NLogPSO for the wind speeds of 0.2 m s-1 and 2.0 m s-1 . 

Algorithms EPSO-EPSO APA-APA NLogPSO–NLogPSO 

Wind speed = 0.2 m s-1 A B C A B C A B C 

Mean active power reduction (%) 2.15 31.51 56.18 2.80 14.76 26.32 2.79 70.45 73.67 

Mean reactive power reduction (%) 3.65 32.21 58.10 6.31 3.80 27.68 6.31 56.25 75.06 

Wind speed = 2.0 m s-1 A B C A B C A B C 

Mean active power reduction (%) 4.87 33.66 57.19 5.59 18.79 28.26 5.53 68.99 74.21 

Mean reactive power reduction (%) 3.65 31.55 58.35 6.31 5.11 27.68 6.30 52.31 75.06 
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Table 12 

Results of DG optimal capacity with EPSO and APA algorithms. 

Algorithm EPSO APA or NLogPSO 

Hour DG 1 (kW) DG 2 (kW) DG 3 (kW) DG 1 (kW) DG 2 (kW) DG 3 (kW) 

1 1196.7 73.4 196.6 1192.4 86.9 156.6 

2 1223.3 86.8 177.0 1223.3 76.7 165.1 

3 1259.1 77.9 184.2 1259.1 84.3 177.6 

4 1259.1 76.5 189.4 1259.1 84.5 146.7 

Table 13 

Average losses percentage reductions with APA-EPSO and EPSO-APA for the wind speeds of 

0.2 m s-1 and 2.0 m s-1 . 

Algorithms APA-EPSO EPSO-APA 

Wind speed = 0.2 m s-1 A B C A B C 

Mean active power reduction (%) 1.94 20.50 28.07 3.23 36.07 47.03 

Mean reactive power reduction (%) 5.57 11.54 26.92 6.94 30.43 50.13 

Wind speed = 2.0 m s-1 A B C A B C 

Mean active power reduction (%) 4.71 23.35 29.91 6.37 37.68 48.43 

Mean reactive power reduction (%) 5.57 11.54 26.92 8.04 30.44 50.62 

 

 

 

 

 

 

 

 

 

 

 

The processing time of the algorithm considers harmonic temperature-BFS, optimal DG allocation, island harmonic temperature- 

BFS and the optimization in 2 layers. The computational times are 81.30 s, 31.95 s and 36.48 s for APA-APA, EPSO-EPSO and

NLogPSO–NLogPSO algorithms, respectively. 

For the APA-EPSO algorithm, the optimal values were obtained with n = {2000,2500,2500} particles. These particles were applied

in the APA algorithm for loss minimization. Optimal 𝜆 = {𝜆𝐴 , 𝜆𝐵 , 𝜆𝐶 } , 𝜆 = {19 , 25 , 25 } for losses reduction, and optimal DG capacity

was 2. The computational time of the APA-EPSO algorithm is 213.23 s. 

For the EPSO-APA algorithm, the optimal values were obtained with n = {2000,500,500} particles, where n = { nA , nB , nC }, represents

the particle number used in each system phase. These particles were applied in the APA algorithm for loss minimization. Optimal

𝜆 = {25 , 20 , 20 } for losses reduction, and optimal DG capacity was 2. The computational time of the EPSO-APA algorithm is 40.72 s.

Table 13 presents the average loss optimization in the 4 h when comparing the APA-EPSO and EPSO-APA algorithms with a harmonic

temperature-BFS algorithm without optimization. 

For case 3 , the maximum generation power of RMPS at bus 890 is 1300 kW per phase, at bus 830 is 500 kW per phase, at bus 844

is 500 kW per phase and at bus 860 is 200 kW per phase, PRMPS = {1300,500,500,200} kW in the buses NRPMS = {890,830,844,860}.

