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Prenatal environment is associated with the
pace of cortical network development over
the first three years of life

Ursula A. Tooley 1 , Aidan Latham2, Jeanette K. Kenley2,
Dimitrios Alexopoulos2, Tara A. Smyser 1, Ashley N. Nielsen2, Lisa Gorham 1,
Barbara B. Warner 3, Joshua S. Shimony4, Jeffrey J. Neil2,4, Joan L. Luby2,
Deanna M. Barch 1,4,5, Cynthia E. Rogers 1,3 & Christopher D. Smyser 2,3,4

Environmental influences on brain structure and function during early devel-
opment have been well-characterized, but whether early environments are
associated with the pace of brain development is not clear. In pre-registered
analyses, we use flexible non-linear models to test the theory that prenatal
disadvantage is associated with differences in trajectories of intrinsic brain
network development from birth to three years (n = 261). Prenatal dis-
advantage was assessed using a latent factor of socioeconomic disadvantage
that included measures of mother’s income-to-needs ratio, educational
attainment, area deprivation index, insurance status, and nutrition. We find
that prenatal disadvantage is associated with developmental increases in
cortical network segregation, with neonates and toddlers with greater expo-
sure to prenatal disadvantage showing a steeper increase in cortical network
segregation with age, consistent with accelerated network development.
Associations between prenatal disadvantage and cortical network segregation
occur at the local scale and conform to a sensorimotor-association hierarchy
of cortical organization. Disadvantage-associated differences in cortical net-
work segregation are associated with language abilities at two years, such that
lower segregation is associatedwith improved language abilities. These results
shed light on associations between the early environment and trajectories of
cortical development.

The first years of life are a time of rapid brain development, with
intrinsic cortical organization becoming refined and large-scale brain
systems developing into their adultlike configuration1,2. As children
mature, intrinsic cortical networks become more segregated3,4, with
sets of brain regions displaying more densely interconnected patterns
of connectivity and large-scale systems becoming increasingly
distinct2,5–7. This refinement of cortical organization occurs in a spa-
tiotemporally patterned manner, with maturation occurring earlier in

primary sensory regions than transmodal association regions8. The
development of cortical network segregation also has implications for
cognition, with higher levels of cortical network segregation asso-
ciatedwith better cognitive abilities in adolescents and adults6,9–12. One
environmental factor that is associated with the development of cor-
tical network segregation — as well as many later life outcomes,
including physical wellbeing13,14, cognitive ability15, andmental health16

— is disadvantage. Disadvantage is a broad andmultifaceted construct
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that encompasses measures of socioeconomic status (SES) such as
income, education, and occupational prestige17,18, as well as related
health factors such as insurance and diet quality19.

Relations between disadvantage and the development of cortical
network segregation have been predominantly examined in older
children and adolescents. In youth ages 8–22 years, SES moderated
age-associated increases in cortical network segregation, such
that youth from more economically advantaged backgrounds started
with lower cortical network segregation but showed a steeper increase
in cortical network segregation during adolescence than youth from
less economically advantaged backgrounds, thus ending with higher
levels of cortical network segregation at 22 years20. Associations
between SES and cortical network segregation were also found in
youth ages 6–17 years living in low-SES neighborhoods21. Collectively,
these studies suggest that disadvantage may accelerate the pace of
cortical network segregation earlier in development, setting the stage
for associations observed in older children and adolescents22. More
broadly, associations between disadvantage and intrinsic brain orga-
nization are visible as early as the firstmonth of life23,24, but as of yet no
longitudinal studies have examined how disadvantage relates to the
development of cortical network segregation during the critical first
years of life.

The pace of early brain development has been associated with
important risk factors and behavioral outcomes. Changes in the pace
of brain development have been linked to psychiatric disorders25–27,
and accelerated pubertal development is associated with poorer
mental health during adolescence28–30. An accelerated pacemight also
result in earlier declines in brain plasticity, curtailing the development
of cortical circuitry optimally suited to the environment31,32. We have
specifically posited that associations between disadvantage and the
pace of structural brain development might be reflected in the tra-
jectory of functional brain development: more protracted structural
brain development observed in children with less exposure to dis-
advantage may give rise to a longer, slower trajectory of intrinsic
cortical network segregation22. If so, children with less exposure to
disadvantage should show more widespread connectivity and lower
cortical network segregation early in development before the rapid
development of a more segregated network architecture in later
childhood and adolescence, leading to more effective cortical net-
works in adulthood due to protracted experience-dependent influ-
ences on network segregation22. Models drawn from evolutionary
developmental frameworks also suggest that the early environment
might be related to the pace of maturation. These models posit that
early experiences tailor organisms to anticipated conditions in the
future and suggest that harsh and unpredictable environmentsmay be
associated with life-history strategies resulting in accelerated devel-
opment and early maturity, while safe and nurturing environments
may result in prolonged developmental strategies and extended
experience-dependent learning33–35. Relatedly, the recent “change of
tempo” model contends that different forms of adversity have differ-
ent relations to pace: in situations of deprivation, such as inadequate
nutrition or parental care, delaying maturation lowers children’s phy-
siological requirements, while in the context of threat or abuse
accelerated development may boost children’s ability to provide for
immediate unmet safety needs36. We recently proposed that experi-
ences that are both negative and chronic are likely to accelerate brain
development and reduceplasticity,while exposure topositive and rare
or variable experiences are most likely to decelerate brain develop-
ment and enhance plasticity22. At the same time, a recent review con-
cluded that SES may simply be associated with alterations in brain
development trajectories, not specific to pace, though the authors
noted the dearth of studies on intrinsic brain network development37.
Limited empirical work has employed the longitudinal data necessary
to model associations between disadvantage and trajectories of cor-
tical network segregation, particularly in the earliest stages of life.

In this work, we explicitly test whether early disadvantage is
associated with differences in the pace of intrinsic cortical network
segregation during the first three years of life. We capitalize on a
cohort of neonates and toddlers with longitudinal neuroimaging data
and extensively characterized early environments19. Prenatal dis-
advantage was assessed using a latent factor of socioeconomic dis-
advantage that included measures of mother’s income-to-needs ratio,
educational attainment, area deprivation index, insurance status, and
nutrition. In this cohort, prenatal disadvantage is associatedwith brain
structure and region-specific connectivity at birth38–40, however,
associations between prenatal disadvantage and whole-brain function
or longitudinal brain development have not yet been examined. Here,
we test the theory that prenatal disadvantage is associated with dif-
ferences in the pace of functional brain network development, and
that neonates and toddlers frommore advantaged backgroundsmight
showamore protracted trajectory of cortical network segregation. In a
set of pre-registered analyses, we examine the development of cortical
network segregation during the first three years of life, and the mod-
erating effects of prenatal disadvantage on trajectories of cortical
network segregation. We find that developmental increases in cortical
functional network segregation are accelerated in neonates and tod-
dlers with greater exposure to prenatal disadvantage. We take a hier-
archical approach, first examining measures of cortical network
segregation at thewhole brain resolution, then analyzing at the level of
functional brain systems, and finally at the level of individual brain
regions. Based on the hypothesis that age-dependent changes in cor-
tical plasticity might result in regional variability in associations
between prenatal disadvantage and cortical network segregation, we
find that environmental effects are constrained by a sensorimotor-
association cortical hierarchy, with the strongest associations present
in early-developing sensory systems. Finally, we show that differences
in measures of cortical network segregation at 2 years of age are
associated with language and cognitive abilities at the same age.

Results
Cortical network segregation increases from birth to 3 years
We first investigated the maturation of cortical functional network
architecture between birth and 3 years of age by examining measures
of cortical network segregation. Cortical network segregation can be
measured at different scales, ranging from the local, or regional, scale
to the global, or whole-brain, scale (Fig. 1a–c). Global segregation
captures the extent to which sets of systems in a cortical network are
distinctly partitioned, while meso-scale segregation captures the
extent to which a network can be divided into distinct subnetworks,
and local segregation quantifies clustered connectivity at the regional
or parcel level. We fit generalized additive mixed models (GAMMs) to
measures of network segregation at each of these three levels, con-
trolling for sex, amount of fMRI data included, in-scanner motion, and
average network connectivity, and including a smooth term for age,
where the smooth function (model fit for age) describes the relation-
ship between cortical network segregation and age. Across scales,
cortical network segregation increases with age. Global segregation,
calculated from system segregation, increased with age (Fig. 1,
Fs(age) = 6.26, EDF = 2.26, p =0.001, pFDR = 0.001), as did meso-scale
segregation (Fs(age) = 3.93, EDF = 1.90, p = 0.014, pFDR = 0.014), and
local segregation (Fs(age) = 43.23, EDF = 2.33, p < 0.001, pFDR < 0.001),
indicating increasing refinement of network architecture during early
development.

Next, we probed the variation in the rate of change of cortical
network segregation during the first three years of development. Here,
the first derivative of the smooth function of age represents the rate of
change in network segregation at a given developmental time point.
Analysis of the derivatives of the age trajectories showed that mea-
sures of network segregation are increasing most strongly during the
first two years of life. Global segregation increased between 0–1.93
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years, meso-scale segregation increased between 0–1.70 years, and
local segregation increased between 0–2.13 years, consistent with the
most rapid change in cortical network segregation occurring early in
development.

Prenatal disadvantage moderates trajectories of cortical net-
work segregation
As described above, theoretical models posit that environmental
influences on brain development might arise by way of effects on the
pace of brain development, such that brain development proceeds
faster in neonates and toddlerswith greater exposure to disadvantage.
To test this hypothesis, we examined associations between the early
environment and developmental increases in cortical network segre-
gation. We used GAMMs to formally model age-by-disadvantage
interactions, which estimate how relationships between prenatal dis-
advantage, our measure of early environment, and network segrega-
tion vary continuously with age. We observed significant and similar
patterns of interactions between prenatal disadvantage and age across
multiple scales, such that infants and toddlerswith greater exposure to
prenatal disadvantage show a faster increase in cortical network seg-
regation than infants and toddlers with less disadvantage, ending up
at a higher level of network segregation. This pattern held true for
global segregation (Fig. 2a, Fs(agexSES) = 6.38, p =0.002, pFDR = 0.002),

meso-scale segregation (Fig. 2b, Fs(agexSES) = 9.86, p <0.001,
pFDR = 0.001), and local segregation (Fig. 2c, Fs(agexSES) = 13.40,
p <0.001, pFDR < 0.001).

Intuitively, measures of network segregation at different scales
will be related: segregation at the global scale will encompass segre-
gation at both the meso (intermediate) scale and the local scale. Cor-
respondingly, we observe that measures of segregation are correlated
with each other (global segregation – meso-scale segregation:
t(417) = −6.51, p <0.001, r = −0.30, 95% CI = [−0.39, −0.21]; meso-scale
segregation – local segregation: t(417) = 19.11, p < 0.001, r = 0.68, 95%
CI = [0.63, 0.73]; local segregation –global segregation: t(417) = = 18.51,
p <0.001, r = −0.67, 95% CI = [−0.72, −0.62]). To determine which
effect drives the observed age-by-disadvantage associations with cor-
tical network segregation, we conducted a series of analyses examin-
ing age-by-disadvantage associationswith network segregationat each
scale, controlling for network segregation at other scales. When we
included average local segregation in themodel forglobal segregation,
age x disadvantage no longer significantly predicts global segregation
(Fs(agexSES) = 2.62, p =0.074). The same is true when we included aver-
age local segregation inourmodel formeso-scale segregation: the age-
by-disadvantage effect is no longer significant (Fs(agexSES) = 0.76,
p =0.471). The inverse is not the case— includingmeso-scale or global
segregation in our model of local segregation does not affect the
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Fig. 1 | Cortical network segregation increases with age during the first three
years of life. a System segregation is a whole-brain measure of functional network
segregation that quantifies the difference between mean within-system con-
nectivity and mean between-system connectivity as a proportion of mean within-
system connectivity. b Modularity is a measure of network segregation that esti-
mates the extent to which the nodes of a network, or in this case brain regions, can
be subdivided into modules characterized by strong, dense intramodular con-
nectivity and weak, sparse intermodular connectivity. Note that the modules are
data driven, not a priori defined as functional systems. c The clustering coefficient
is a measure of local segregation that quantifies the amount of connectivity
between a node and its neighbors. A node has a high clustering coefficient when a
high proportion of its neighbors are also strongly connected to one another. In a
weighted network, the clustering coefficient measures the strength of triangles

around a node. d Global segregation increases significantly with age. eMeso-scale
segregation increases significantly with age. f Local segregation increases sig-
nificantly with age. Individual points represent individual scans, with lines indi-
cating scans from the same participant. Analyses in (d–f) conducted using
generalized additive mixed models (GAMMs), P values are FDR-corrected across
models for changes in measures of cortical network architecture with age (Figs.
1d–f and 6b). Trajectories represent the GAMM-predicted segregation valueswith a
95% credible interval band. Bars below the x-axis depict the derivative of the fitted
smooth function of age. The filled portion of the bar indicates periods where the
magnitude of the derivative of the fitted curve is significant, with the saturation of
the fill representing the value of the derivative. Panels a–c reprinted with permis-
sion from ref. 7.
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significance of the age-by-disadvantage interaction (global segrega-
tion: Fs(agexSES) = 9.46, p < 0.001; meso-scale segregation;
Fs(agexSES) = 4.60, p =0.011). Therefore, we concluded that the funda-
mental driver of the age-by-disadvantage associations is variation in
local network topology, as indexed by our measure of local segrega-
tion. Thus, in the analyses that follow we focus specifically on local
segregation and associated variation in local network architecture.

Prenatal disadvantage associations are strongest in somato-
motor and dorsal attention systems
To characterize associations between the environment and cortical
network development in individual cortical regions, we conducted a

series of exploratory (not pre-registered) analyses. We fit region-
specific GAMM models to regional measures of local segregation,
including a smooth term for age, and allowing age to interact with
prenatal disadvantage. A total of 56% of regions showed significant
age-by-disadvantage associations with local segregation, indicating
that moderating associations between the environment and cortical
network development are widespread across the cortex
(pFDR < 0.05, Fig. 3a). To provide insight into the magnitude of
moderating associations with prenatal disadvantage across cortical
regions, we calculated the magnitude of variance explained by the
addition of the age-by-disadvantage interaction (F-statistic). The
magnitude of associations between prenatal disadvantage and
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Fig. 3 | Associations between environment and developmental increases in
local segregation are enriched in somatomotor systems. a The heterogenous
patterning of the magnitude of age-by-disadvantage associations (F-statistic) with
local segregation is shown on the cortical surface. Regions that show significant
age-by-disadvantage associations passing FDR correction at pFDR < 0.05 are out-
lined in black. b Prenatal disadvantage associations with developmental increases
in local segregation are enriched in somatomotor systems. Boxplots show the
magnitude of age-by-disadvantage associations; each point is an individual parcel
(n = 286 parcels, excluding parcels with system assignment None). Boxplots show
median and 25–75% interquartile range; whiskers extend to 1.5 * interquartile range,

points outside are shown as outliers. c The magnitude of age-by-disadvantage
associations is related to a canonical sensorimotor-to-association axis of cortical
organization. Each point is an individual parcel, the color of the points represents
the magnitude of age-by-disadvantage association. A Spearman’s correlation
between these two measures assessed by a conservative two-sided spin-based
rotation test was significant (ρ(331) = −0.33, pspin = 0.002, 95% CI = [−0.43, −0.24]).
The predicted negative linear relationship between these two measures is plotted
with a 95% confidence interval, colors of the points correspond to themagnitude of
age-by-disadvantage associations with regional local segregation.
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Fig. 2 | Associations between the early environment and developmental
increases in cortical network segregation. a Prenatal disadvantage moderates
trajectories of global cortical network segregation. b Prenatal disadvantage mod-
erates trajectories of meso-scale cortical network segregation. c Prenatal dis-
advantagemoderates trajectories of local cortical network segregation. Analyses in
(a–c) conducted using generalized additive mixed models (GAMMs). P values are
FDR-corrected across models for associations between prenatal disadvantage and
developmental changes in cortical network architecture (Figs. 2a–c and 6c). Plots

display fitted network segregation trajectories from GAMMmodels plotted by age
for participants from low prenatal disadvantage backgrounds (orange) and high
prenatal disadvantage backgrounds (blue) with a 95% credible interval band. Dis-
advantage was modeled continuously; for visualization purposes here we show
model trajectories from lowest and highest deciles of prenatal disadvantage.
Individual points represent individual scans, with lines indicating scans from the
same participant.
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developmental increases in local segregation differed across the
cortex, signifying that there is variability in the association between
the early environment and cortical network maturation across the
developing cortex.