Due to the skin effect, the induction motor is at bus 828 and influences the branch (824,828). Fig. 9 shows the load power demand

during island operation. For APA-APA and EPSO-EPSO algorithms, the optimal values were obtained with 1000 particles for loss 

minimization in the harmonic temperature power flow. Optimal 𝜆 for loss reduction was 17 for the APA-APA algorithm and 7 for
Fig. 9. Load power demand for case 3. 
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Fig. 10. Percentage reduction of generation for case 3. 

Table 14 

Average losses percentage reductions with EPSO-EPSO and APA-APA for the wind speeds of 0.2 m s-1 and 2.0 m s-1 . 

Algorithms EPSO-EPSO APA-APA NlogPSO–NlogPSO 

Wind speed = 0.2 m s-1 A B C A B C A B C 

Mean active power reduction (%) 12.41 26.91 68.19 12.00 33.84 43.40 12.00 54.68 70.48 

Mean reactive power reduction (%) 17.52 30.87 71.55 15.81 35.27 46.50 15.81 53.56 74.15 

Wind speed = 2.0 m s-1 A B C A B C A B C 

Mean active power reduction (%) 14.77 28.98 69.05 14.38 35.68 45.00 14.38 55.68 71.40 

Mean reactive power reduction (%) 17.52 30.74 71.55 15.81 35.12 46.50 15.81 53.46 74.15 

 

 

 

 

 

 

 

 

 

 

EPSO-EPSO. The optimal DG capacity was 2. Table 14 presents the average loss optimization in the 4 h when comparing the EPSO-

EPSO and APA-APA algorithms with a harmonic temperature-BFS algorithm without optimization. 

The optimal DG capacity was calculated with 100 particles in the second layer of the algorithm for EPSO and APA. Fig. 10 shows

the percentage reduction in each generation, which can be RMPS or DG, in relation to its nominal capacity. Generation 1 is at bus

890 with a rated capacity of 1300 kW, generation 2 is at bus 830 with a rated capacity of 500 kW, generation 3 is at bus 844 with a

500 kW rated capacity and generation 4 is at bus 860 with a 200 kW rated capacity. The processing time of the algorithm considers

the harmonic temperature-BFS, DG optimal allocation, island harmonic temperature-BFS and the optimization in 2 layers. 

For the APA-EPSO algorithm, the optimal values were obtained with n = {2000,2500,2500} particles. These particles were applied

in the APA algorithm for loss minimization. Optimal 𝜆= {17,17,17} for loss reduction and the optimal capacity of DG was 2. For the

EPSO-APA algorithm, the optimal values were obtained with n = {2000,500,500} particles. These particles were applied in the EPSO

algorithm for loss minimization. Optimal 𝜆= {10,10,10} for losses reduction and the optimal DG capacity was 2. Table 15 presents

the average loss optimization in the 4 h when comparing the APA-EPSO and EPSO-APA algorithms with a harmonic temperature-BFS

algorithm without optimization. 
Table 15 

Average losses percentage reductions with APA-EPSO and EPSO-APA algorithms for the 

wind speeds of 0.2 m s-1 and 2.0 m s-1 . 

Algorithms APA-EPSO EPSO-APA 

Wind speed = 0.2 m s-1 A B C A B C 

Mean active power reduction (%) 12.00 37.06 39.06 11.26 19.86 58.80 

Mean reactive power reduction (%) 15.81 37.28 41.31 15.87 23.88 63.65 

Wind speed = 2.0 m s-1 A B C A B C 

Mean active power reduction (%) 14.38 38.84 40.77 13.58 21.87 59.95 

Mean reactive power reduction (%) 15.81 37.14 41.42 15.87 23.71 63.77 
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Fig. 11. Comparison of priority loads and full loads with the power generated in the period of 4 h. 

Fig. 12. Loads connected at hours 3 and 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method validation II: considerations about priority load 

The energy supplied by the RMPS may decrease with time, considering that the generation can supply its rated capac-

ity in the first and second hours, and supplies 75 % and 50 % of its capacity in the third and fourth hours, respectively.