Tobetter understand the pattern of variability in associationswith
the environment across the cortex, we asked whether moderating
associations between prenatal disadvantage and age-related increases
in local segregation might be more pronounced in specific functional
systems. The magnitude of associations between prenatal dis-
advantage and developmental increases in local segregation differed
across functional systems (H(12) = 90.413, eta²H = 0.25, p <0.001, 95%
CI = [0.19, 0.36])), with the strongest associations found in somato-
motor-hand, somatomotor-mouth, dorsal attention, visual, and fron-
toparietal systems (Fig. 3b), consistent with environmental
associations with cortical network development being most pro-
nounced in early-developing sensorimotor regions during the first
years of life. We wondered whether this was an overall principle of
associations between the early environment and cortical network
development, so we examined the correspondence between associa-
tions between prenatal disadvantage and developmental increases in
local segregation and a canonical axis of sensorimotor-association
cortical organization8. Age-by-disadvantage associations with local
segregation were negatively correlated with sensorimotor-association
axis ranks across regions (Fig. 3c, ρ(331) = -0.33, pspin = 0.002, 95% CI =
[−0.43, −0.24]), with larger environmental associations with develop-
mental increases in local segregation characterizing the S-A axis’s
sensorimotor pole, and smaller, near zero associations at the associa-
tion pole.

Associations between cognition and disadvantage-associated
differences in local segregation
Finally, we sought to understand whether associations between the
environment and the development of cortical network segregation

relate to differences in language and cognition that we observe later in
development. Disadvantage-associated differences in language
(Fig. 4a, Fs(agexSES) = 7.54, p < 0.001, pFDR < 0.001) and cognitive
(Fs(agexSES) = 12.65, p < 0.001, pFDR < 0.001) composite scores are evi-
dent from 2 years of age. Thus, we examined whether differences in
local segregation at 2 years, when we first observe diverging trajec-
tories of cortical network segregation associated with prenatal dis-
advantage, were associated with language or cognition composite
scores at the same time point. There was no statistically significant
association between average whole-cortex local segregation and cog-
nition scores (t(83) = −0.30, p =0.766, pFDR = 0.766, β = −0.03, 95%CI =
[−5.66 × 10−4, −4.18−4]). Average whole-cortex local segregation was
negatively associated with language scores (Fig. 4b, t(83) = −2.45,
p =0.017, pFDR = 0.033, β = −0.23, 95% CI = [−8.84 × 10−4, −9.12 × 10−5]),
indicating that lower levels of cortical network segregation seen in less
disadvantaged toddlers are associated with better language abilities at
2 years of age. Importantly, when examining year two language ability
and additionally controlling for prenatal disadvantage, we find that
both prenatal disadvantage (t(83) = −2.26, p =0.027, β = −0.23, 95% CI
= [−6.72,−0.42]) and average local segregation (t(83) = −2.43,β = −0.25,
p =0.017, 95% CI = [−217.38, −21.59]) are significantly associated with
language scores, indicating that cortical network segregation is inde-
pendently associated with language ability at 2 years, above and
beyond the association between early disadvantage and later language
abilities.

Weexaminedwhether associations between local segregationand
language abilities were driven by the receptive or expressive language
subscales of the language composite and found that local segregation
was negatively associated with both expressive (Fig. 4c, t(83) = −2.19,
β = −0.21, p =0.032, 95% CI = [−4.52 × 10−3, −2.13 × 10−4]) and receptive
language abilities (t(83) = −2.18, β = −0.21, p =0.032, 95% CI =
[−4.34 × 10−3, −1.97 × 10−4]). When controlling for prenatal dis-
advantage, local segregation was associated with receptive language
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Fig. 4 | Associations between local cortical network segregation and language
abilities at age 2 years. a Associations between prenatal disadvantage and tra-
jectories of age-standardized Bayley language composite scores. Disadvantage was
modeled continuously, for visualization purposes here we showmodel trajectories
from lowest and highest deciles of prenatal disadvantage with a 95% credible
interval band. Individual points represent scores from individual participants, with
lines indicating data collected from the same participant. b Local segregation at 2
years of agewasnegatively associatedwith scores onboth expressive and receptive

language subscales. Analyses conducted using linear multiple regression models.
Scores on the receptive and expressive language subscales had different ranges,
with children scoring slightly higher on the expressive language scale (x-axis). cThe
directionality of this association is such that higher levels of local segregation,
which are found in toddlers with greater exposure to prenatal disadvantage, are
associated with worse performance on measures of language ability. Trajectories
represent the GAMM-predicted segregation values with a 95% credible
interval band.
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(t(83) = −2.33, β = −0.25, p = 0.022, 95% CI = [−41.75, −3.26]), but there
was no statistically significant association with expressive language
(t(83) = −1.96, β = −0.21, p =0.053, 95% CI = [−36.16, 0.24]).

While our sample size was reduced at the 3-year timepoint due to
COVID-related limitations in data collection (n = 90 at year two, n = 66
at year three), we additionally examined whether differences in local
segregation at age 3 years were associated with language or cognition
composite scores. We found a similar pattern of effect sizes at the
3-year timepoint, with average local segregation negatively associated
with language scores (t(83) = −2.84, β = −0.33, p = 0.006, pFDR = 0.012,
95% CI = [−0.001, −1.84 × 10−4]), but not cognitive scores (t(83) = −1.67,
β = −0.20, p =0.100, pFDR = 0.100, 95% CI = [−0.001, 0.0001]). Local
segregation was negatively associated with both receptive
(t(83) = −2.45, β = −0.29, p =0.015, 95% CI = [−5.34 × 10−3, −5.90 × 10−4])
and expressive language abilities (t(83) = −2.94, β = −0.35, p = 0.005,
95% CI = [−6.32 × 10−3, −1.20 × 10−3]). When controlling for prenatal
disadvantage at the 3-year timepoint, we find similar effect sizes for
associations between local segregation and language scores as at age 2
years, but neither associations with the language composite
(t(83) = −1.50, β = −0.19, p =0.138, 95% CI = [−235.92, 33.31]), or the
expressive (t(83) = −1.38, β = −0.17, p =0.173, 95% CI = [−39.37, 7.21]) or
receptive (t(83) = −1.46, β = −0.19, p =0.148, 95% CI = [−44.15, 6.83])
language scales are significant (Fig. 4c).

Disadvantage associations with developmental increases in
cortical network segregation are robust to methodological
variation
To ensure that the environmental associations with changes in cortical
network segregation observed were robust to methodological varia-
tion and potential confounds, we performed five sensitivity analyses.
We first conducted one of our pre-registered follow-up analyses, and
evaluated whether associations between prenatal disadvantage and
developmental increases in cortical network segregation were
accounted forby analternatemeasureof the early environment. In this
analysis, GAMMswere rerun with a composite SESmeasure of income-
to-needs ratio (INR) and maternal education at birth rather than the
prenatal disadvantage factor score (i.e., excluding neighborhood dis-
advantage, diet, and insurance status). When using this composite
measure of SES, global segregation (Fs(agexSES) = 3.74, p = 0.024,
pFDR = 0.033), meso-scale segregation (Fs(agexSES) = 7.78, p <0.001,

pFDR < 0.001), and local segregation (Fig. 5a, Fs(agexSES) = 11.61,
p <0.001, pFDR < 0.001) all show significant and similar patterns of
interactions, such that infants and toddlers with greater exposure to
prenatal disadvantage show a faster increase in cortical network seg-
regation than infants and toddlers with less disadvantage. The mag-
nitude of SES associations with developmental increases in local
segregation continued to vary across the cortex (Fig. 5b), with the
strongest associations found in somatomotor-hand, visual, dorsal
attention, and somatomotor-mouth systems (Fig. 5c).

We also evaluated whether associations between prenatal dis-
advantage and developmental increases in cortical network segrega-
tionwere accounted for by differences in sample composition over the
study period, alterations in functional network architecture associated
with head motion, changes in disadvantage over the study period,
longitudinal modeling choices, or outliers. In each sensitivity analysis,
associations between the environment anddevelopmental increases in
cortical network segregation closely mirrored those observed in the
main analysis, with neonates and toddlers with greater exposure to
prenatal disadvantage showing a steeper increase in cortical functional
network segregation than those with less exposure to disadvantage,
and environmental associations with developmental increases in cor-
tical network segregation enriched in sensorimotor systems (see
Supplementary Note 1 and Figs. 1–5). We additionally examined whe-
ther there were associations between prenatal psychosocial stress
independent of prenatal disadvantage and developmental changes in
cortical network segregation, however, no significant associations
were found (see Supplementary Note 1 and Fig. 6). These analyses
verify that findings concerning the nature and patterning of environ-
mental associations with developmental changes in cortical functional
network segregation are robust to methodological variation.

No statistically significant environmental associations with age-
associated changes in network integration
The previous analyses focused on developmental trajectories of net-
work segregation, but another property of cortical network archi-
tecture that changes markedly as children develop is cortical network
integration. Cortical network integration refers to the extent to which
information can be integrated acrossmultiple brain systems, and high
levels of both network integration and network segregation together
constitute the unique property of small-worldness found in adult brain
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Fig. 5 | Associations between a compositemeasure of SES (maternal education
and income-to-needs ratio) and developmental increases in cortical network
segregation. a Prenatal disadvantage moderates trajectories of local cortical net-
work segregation. Analyses conducted using generalized additive mixed models
(GAMMs). P values are FDR-corrected across models for associations between
prenatal SES and developmental changes in cortical network architecture. Trajec-
tories represent the GAMM-predicted segregation values with a 95% credible
interval band. b The heterogenous patterning of the magnitude of age-by-

disadvantage associations (F-statistic) with local segregation is shown on the cor-
tical surface. Regions that show significant age-by-disadvantage associations pas-
sing FDR correction at pFDR < 0.05 are outlined in black. c SES associations with
developmental increases in local segregation are enriched in sensorimotor sys-
tems. Boxplots show themagnitude of age-by-disadvantage effects; eachpoint is an
individual parcel (n = 286parcels, excluding parcelswith systemassignmentNone).
Boxplots show median and 25–75% interquartile range; whiskers extend to 1.5 *
interquartile range, points outside are shown as outliers.
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networks41. Thus, we also pre-registered examining developmental
changes in and age-by-disadvantage associationswith cortical network
integration, as assessed by the average whole-brain participation
coefficient. The participation coefficient is a measure of network
integration that quantifies the diversity of the connections of a node
across systems42, andhasbeen linked inolder children and adolescents
to developmental changes in network segregation7,43,44 (Fig. 6a).

As previously, we fit a GAMM to average whole-cortex network
integration with a smooth term for age, where the smooth function
(model fit for age) describes the relationship between network inte-
gration and age. Average network integration increased with age
(Fig. 6b, Fs(age) = 14.11, EDF = 1.68, p <0.001, pFDR < 0.001), with the
period of significant change occurring from birth to 2.27 years, con-
sistent with themost rapid change occurring early in development.We
found no statistically significant association between prenatal dis-
advantage and developmental changes in network integration (Fig. 6c,
Fs(agexSES) = 1.71, p = 0.182, pFDR = 0.182) in these primary analyses nor in
supplemental analyses examining the alternative composite measure
of disadvantage described above (Fs(agexSES) = 1.53, p = 0.118,
pFDR = 0.118).

Discussion
The first years of life are a critical window during which the develop-
ment of the cortex proceeds in a heterochronousmanner: sensory and
motor cortices mature earlier than association cortices, and hier-
archical refinement of plasticity-regulating features produces declines
in the malleability of the cortex to environmental input, suggesting
that the early environment may have a disproportionate effect on the
pace of cortical development. In the current work, we show that the
development of cortical brain networks during the first three years of
life is strongly associated with features of the early environment,
suggesting these influences may play a key role in shaping this tra-
jectory. Specifically, we observe that developmental increases in cor-
tical functional network segregation are accelerated in neonates
and toddlers with greater exposure to prenatal disadvantage.

Environmental associations with the development of cortical network
segregation conform to a sensorimotor-association hierarchy of
cortical organization, with the strongest associations visible in early-
developing somatosensory systems that have high plasticity during
this period. Differences in cortical functional network segregation
associated with the early environment are also associated with
language abilities at age 2 years when controlling for prenatal
disadvantage.

We find that being born into a more advantaged environment is
associated with a more protracted trajectory of cortical functional
network development in toddlerhood and early childhood, and our
robustness analyses suggest that these effects are primarily driven by
variation in socioeconomic factors. Prior work has found that differ-
ences in intrinsic functional connectivity associated with SES are evi-
dent at 6months of age24. Lower levels of cortical network segregation
in children from more advantaged backgrounds at 3 years of age are
also consistent with our earlier work in adolescents, where children
from higher-SES backgrounds had lower levels of cortical network
segregation at age 8 years20. This underscores thepossibility that being
born into a more advantaged household may be associated with more
protracted cortical functional network development throughout
childhood,with children frommore advantagedbackgrounds showing
more widespread connectivity and thus lower segregation early in
development before the rapid development of a more segregated
network architecture occurring during adolescence and into
adulthood22. Experiences associated with disadvantage may result in
earlier declines in plasticity in a heterogenous and spatially patterned
manner across the cortex. For example, one study using a putative
measure of plasticity to probe howdevelopmental variation in intrinsic
cortical activity is associated with the environment finds that lower
neighborhood SES is associated with reduced intrinsic activity, sug-
gestive of decreased plasticity, in association cortex during
adolescence45. Earlier reductions in plasticity associated with dis-
advantagemight thereby result in decreased synaptic proliferation46,47

or alterations in the development of inhibitory interneurons48,49, as has
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Fig. 6 | Null evidence for environmental associations with age-associated
changes in network integration. a The participation coefficient is a measure of
network integration that quantifies the diversity of the connections of a node. A
node has a high participation coefficient when it is evenly connected to many
different systems. Reprinted with permission from ref. 7. b Network integration
increases significantly with age. Analyses conducted using generalized additive
mixed models (GAMMs), P values are FDR-corrected across models for changes in
measures of cortical network architecture with age (Figs. 1d–f and 6b). Individual
points represent individual scans, with lines indicating scans from the same

participant. Barsbelowthe x-axisdepict thederivative of thefitted smooth function
of age. The filled portion of the bar indicates periods where the magnitude of the
derivative is significant, with the saturation of the fill representing the value of the
derivative. c Prenatal disadvantage does not significantly moderate age-related
increases in network integration. P values are FDR-corrected across models for
associations betweenprenatal disadvantage and developmental changes in cortical
network architecture (Figs. 2a–c and 6c). Trajectories represent the GAMM-
predicted segregation values with a 95% credible interval band.
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been found in animalmodels of early environmental stress, resulting in
decreased range for optimal synaptic pruning andwiringof segregated
cortical networks. In our cohort, neonates from more advantaged
backgrounds show increased mean diffusivity, a measure of white
matter microstructure, at birth compared to neonates from less
advantaged backgrounds50. As this measure of white matter micro-
structure typically decreases with age51, we speculate that this pattern
could be indicative of more protracted white matter development in
neonates from more advantaged backgrounds; accelerated develop-
ment associated with higher advantage might be observable in both
intrinsic cortical network segregation and also the white matter con-
nectivity that supports intrinsic brain activity, questions that can be
explored in future work.

Wefind that alterations in cortical network segregation associated
with prenatal disadvantage are driven fundamentally by effects at the
local scale. Associations between cortical network segregation and SES
in older children and adolescents are also driven by alterations in local
network architecture20. In youth and adolescents, associations
between household SES and local segregation are evident in the pre-
frontal cortex specifically among youth living in low-SES neighbor-
hoods, more evidence for environmental influences at the local scale
during development21. However, adulthood SES is associated with
aging-associateddeclines in global segregation52,53, thus onepossibility
is that associations between disadvantage and cortical network seg-
regation follow a progression from local to global across the lifespan.
However, the authors did not examine local ormeso-scalemeasures of
segregation, so this possibility has not yet been directly addressed;
more work is needed to clarify the scale of environmental effects on
measures of cortical network segregation.