The first disconnected loads are at buses with l = 3 (those with the lowest priority), which in the case studied are 𝑁
⟨3 ⟩
𝐵 

=
{818 , 820 , 822 , 848 , 840 , 834 , 844 , 816 , 824 , 890 , 858 , 810 } and the second disconnected loads are 𝑁

⟨2 ⟩
𝐵 

= {828 , 830 , 832 , 858 , 860 , 864 } . 
Fig. 11 shows that generation optimization guarantees the priority loads previously defined with APA, EPSO or NLogPSO algo-

rithms. In this case, it is observerd that, without adjusting loads with generation, the system would only be able to supply its energy

for 2 h. 

In this case, with a VFD at bus 816, priority l = 3, and an induction motor at bus 828, priority l = 2. The difference in system

losses with and without harmonics results in an average of 1.679 kW, 5.38 kW and 5.508 kW in phases A, B and C, respectively. 

If a VFD is added at bus 850, with priority l = 1, in this case, there are three harmonic sources: two VFDs (buses 816 and 850)

and an induction motor (bus 828). The difference in system losses with and without harmonics results in an average of 3.226 kW,

7.187 kW and 7.076 kW in phases A, B and C, respectively. Thus, comparing the two cases, there is an increase of 92.13 %, 33.58 %

and 28.46 % in phases A, B and C, respectively. 

Optimization of priority loads can be carried out by applying the NLogPSO algorithm. In this case, it is necessary to define the

loads that can be disconnected and those that cannot. Thus, for the 34 Bus System, it was defined that the loads in the branches can

remain disconnected with the reduction in the energy supplied by the DGs, which in the proposed scenario should start from hour

3 of the island mode. Thus, these loads that can remain disconnected are at buses N = {810, 818, 820, 822, 826, 838, 846, 848, 856,

862, 864, 888} and make up the optimization constraint. Another constraint is the load that must remain connected during the entire

island mode, and in this case, it is at bus 890. 

The state of the loads is indicated by the particle that assumes the value 1 and, off, 0. The loads connected at hours 3 and 4 are

shown in Fig. 12 , where the original numbering of the system is in Table 16 . Therefore, NLogPSO algorithm also can be applied to

guarantee the supply of the loads indicated by the optimization. 
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Table 16 

Original numbering of the system. 

Original Bus Renamed Bus Original Bus Renamed Bus Original Bus Renamed Bus Original Bus Renamed Bus 

800 1 824 10 850 19 826 28 

802 2 828 11 852 20 840 29 

806 3 830 12 854 21 848 30 

808 4 832 13 858 22 856 31 

812 5 834 14 860 23 864 32 

814 6 836 15 862 24 838 33 

816 7 842 16 888 25 890 34 

818 8 844 17 810 26 

820 9 846 18 822 27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary comments 

This paper presented the two layer NLogPSO algorithm to solve the optimization of losses and energy management in the IEEE-34

unbalanced island system. NLogPSO algorithm presents the behavior of the particle based on the natural logarithm and has been

compared with the two-layer algorithms: APA-APA, APA-EPSO, EPSO-EPSO and EPSO-APA. In terms of reducing losses in the island

system, NLogPSO obtained the best result in all scenarios, followed by EPSO-EPSO and APA-APA. The average active power reduction

with NLogPSO in phase A was 6.86 %, 2.79 % and 12.0 % for cases 1, 2 and 3 respectively and for reactive power 12.56 %, 6.31 %

and 15.81 %. For phase B, the average active power reduction was 61.60 %, 70.45 % and 54.68 % for cases 1, 2 and 3 respectively,

and for reactive power 60.60 %, 56.25 % and 53.56 %. Finally, for phase C, the average active power reduction was 79.0 %, 73.67 %

and 70.48 % for cases 1, 2 and 3 respectively, and for reactive power 80.42 %, 75.06 % and 74.15 %. There was an approximate

reduction in losses between the scenarios tested, where the installed power was 1.45 MW, 1.59 MW and 2.50 MW for cases 1, 2 and