We find that environmental associations with the development of
cortical functional network segregation conform to a sensorimotor-
association hierarchy of cortical organization, with the strongest
associations with early environment visible in early-developing soma-
tosensory systems, specifically, somatomotor, dorsal attention, and
visual systems, with the frontoparietal system also showing strong
environmental associations.While the dorsal attention systemmaynot
canonically be considered an early-developing system, dorsal atten-
tion regionsmature dramatically between birth and 2 years of age5, are
structurally and functionally connected to visual cortex54,55, and fall at
the unimodal end of the primary gradient of macroscale cortical
organization56. Environmental associations with cortical network seg-
regation aligning with the sensorimotor-association hierarchy is con-
sistent with a model where age-dependent changes in cortical
plasticity allow environment effects to exert differential inputs on the
human brain, depending on developmental timing, such that early
plasticity in primary sensory regions allows for the largest environ-
mental associations with intrinsic cortical activity in these regions
during the first years of life.

Accumulating evidence from large-scale studies of older children
and adolescents also suggests another possibility: environmental
effects may be transduced through lower-level sensory systems, such
that regardless of developmental stage, the strongest associations
between the environment and intrinsic cortical activity are visible in
somatosensory systems57. Acrossmultiple indicators of household and
neighborhood disadvantage, strong associations between dis-
advantage and measures of functional connectivity are consistently
found in somatomotor systems in children ages 9–11 years of age58–61.
In youth and adolescents ages 8–21 years, associations between SES
and age-associated increases in cortical network segregation are also
evident in somatomotor cortex20. It is also possible that due to the low
level of social mobility in the United States population from which
these studies were drawn62,63, socioeconomic position later in devel-
opment measured in these studies is nearly identical to a participant’s
socioeconomic position at birth, and thus the disadvantage associa-
tions measured are simply long-lasting instantiations of the effects of

the birth environment on early-developing functional brain systems.
Alternatively, brain areas at the sensorimotor pole of the S-A axis show
the lowest variability between individuals64,65, and thusmay enable the
detectionof effects above andbeyond interindividual variability.While
environmental associations weremost prominent in the somatomotor
system, we also observe associations between the early environment
and cortical network development in the frontoparietal system.
Interestingly, the environmental associations observed in the fronto-
parietal system are driven by strong age-by-disadvantage interaction
effects in regions in the intraparietal sulcus and middle temporal
gyrus, rather than in lateral prefrontal regions, suggestive of alignment
with an anterior-to-posterior developmental axis.

We find that disadvantage-associated differences in cortical
functional network segregation are also associated with language
abilities at age 2 years, suggesting that environmental associations
with the development of cortical network segregation might underlie
disadvantage-associated differences in language abilities observed
later in development. The association between cortical network seg-
regation and language abilities holds even when controlling for pre-
natal disadvantage, suggesting that cortical network segregation is
associated with language ability independent of the well-documented
association between early disadvantage and later language ability.
While to our knowledge no other studies have specifically examined
associations between cortical network segregation and language
during early development, one study of toddlers and children
ages 0–6 years found that increased between-system connectivity was
associated with better language performance66, and infants with more
language interactions had lower within-system connectivity in the
language system67. Both findings potentially indicate that better lan-
guage performance and more language exposure may be associated
with lower levels of network segregation. The directionality of asso-
ciations between cortical network segregation and language ability we
find in toddlers is broadly reversed compared with associations found
in adolescents and adults, where higher levels of cortical network
segregation have been found to be advantageous for language and
cognition9,11,12. During late childhood, children from higher SES back-
grounds show lower levels of cortical network segregation, but by
early adulthood, higher SES is associated with higher cortical network
segregation20, suggesting that initially low cortical network segrega-
tionmight bebeneficial for thedevelopmentof cognitive and language
abilities associated with higher SES (lower disadvantage)15. However,
the directionality of associations between cortical network segrega-
tion and behavior in adults also varies based on life stage and beha-
vioral domain examined6,10,68, underscoring the importance of
understanding developmental trajectories and domain specificity
when interpreting the directionality of associations.

There are several possible mechanisms by which variation in the
early environment could signal to alter the tempo of brain develop-
ment. One commonly proposedmechanism is deprivation, where lack
of expected inputs at a developmental stage results in earlier pruning
of synapses and reduced synaptic connectivity69,70. Recently, we put
forth a model in which the valence and variability of experiences
interact to predict maturational pace, such that experiences that are
chronic and negative encourage faster maturation and restrict plasti-
city, and experiences that are novel and positive delay maturational
processes and enhance plasticity22. Growing up in a more advantaged
environment is associated with more cognitively enriching, positively
valenced experiences71. This environment—the opposite of
deprivation69 — may delay maturational processes and prolong plas-
ticity: animals exposed to enriched environments as juveniles display
enhanced markers of synaptic and extracellular markers of
plasticity72,73, and the release of neurotransmitters associated with
positive experiences increases cortical plasticity and facilitates
remodeling74–76. Conversely, negative experiences such as stress
might accelerate brain development through several different
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mechanisms77–79; higher disadvantage is consistently associated with
higher stress80. Although in this work we find that prenatal socio-
economic disadvantage has stronger effects on brain development
than does psychosocial stress, our measurement of stress was limited;
stress may still be one of several mechanisms by which prenatal dis-
advantage results in changes in the tempo of brain development.

The variability of experiences might also interact with the valence
of experiences to predictmaturational pace. Repeated exposure to the
same experience, signaling to the brain to optimize for the continued
occurrence of this experience in the future, can accelerate maturation
of specific circuitry81–83. This aligns with theories of stress effects on
maturational pace, where repeated stress-detection and stress-
regulation leads to faster maturation of the amygdala and medial
prefrontal cortex77,84. In contrast, rare or highly variable experiences
could signal that the environment is still changing, and that plasticity is
beneficial85. Computational evolutionary models suggest that indivi-
duals who have more variable experiences lose plasticity later in
development than those with more consistent experiences86–88, and
some evidence from the study of critical periods suggests that periods
of plasticity are prolonged when environmental statistics are variable
or unreliable89,90. Further work testing these models and delineating
which dimensions are most important contributors to the observed
effects of the early environment on the pace of brain development will
be key to understanding themechanismsbywhich environmental cues
give rise to changes in maturational tempo.

Several limitations and possible direct extensions of this work
should be highlighted. First, it is important to acknowledge that
socioeconomic disadvantage is but one form of disadvantage, and
other forms not examined here, such as discrimination and systemic
racism, may also be associated with brain development91,92. Different
environmental exposures associated with disadvantage — such as
stress, cognitive stimulation, and unpredictability—are associated with
brain development differently70,77,93,94, and differentiating the relative
contributions of these associated exposures to the effects that we
observe is a critical and urgent future direction. Second, due to the
impact of the COVID-19 pandemic, sample sizes at the toddler time-
points were smaller than originally intended, and thus our analyses of
behavior at the 2- and 3-year time points should be considered
exploratory; we share them as grounds for future work on the topic.
Third, we employed a common adult parcellation and set of systems to
characterize cortical network development. It is possible that differ-
ences in the degree to which a neonate’s fine-grained cortical topo-
graphy resembles that of an adultmight influencemeasures of cortical
network segregation; the continued development of neonatal
parcellations95,96 will enable future work to use infant-specific parcel-
lations and systems to characterize brain development. Fourth, here
we focus specifically on changes in intrinsic cortical networks during
postnatal development, but environmental factors also impact pre-
natal brain development; future work should investigate mechanisms
of associations between the prenatal environment and cortical net-
works. Finally, while we observed associations between cortical
intrinsic network development and language during toddlerhood,
accelerated cortical network development may also have implications
for the development of cognition and psychopathology that only
become evident later in childhood. Longitudinal data from birth to
middle childhood on both brain and behavioral development will be
necessary to answer this question, data which will fortunately soon be
available in the HEALthy Brain and Child Development (HBCD) study97.