3 respectively. Depending on the reduction in losses, it is possible to feed another load, or it may indicate an increase in generation

autonomy to supply energy to the system. Thus, the importance of studying the losses of an island system is justified. Another critical

point is the definition of priority loads in the optimization process. This is because this way it is possible to extend the operating time

of the island system and improve energy management. 

The proposal also involved optimal particle initialization to reduce losses and generation capacity, since it is a necessary part of

the convergence of particle-based algorithms. The Eqs. (24) and (25) proposed for the initial particles define an initial search space

for the NLogPSO, APA and EPSO algorithms. In the case of NLogPSO, the calculation of the initial particles is aided by the l and

determines the logarithmic trajectory within the solution set. To determine the optimum capacity of the RMPS, the l was set to 2

for all scenarios and all algorithms. For loss reduction, the l was 20, 30 and 17 for cases 1, 2 and 3 respectively using the NLogPSO

algorithm and 1000 particles. 

The application of particle-based algorithms showed good performance when using the current in the branches as particles in the

radial configuration. Regarding the classic PSO, it was not discussed in this paper, as it did not achieve convergence for the problem

studied. A proposal for future work is to evaluate NLogPSO in other configurations and reconfigurations of power systems. There is

also the study of the impact of harmonics on an island system and how this can affect the autonomy of the energy supply. 

Ethics statements 

Not applicable 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to

influence the work reported in this paper. 

CRediT authorship contribution statement 

Alessandra F. Picanço: Conceptualization, Methodology, Validation, Investigation, Writing – original draft. 

Antônio C. Zambroni de Souza: Conceptualization, Methodology, Investigation, Validation, Visualization, Supervision, Writ- 

ing – review & editing. Andressa Pereira Oliveira: Visualization, Writing – review & editing. 

Data availability 

Data will be made available on request. 

Acknowledgments 

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. 
16



A.F. Picanço, A.C.Z. de Souza and A.P. Oliveira MethodsX 13 (2024) 102924

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

References 

[1] N. Priyadharshini, S. Gomathy, M. Sabarimuthu, A review on microgrid architecture, cyber security threats and standards, Mater. Today: Proc. (2021) . 

[2] M. Zhai, Y. Liu, T. Zhang, Y. Zhang, Robust Model Predictive control for energy management of isolated microgrids, in: Proceedings of the the 2017 IEEE IEEM,

2017 . 

[3] D. López, I. Yahyaoui, F. Tadeo, S. Arnaltes, On the energy management for a stand-alone hybrid system in isolated area, in: Proceedings of the The 10th

International Renewable Energy Congress, IREC2019, 2019 . 

[4] F. de Bosio, A.C. Luna, L.A.de S. Ribeiro, M. Graells, O.R. Saavedra, J.M. Guerrero, Analysis and improvement of the energy management of an isolated microgrid

in Lencois island based on linear optimization approach, in: Proceedings of the IEEE Energy Conversion Congress and Exposition, 2016 . 

[5] H. Saboori, S. Jadid, Optimal scheduling of mobile utility-scale battery energy storage systems in electric power distribution networks, J. Energy Storage 31

(2020) 101615 . 

[6] P. Prabawa, D. Choi, Multi-agent framework for service restoration in distribution systems with distributed generators and static/mobile energy storage systems,

IEEE Access 8 (2020) 51736–51752 . 

[7] J.R. Monteiro, Y.R. Rodrigues, M.R. Monteiro, A.C. Zambroni de Souza, B.I.L. Fuly, Intelligent RMPS allocation for microgrids support during scheduled islanded

operation, IEEE Access 8 (2020) 117946–117960 . 

[8] H. Abdeltawa, Y.A.I. Mohamed, Mobile energy storage sizing and allocation for multi-services in power distribution system, IEEE Access 7 (2019) 176613–176623 .

[9] C.P. Delgado-Antillón, J.A. Domínguez-Navarro, Probabilistic siting and sizing of energy storage systems in distribution power systems based on the islanding

feature, Electric Power Syst. Res. 155 (2018) 225–235 . 

[10] E.R. Sanseverino, L. Buono, M.L. Di Silvestre, G. Zizzo, M.G. Ippolito, S. Favuzza, T.T.T. Quynh, N.Q. Ninh, A distributed minimum losses optimal power flow

for islanded microgrids, Electric Power Syst. Res. 152 (2017) 271–283 . 

[11] D.M. Lopez-Santiago, E.C. Bravo, G. Jiménez-Estévez, F. Valencia, P. Mendoza-Araya, L.G. Marín, A novel rule-based computational strategy for a fast and reliable

energy management in isolated microgrids, Int. J. Energy Res. 46 (4) (2022) 4362–4379 Web . 

[12] M. Tostado-Véliz, S. Kamel, F. Aymen, A.R. Jordehi, F. Jurado, A Stocastic-IGTD model for energy management in isolated microgrids considering failures and

demand response, Appl Energy 317 (2022) ISSN 0306-2619 . 

[13] M.E. Sallam, M.A. Attia, A.Y. Abdelaziz, M.A. Sameh, A.H. Yakout, Optimal sizing of different energy sources in an isolated hybrid microgrid using turbulent

flow water-based optimization algorithm, IEEE Access 10 (2022) 61922–61936, doi: 10.1109/ACCESS.2022.3182032 . 

[14] M. Milovanovic, J. Radosavljevic, B. Perovic, A backward/forward sweep power flow method for harmonic polluted radial distribution systems with distributed

generations units, Int Trans on Electrical Energy Systems, John Wiley & Sons Ltd, 2020 . 

[15] J. Wang, J. Yan, Y. Xu, K. Huang, Power flow calculation method for isolated microgrid considering the influence of harmonic power, J. Eng. 2017 (14) (2017)

2615–2621 The IET . 

[16] S. Wang, X. Liu, k. Wang, L. Wu, Y. Zhang, Tracing harmonic contributions of multiple distributed generations in distribution systems with uncertainty, Electric

Power Energy Syst. 95 (2018) 585–591 . 

[17] A.R. Ali, A.A.R. Altahir, S. Alwash, M. Al-Kaabi, Investigation study of injecting numerous DGs in IEEE 69 – bus radial networks using enhanced PSO and Ant Lion

optimization algorithms, in: Proceedings of the 2023 3rd International Conference on Electrical Machines and Drives (ICEMD), Tehran, Iran, Islamic Republic

of, 2023, pp. 1–7, doi: 10.1109/ICEMD60816.2023.10429267 . 

[18] B. M’hamdi, M. Teguar, B. Tahar, Optimal DG unit placement and sizing in radial distribution network for power loss minimization and voltage stability

enhancement, Period. Polytech. Electr. Eng. Comput. Sci. 64 (2020) 157–169 . 

[19] M. M’dioud, R. Bannari, I. Elkafazi, A novel PSO algorithm for DG insertion problem, Energy Syst. 15 (2024) 325–351 . 

[20] S.A. Adegoke, Y. Sun, Z. Wang, Minimization of active power loss using enhanced particle swarm optimization, Mathematics 11 (2023) 3660 . 

[21] O. Lasabi, A. Swanson, L. Jarvis, A. Aluko, A. Goudarzi, Coordinated hybrid approach based on firefly algorithm and particle swarm optimization for distributed

secondary control and stability analysis of direct current microgrids, Sustainability 16 (2024) 1204 . 