The present study demonstrates that the development of intrinsic
cortical brain networks during the first three years of life is associated
with features of the early environment. The observed effects are con-
sistent with an interpretation of accelerated cortical functional net-
work development during the first years of life in neonates and
toddlers exposed to greater prenatal disadvantage. Insight into the
timing and directionality of environmental associations with

trajectories of cortical brain development are crucial elements for
understanding the optimal timing for interventions, to prevent cas-
cading consequences of early maturation. Our results emphasize the
importanceof expanding and enhancing policies that provide financial
support to parents of young children98–101.

Methods
Participants
Neonates were recruited as a part of the Early Life Adversity, Biological
Embedding, and Risk for Developmental Precursors of Mental Health
Disorders (eLABE) cohort19, whose participants were recruited under
the parent March of Dimes study102. Pregnant mothers were recruited
and enrolled between the second and third trimesters. Recruitment
oversampled mother-infant pairs facing adversity (e.g., poverty and
stress). Inclusion criteria for the study included speaking English,
mother age 18 years or older, and singleton birth (see Supplementary
Table 1 for detailed participant information). Women with alcohol or
other substance abuse were excluded. Anatomic MR images were
reviewed by a neuroradiologist (J.S.S.) and pediatric neurologist
(C.D.S.). Subjects were excluded from the current analyses if they had
evidence of brain injury or were born preterm (<37 weeks gestational
age, GA). Additional exclusion criteria included pregnancy complica-
tions (but not gestational diabetes or hypertension) and known fetal
abnormalities including intrauterine growth restriction. This studywas
approved by theHumanStudies Committees atWashingtonUniversity
in St. Louis and informed consent was obtained from a parent of all
participants. Participants were compensated $100–$300 per study
visit at each timepoint: participants were compensated $100 for scans
at the neonatal timepoint and $125 for scans at 2-year and 3-year
timepoints, $100 for completionof assessments at each timepoint, and
$50–100 for completion of survey measures at each timepoint.

At each timepoint, all participants with usable functional mag-
netic resonance imaging (fMRI) and demographic data were included.
No statistical method was used to predetermine sample size. At the
neonatal timepoint, 385 neonates were scanned, and participants were
excluded from all timepoints for the following reasons: <37 weeks GA
at birth (n = 54), brain injury (n = 17), neonatal intensive care unit stay
for >7 days, required intubation or chest tube, antibiotics for >3 days,
cardiac disease or metabolic disorder (n = 36), birthweight <2000 g
(n = 1), and IRB exclusion (n = 1). There were 306 participants who did
not meet any of these exclusion criteria (note that some met multiple
exclusion criteria).

Of these participants, 261 participants (age range = 38–45 post-
menstrual weeks, M = 41.3 months, 54% male) were included in the
current analyses at the neonatal timepoint. Neonates were excluded
for no usable T2 for registration (n = 27), no functional magnetic
resonance imaging (fMRI) data collected or <10min of usable fMRI
data after motion censoring (n = 12), or visible artifacts in FC
data (n = 7).

At the 2-year timepoint, 202 participants were scanned, of which
162 were healthy full-term neonates not subject to the exclusions
above. Participants were additionally excluded for no usable T1 for
registration (n = 68) or no functional magnetic resonance imaging
(fMRI) data collected (n = 2), resulting in 92 participants
(range = 1.91–2.61 years,M = 2.11 years, 59%male) included at year two.
At the 3-year timepoint, 132 participants were scanned, of which 98
were healthy full-term neonates. Participants were additionally exclu-
ded for no usable T1 for registration (n = 31) or <5min of usable fMRI
data after motion censoring (n = 1) resulting in 66 participants inclu-
ded from year 3 (range = 2.92–3.97 years,M = 3.22 years, 64% male).

Participants who returned for data collection at year twowere not
significantly different than participants from whom we were not able
to collect year two data in gestational age, birthweight, prenatal dis-
advantage, psychosocial stress, sex, neighborhood deprivation, or
income-to-needs ratio (two-sided t-test, all p’s > 0.05). Participants
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who returned for data collection at year three were significantly more
advantaged (lower prenatal disadvantage, t(358) = −2.42, p = 0.016)
than participants from whom we were not able to collect year three
data; there were no other significant differences between
groups (p’s > 0.05).

MRI data acquisition
Imaging was performed without sedatingmedications at all three time
points using a 3 TPrisma scanner (SiemensCorp.) and64-channel head
coil. During the scan session, structural images were collected: a T2-
weighted image at the neonatal timepoint (sagittal, 208 slices, 0.8-mm
isotropic resolution, echo time, TE = 563ms, repetition time, TR =
3200ms) and a T1-weighted image at the 2- and 3-year timepoints
(sagittal, 208 slices, 0.8-mm isotropic resolution, repetition time=
2400ms, echo time = 2.22ms). Resting-state functional imaging data
(fMRI) were collected using a blood oxygen level–dependent (BOLD)
gradient-recalled echo-planar multiband sequence (72 slices, 2.0-mm
isotropic resolution, echo time = 37ms, repetition time= 800ms,
multiband factor = 8, 420 volumes). Spin-echo field maps were
obtained (at least 1 anterior-posterior and 1 posterior-anterior) during
each session with the same parameters. Between 2 and 9 5.6min fMRI
BOLD scans were acquired, depending on how the child tolerated the
scan (range = 7.5–44.8min). Framewise Integrated Real-time MRI
Monitoring (FIRMM103,104) was used during scanning to monitor real
time participant movement.

MRI data preprocessing
fMRI preprocessing included correction of intensity differences attri-
butable to interleaved acquisition, bias field correction, intensity nor-
malization of each run to a whole-brain mode value of 1,000, linear
realignment within and across runs to compensate for rigid body
motion, and linear registration of BOLD images to the adult Talairach
isotropic atlas. Neonates were registered: BOLD to individual T2 to
group-average T2 from this cohort to 711-2 N Talairach atlas. Toddlers
were registered: BOLD to individual T1 to group-average T1 from this
cohort to 711-2 N Talairach atlas. Field distortion correction was per-
formed, using the FSL 6.0.4 TOPUP toolbox (http://fsl.fmrib.ox.ac.uk/
fsl/fslwiki/TOPUP). Functions from the 4dfp analysis suite v0.1.0 were
used for preprocessing (https://4dfp.readthedocs.io/en/latest/). Fol-
lowing initial processing, frames contaminated by motion were cen-
sored as described below. A surface-based neonatal parcellation
approach, Melbourne Children’s Regional Brain Atlases (MCRIB), was
used to generate surfaces for eachneonatal subject and the volumetric
resting-state BOLD timeseries were mapped to subject-specific sur-
faces using established procedures adapted from the Human Con-
nectome Project as implemented in Connectome Workbench 1.2.3.
Freesurfer 7.2 was used to generate surfaces for each toddler subject,
and the volumetric resting-state BOLD timeseries were mapped to
subject-specific surfaces using identical procedures adapted from the
Human Connectome Project as implemented in Connectome
Workbench 1.2.3.

After mapping to the surface, each dataset underwent resting-
state fMRI preprocessing. Data were processed with the following
steps: (i) nuisance regression including white matter, ventricles, extra-
axial cerebrospinal fluid, and whole brain, as well as 24-parameter
Friston expansion regressors derived from headmotion, and (ii) band-
pass filtering (0.005Hz <f <0.1 Hz) with demean and detrend within-
run, interpolating censored frames within run.

Neonatal fMRI data were censored at FD >0.25mm, with the
additional restriction that only epochs of at least 3 consecutive frames
FD <0.25mm were included. This FD threshold was selected after
taking into account the smaller radius of infants’ heads105 and review-
ing motion traces in several subjects106,107; respiratory filtering is
unsuitable for neonatal fMRI data due to the higher respiratory rate of
neonates. Toddler (2-year and 3-year) fMRI data were censored based

on a threshold of FDfilt > 0.2mm, using a filtered framewise displace-
ment trace corrected for the effect of respiration (FIRMM filtered
FD108,109), with the additional restriction that only epochs of at least 3
consecutive frames FD <0.2mm were included.