[22] C.D. Iweh, E.R. Akupan, Control and optimization of a hybrid solar PV – Hydro power system for off-grid applications using particle swarm optimization (PSO)

and differential evolution (DE), Energy Reports (2023) . 

[23] B. Wang, P. Zhang, Y. He, X. Wang, X. Zhang, Scenario-oriented hybrid particle swarm optimization algorithm for robust economic dispatch of power system

with wind power, J. Syst. Eng. Electr. 33 (5) (2022) 1143–1150 October, doi: 10.23919/JSEE.2022.000110 . 

[24] M.K. Gude, U. Salma, A novel approach of PSS optimal parameter tuning in a multi-area power system using hybrid butterfly optimization algorithm-particle

swarm optimization, Int. J. Syst. Assurance Eng. Manage. 13 (2022) 2619–2628 . 

[25] A.F. Picanco, A.C.Z. de Souza, Temperature-dependent radial power flow with distributed generation, in: Proceedings of the 2019 IEEE Milan PowerTech, Milan,

Italy, 2019, pp. 1–6 . 

[26] W.H. Kersting, Distribution System Modeling and Analysis, 3rd Edition, CRC Press, 2012 . 

[27] Anon. Thermal Behaviour of Overhead Conductors, Cigré Working Group 22.12, August 2002. 

[28] R. Prithvi, M.R. Manjunath, A practical approach for optimal allocation of dispatchable and non-dispatchable DG units in distribution systems, in: Proceedings

of the International Conference on Innovations in Power and Advanced Computing Technologies, IEEE, 2017 . 

[29] K.Y. Lee, M.A. El-Sharkawi, Modern Heuristic Optimization techniques: Theory and Applications to Power Systems, IEEE Press, John Wiley&Sons, Inc., 2008 . 

[30] Jun Sun, Bin Feng and Wenbo Xu, Particle swarm optimization with particles having quantum behavior, Proceedings of the 2004 Congress on Evolutionary

Computation, pp. 325–331. 

[31] J. Sun, W. Fang, V. Palade, X. Wu, W. Xu, Quantum-behaved particle swarm optimization with Gaussian distributed local attractor point, Appl. Math. Comput.

218 (2011) 3763–3775 . 

[32] Anon. Distribution System Analysis Subcommittee, “IEEE 34 Node Test Feeder ”, IEEE Power Engineering Society. Power Analysis, Computing and Economics

Committee. [Online]. Available: https://site.ieee.org/pes-testfeeders/resources/ . 

[33] T.P. Franchi, Masters Dissertation in Electrical Engineering, UNICAMP, Brazil, 2017 . 

[34] J. Arrigala, N.R. Watson, Power System Harmonics, 2nd Edition, John Wiley & Sons, Ltd., 2003 . 
17

http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0001
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0002
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0003
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0004
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0005
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0006
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0007
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0008
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0009
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0010
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0011
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0012
https://doi.org/10.1109/ACCESS.2022.3182032
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0014
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0015
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0016
https://doi.org/10.1109/ICEMD60816.2023.10429267
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0018
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0019
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0020
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0021
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0022
https://doi.org/10.23919/JSEE.2022.000110
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0024
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0025
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0026
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0028
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0029
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0031
https://site.ieee.org/pes-testfeeders/resources/
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0033
http://refhub.elsevier.com/S2215-0161(24)00375-3/sbref0034

	Natural logarithm particle swarm optimization for loss reduction in an island power system
	Background
	Method details
	Optimal allocation of RMPS
	Island system optimization
	Evolutionary PSO optimization
	Attractor point algorithm
	Natural logarithm PSO
	Secondary layer: DG/RMPS capacity optimization
	Initial particles
	Algorithms

	Method validation
	Method validation I: algorithms optimization
	Method validation II: considerations about priority load
	Summary comments

	Ethics statements
	Declaration of competing interest
	CRediT authorship contribution statement
	Acknowledgments
	References