In order to be included in the study, a minimum of 5min (375
frames) of data retained after censoring was required, though 99% of
scans across timepoints had >10min of data retained after censoring
(M = 17.4min (1308 frames), range = 7.1–41.9min). To account for any
potential patterns of FC related to head motion or amount of data
included in analyses, we calculated (i) the number of frames retained
after censoring and (ii) the average FD across uncensored frames for
each individual subject and included these values as subject-level
covariates in all analyses.We additionally calculated (iii) the average FD
across all frames for each individual subject, used as subject-level
covariates in sensitivity analyses. Neither average uncensored FD nor
total number of frames retained after censoring were related to pre-
natal disadvantage (uncensored FD: r =0.014, p =0.77; total number of
frames: r =0.06, p =0.22).

fMRI data were aligned across subjects into the fs_LR32k surface
space using spherical registration. Timecourses for surface data were
smoothed with geodesic 2D Gaussian kernels (σ = 2.25mm).

Network analysis
Residual mean BOLD time series from each participant at each time-
point were extracted from a 333-region cortical parcellation110. The
functional connectivity matrix was represented as a graph or
network111. Network edges between nodes (brain regions) were repre-
sented by the Fisher z-transformed Pearson correlation between time
courses from pairs of surface regions112. Because there is not yet con-
sensus on the spatial layout of neonatal functional networks105,113–118, we
assigned nodes to 13 large-scale functional systems (also sometimes
called “networks”) based on the definitions of functional systems
derived in healthy adults110.

Across the cortex, we calculated three summary measures of
functional network segregation, which quantify the extent to which
groups or subnetworks of nodes, or brain regions, display densely
interconnected patterns of connectivity (see Fig. 1). System segrega-
tion, our measure of global segregation, quantifies the difference
between mean within-system connectivity and mean between-system
connectivity as a proportion of mean within-system connectivity4,9,
given an a priori partition of nodes into systems, in this case the 13
large-scale functional systems110. Modularity, quantified by the mod-
ularity quality index (Q), is a measure of meso-scale network segre-
gation that estimates the extent to which the nodes of a network can
be subdivided into groups or modules characterized by strong, dense
intramodular connectivity and weak, sparse intermodular con-
nectivity. Local segregation was measured using the clustering coef-
ficient, which quantifies the amount of connectivity between a node
and its strongest neighbors119–122. A node has a high clustering coeffi-
cientwhen ahighproportionof its neighborsare also strongneighbors
of eachother. Local segregation at thewhole-brain level was calculated
as the average of the clustering coefficient across all cortical regions. In
later analyses of regional specificity, we examined the clustering
coefficient of individual nodes or regions. We specifically chose mea-
sures of functional network architecture that were suitable for
weighted, signed networks, when possible.

We also estimated a measure of functional network integration,
the participation coefficient, which quantifies the diversity of a node’s
connections across systems42,123. See Supplementary Methods for fur-
ther details of network analysis and equations formeasures of network
segregation and integration.

Demographics and socioeconomic status
Mothers completed surveys in each trimester, at delivery, and during
follow up visits every 4 months to assess social background, mental
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health, and life experiences. Child race and ethnicity were obtained
from the child’s birth certificate, options included White, Black or
African American, American Indian or Alaska Native, Asian Indian,
Chinese, Filipino, Japanese, Korean, Vietnamese, Other Asian, Native
Hawaiian, Guamanian or Chamorro, Samoan, Other Pacific Islander, or
Other for race; ethnicity was assessed by whether the child was iden-
tified as Hispanic. Sex assigned at birth was obtained from child birth
certificates. Prenatal disadvantagewas assessed using a latent factor of
socioeconomicdisadvantage froma confirmatory factor analysis using
MPlus software, which included measures of mother’s income-to-
needs ratio, educational attainment, area deprivation index, insurance
status, and nutrition19. Maternal self-reported highest level of educa-
tion and health insurance status were collected in trimester 1. Mothers
reported household income and persons in the home to calculate INR
in each trimester124. Home addresses were collected at delivery to
obtain Area Deprivation Index percentiles; the area deprivation index
is a geocoding measure that ranks neighborhoods by socioeconomic
disadvantage compared with the national average based on census
block data, including factors for the domains of income, education,
employment, and housing quality125. Prior work in the eLABE cohort
has shown that, while 26% of mothers changed addresses during
pregnancy, there was no significant change in block groups during
pregnancy126, and we similarly find that there was not significant social
mobility (change in ADI) during the study time period in our sample
(Fs(child age) = 1.44,p =0.19).Maternal nutritionwas assessed in the third
trimester or at delivery using the Healthy Eating Index, a validated
dietary assessment tool available through the National Institutes of
Health used to measure diet quality based on U.S. Dietary Guidelines
for Americans127. Higher scores on the prenatal disadvantage factor are
indicative of more disadvantage.

Data on demographic and socioeconomic indicators (education,
household income, insurance status, ADI) were also collected during
follow-up visits. Prenatal disadvantage was highly correlated with dis-
advantage at years 1–3 (r’s = 0.92–0.93, p’s < 1 × 10−16). While we focus
our analyses on the disadvantage factor assessed at birth, supple-
mentary analyses investigate the contribution of disadvantage at later
time points. Additionally, we examine the effect of using a composite
variable of parental education and income to assess SES, rather than
the disadvantage factor, for consistency with prior literature, in our
sensitivity analyses.

Cognitive and language outcomes
The Bayley Scales of Infant and Toddler Development-Third Edition
(Bayley-III) was used to assess cognitive, language, andmotor abilities at
both 2 and 3 years of age. Based on prior evidence that network segre-
gation is associated with higher-order cognitive abilities in adults9, we
specifically examined age-standardized cognitive and language com-
posite scores (M= 100, SD= 15); the language composite consists of the
Receptive Language and Expressive Language subscales. At the 2-year
timepoint, n=90 children had usable Bayley assessments and fMRI data
(2 children with imaging data were excluded for low-quality or missing
Bayley). At the three-year timepoint, n =66 children had usable Bayley
assessments and fMRI data (no children with imaging data were exclu-
ded for low-quality or missing Bayley).

Data analysis
Our analyses relating age and prenatal disadvantage to cortical func-
tional network architecture were pre-registered at https://aspredicted.
org/eb5pd.pdf. Any deviations from the original plan or additional
exploratory analyses have been fully described below.

Statistical models
To flexibly model longitudinal linear and non-linear relationships
between cortical functional network segregation and age, we imple-
mented GAMMs (generalized additive mixed models) using the mgcv

package in R128. GAMMswerefitwith functionalnetwork segregation as
the dependent variable, age as a smooth term, a random effect of
participant, and biological sex assigned at birth, in-scanner motion
(average framewise displacement), number of frames of fMRI retained
after censoring, and average functional network weight (average net-
work connectivity) as linear covariates. Each GAMM estimates a
smooth function (the model age fit, generated from a linear combi-
nation of weighted basis functions) that describes the relationship
between functional network segregation and age, thus modeling the
developmental trajectory of network segregation. Four basis functions
were specified as the maximum flexibility afforded to age splines in all
models (k = 4). Models were fit using thin plate regression splines as
the smooth term basis set and the restricted maximal likelihood
approach for smoothing parameter selection. Average network weight
was included to control for global differences in connectivity
strength129–131. Random effects included a random intercept per parti-
cipant. To test for windows of significant change across the age range,
we calculated the first derivative of the smooth function of age from
the GAMM model using finite differences, and then generated a
simultaneous 95% confidence interval of the derivative132 using the
gratia package in R. The first derivative of this smooth function
represents the rate of change in network segregation at a given
developmental time point. Intervals of significant age-related change
were identified as areas where the simultaneous confidence interval of
the derivative does not include zero. Multiple comparisons correction
was applied across models of developmental changes in cortical
functional network segregation using FDR correction133.

To examine associations between prenatal disadvantage and age-
related increases in functional network segregation, we allowed the
smoothed age effect in the GAMM to interact with prenatal dis-
advantage; predictors thus included an age-by-disadvantage interac-
tion term, a smooth term for age, and covariates including sex, in-
scanner motion, number of frames of fMRI, and average network
weight. We compared two interaction models: a simpler varying
coefficient (linear-nonlinear) model that allows the smooth term for
age to vary as a linear function of prenatal disadvantage, and a more
complex non-linear interaction (bivariate smooth) model that allows
the smooth term for age to vary as a fully non-linear function of pre-
natal disadvantage. We compared models using Bayesian information
criterion (BIC), and evaluated the significance of the interaction term
for the selected model. All models were best fit using the simpler
varying coefficient (linear-nonlinear) model that allows the linear
association between prenatal disadvantage and network segregation
to vary as a smooth function of age. Interaction p-values were con-
firmed using a parametric bootstrap likelihood ratio test (pbkrtest
package in R) for significance estimation in the mixed model context.
Multiple comparisons correction was applied acrossmodels of age-by-
disadvantage associations with cortical functional network segrega-
tion using FDR correction. While prenatal disadvantage was modeled
continuously, for visualization purposes in plots we show trajectories
from the highest and lowest deciles.

To evaluate the scale at which prenatal disadvantage is associated
with measures of functional network segregation, we fit models for
each of our measures of local, meso-scale, and global segregation in
turn, controlling for each of the other measures of segregation. For
example, we first fit a GAMM for the age-by-disadvantage effect on
systemsegregationwhile includingmodularity as afixedeffect, thenfit
a GAMM for age-by-disadvantage effects on system segregation while
including the clustering coefficient as a fixed effect.

To characterize regional specificity of prenatal disadvantage
associations with maturational changes in local segregation, we fit
region-specific GAMMs with the same interaction structure and cov-
ariates as the whole-brain models. Models were fit separately for each
parcellated cortical region. For each regional GAMM, the significance
of the age-by-disadvantage interaction term was assessed in a fixed
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degree-of-freedom context to ensure stable and accurate estimation.
We corrected p-values across all region-wise GAMMs using FDR cor-
rection and set statistical significance at pFDR < 0.05. To establish the
overall magnitude of the moderating effect of prenatal disadvantage
on age-associated increases in local segregation, which we refer to
throughout as a region’s overall age-by-disadvantage effect magni-
tude, we used the F-statistic for the age-by-disadvantage interaction
effect. To evaluate the age-by-disadvantage effect across functional
systems, we used the effect magnitude at each parcel within each
system. A Kruskal–Wallis test was used to compare the magnitude of
the age-by-disadvantage effects across functional systems.

Moderating effects of prenatal disadvantage on associations
between age and language composite scores were also modeled
with GAMMs; we allowed the smoothed age effect in the GAMM to
interact with disadvantage, using the same model comparison fra-
mework as above. We tested a varying-coefficient (linear-nonlinear)
model and a more complex fully non-linear interaction (bivariate
smooth) model, comparing models using Bayesian information cri-
terion (BIC), and evaluated the significance of the interaction term
for the selected model; the bivariate smooth model fit the language
composite best, while the linear-nonlinear model fit the cognitive
composite best. Note that as these the composite scores are stan-
dardized for age, the smoothed effect of age in this model solely
accounts for variation over time in language scores relative to
age norms.

When examining relationships between local cortical network
segregation and language outcomes at the 2-year and 3-year time-
points, due to the smaller number of datapoints available, we used
linear models (results are qualitatively unchanged when using GAMs).
We estimated associations between local segregation and Bayley lan-
guage scaled scores, controlling for biological sex assigned at birth, in-
scanner motion (average framewise displacement), number of frames
of fMRI retained after censoring, and average functional network
weight. Multiple comparisons correction was applied across each set
of two models using FDR correction.

Comparison of cortical maps
A previously derived axis of sensorimotor-association cortical
organization8 was retrieved from https://github.com/PennLINC/S-A_
ArchetypalAxis. To quantify the associationbetween S-A axis ranks and
observed environmental effects on developmental increases in local
segregation, we used Spearman’s rank correlations and tested for
statistical significance using spin-based spatial permutation tests134,135,
which account for spatial covariance structure common in neuroima-
ging data. We generated a null distribution based on 10,000 spherical
rotations, and compared the observed value to the null.

Deviations from pre-registration
We did not conduct some analyses in the pre-registration that were
deemed potential exploratory analyses and turned out to be
unhelpful in elucidating the effects we found. Specifically, as the
primary driver of the age-by-disadvantage effect was found to be on
local segregation (the clustering coefficient) and alterations in local
topology, we did not examine age-by-disadvantage effects on
within- and between-system connectivity; this analysis would have
been informative for probing age-by-disadvantage effects on system
segregation. As our measure of local segregation, the clustering
coefficient, does not rely on an a priori assignment of regions to
functional systems, we deemed an analysis of functional-system-
level connectivity unhelpful in investigating the effects we found
here. Also, in a follow-up analysis we had planned to examine the
effect of including only participants whose disadvantage factor
score did not change by >1 SD between timepoints. However, as
upon investigation there was little change in direct indicators of
disadvantage during the study period (see Supplementary Fig. 3),

and the composition of the disadvantage factor score changed from
the birth to toddler timepoints (prenatal Healthy Eating Index was
removed from the factor score), we decided not to pursue this
analysis.

Additionally, we include here follow-up analyses that were not
part of our pre-registration to probe the contributors and potential
behavioral associations of the moderating associations of prenatal
disadvantage with cortical functional network development trajec-
tories that we found in the pre-registered analyses. Specifically, we
examined a) which scale of segregation was the fundamental driver of
age-by-disadvantage effects on cortical network segregation, b)
regional variation in age-by-disadvantage effects on local segregation,
and c) associations between local segregation and language and cog-
nitive outcomes. These analyseswere notpre-registered and should be
considered exploratory in nature.

Finally, we initially planned to rerun any GAMMs with estimated
degrees of freedom (EDF) of the age smooth <2 as linear mixed effects
models, but upon visual inspection of developmental trajectories of
cortical network segregation, non-linear models of age seemed
appropriate even for thosemeasures with age EDFs slightly under 2. As
GAMMs canmodel both linear and non-linear relationships, in the case
that there is no non-linear relationship between age and an outcome
measure, the smooth term for age will be penalized down to a linear
term. Thus, for ease of comparison and to avoid switching modeling
approaches, we have instead used GAMMs for all models in the
included analyses.

Citation diversity statement
Recent work in several fields of science has identified a bias in citation
practices such that papers from women and other under-represented
scholars are undercited relative to the number of such papers in the
field136–142. We used prior methods140,143 to measure that our references
contain 20.69%woman(first)/woman(last), 21.12%man/woman, 26.87%
woman/man, and 31.31% man/man authors. This method is limited in
that (a) names, pronouns, and social media profiles used to construct
the databases may not, in every case, be indicative of gender identity
and (b) it cannot account for intersex, non-binary, or transgender
people. We used additional methods144,145 to measure that our refer-
ences contain 11.82% author of color (first)/author of color(last), 14.11%
white author/author of color, 21.51% author of color/white author, and
52.56% white author/white author. This method is limited in that (a)
names, Census entries, and Wikipedia profiles used to predict racial
and ethnic categoriesmay not be indicative of racial or ethnic identity,
and (b) it cannot account for Indigenous and mixed-race authors, or
those who may face differential biases due to the ambiguous raciali-
zation or ethnicization of their names. We look forward to future work
that could help us to better understand how to support equitable
practices in science.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The derived neural and behavioral data (processed and aggregated
final data in CSV form) that can be used to replicate the findings have
been deposited in Github (https://zenodo.org/doi/10.5281/zenodo.
12785442). The deidentified data (metric outputs from imaging data
after preprocessing and labeled spreadsheets) from the eLABE sample
will be deposited into the NIMH Data Archive repository upon con-
clusion of the longitudinal portion of the study, as per NIH rules and
regulations. Study analyses additionally made use of publicly available
cortical atlases, including the Gordon 333-region parcellation (https://
balsa.wustl.edu/2Vm69) and the sensorimotor-association axis
(https://pennlinc.github.io/S-A_ArchetypalAxis/).
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Code availability
All statistical analyseswere conducted in R4.1.2 (https://www.r-project.
org/) and MATLAB R2021b. Functions from the Brain Connectivity
Toolbox123 were used to calculate measures of network segregation
and integration. Freely available MATLAB code from https://github.
com/mychan24/system_matrix_tools was used to calculate system
segregation. Surfaces and regional effects were shown on cortical
surfaces generated by MCRIB using the cifti and ciftiTools packages146

and ConnectomeWorkbench 7.2. Code for all analyses presented here
is publicly available at https://github.com/utooley/Tooley2023_
prenatal_env_cortical_network_dev, and has been deposited into
Zenodo147.
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