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inducing a progressive muscular hypotonia and weakness 
[1].

According to the age at onset and the best motor func-
tion achieved, SMA has been classified into five main types 
with pediatric onset (types 1 to 3, from the most severe to 
the mildest), and two more recently classified phenotypes, 

Introduction

Spinal muscular atrophy (SMA) is an autosomal recessive 
neurodegenerative disorder, due to defects in the survival 
motor neuron (SMN1) gene on chromosome 5, leading 
to degeneration of motor neurons in the spinal cord, and 
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Abstract
Aim The availability of disease-modifying therapies and newborn screening programs for spinal muscular atrophy (SMA) 
has generated an urgent need for reliable prognostic biomarkers to classify patients according to disease severity. We aim to 
identify cerebrospinal fluid (CSF) prognostic protein biomarkers in CSF samples of SMA patients collected at baseline (T0), 
and to describe proteomic profile changes and biological pathways influenced by nusinersen before the sixth nusinersen 
infusion (T302).
Methods In this multicenter retrospective longitudinal study, we employed an untargeted liquid chromatography mass spec-
trometry (LC-MS)-based proteomic approach on CSF samples collected from 61 SMA patients treated with nusinersen 
(SMA1 n=19, SMA2 n=19, SMA3 n=23) at T0 at T302. The Random Forest (RF) machine learning algorithm and pathway 
enrichment analysis were applied for analysis.
Results The RF algorithm, applied to the protein expression profile of naïve patients, revealed several proteins that could 
classify the different types of SMA according to their differential abundance at T0. Analysis of changes in proteomic profiles 
identified a total of 147 differentially expressed proteins after nusinersen treatment in SMA1, 135 in SMA2, and 289 in 
SMA3.
Overall, nusinersen-induced changes on proteomic profile were consistent with i) common effects 
observed in allSMA types (i.e. regulation of axonogenesis), and ii) disease severity-specific changes, 
namely regulation of glucose metabolism in SMA1, of coagulation processes in SMA2, and of com-
plement cascade in SMA3.
Conclusions This untargeted LC-MS proteomic profiling in the CSF of SMA patients revealed differences in protein expres-
sion in naïve patients and showed nusinersen-related modulation in several biological processes after 10 months of treatment. 
Further confirmatory studies are needed to validate these results in larger number of patients and over abroader timeframe.

Keywords Spinal muscular atrophy · Proteomics · Cerebrospinal fluid · Biomarkers · Machine learning · Artificial 
intelligence

Received: 25 February 2024 / Revised: 11 August 2024 / Accepted: 25 August 2024
© The Author(s) 2024

Proteomics profiling and machine learning in nusinersen-treated 
patients with spinal muscular atrophy

Chiara Panicucci1  · Eray Sahin2 · Martina Bartolucci3 · Sara Casalini1 · Noemi Brolatti1 · Marina Pedemonte4 · 
Serena Baratto1 · Sara Pintus1 · Elisa Principi1 · Adele D’Amico5 · Marika Pane6 · Marina Sframeli7 · Sonia Messina7 · 
Emilio Albamonte8 · Valeria A. Sansone8 · Eugenio Mercuri6 · Enrico Bertini5 · Ugur Sezerman9 · Andrea Petretto3 · 
Claudio Bruno1,10

1 3

Cellular and Molecular Life Sciences

http://orcid.org/0000-0003-4571-611X
http://orcid.org/0000-0002-3426-2901
http://crossmark.crossref.org/dialog/?doi=10.1007/s00018-024-05426-6&domain=pdf&date_stamp=2024-9-5


C. Panicucci et al.

type 0 with antenatal onset, and type 5 with adult onset and 
a mild phenotype [1]. Disease severity inversely correlates 
with the number of copies of the SMN2 gene [2, 3], the 
SMN1 paralogue gene, which produces predominantly an 
alternatively spliced mRNA transcript lacking the exon 7 
and encoding for an unstable SMN protein (SMNΔ7) [4].

In the last decade, significant improvements have been 
made in SMA treatment, resulting in three available ther-
apies, namely the SMN2 splicing-modifiers nusinersen 
(antisense oligonucleotide administered intrathecally) and 
risdiplam (small molecule with oral route), which upregu-
late SMN protein levels [5, 6], and onasemnogene abeparv-
ovec (an adeno-associated virus vector-based gene therapy 
administered once i.v.) [7]. These treatments have improved 
life expectancy and quality of life in SMA patients, particu-
larly when started in the pre-symptomatic or early stages of 
the disease [8, 9].

In this scenario, neonatal screening programs are man-
datory to ensure rapid diagnosis and guarantee a prompt 
therapeutic intervention, making the discovery of novel bio-
markers urgently required.

To date, the only available and clinically relevant bio-
markers are represented by the SMN2 copy number, along-
side with two alternative splicing-modulating variants 
(rs121909192 and rs1454173648), although not uniquely 
predictive of disease severity [1]. In addition to genetic bio-
markers, neurofilaments (NfL) have shown potentiality as 
serum and cerebrospinal fluid (CSF) biomarker, but incon-
sistent results prevent their wide use in the clinical setting, 
especially in adult patients [10].

In the last few years, omics-based techniques have been 
applied for biomarkers discovery in CSF samples of nusin-
ersen-treated SMA patients [11–18], providing valuable 
insights on nusinersen-related modification of CSF pro-
teome and metabolome, and identified putative treatment 
response biomarkers. However, no prognostic biomarkers 
in naïve patients have been explored so far.

In the context of omics data generation and analysis, 
machine learning algorithms demonstrated exceptional 
potential for managing extensive and multidimensional 
datasets, serving as fundamental tools to facilitate biomarker 
discovery across various fields, including neuroscience, but 
their application in SMA remains unexplored [19–22].

We conducted a multi-center retrospective longitudinal 
study, using an untargeted liquid-chromatography mass 
spectroscopy-based proteomic approach on CSF samples 
collected from a large cohort (n = 61) of SMA1, SMA2 and 
SMA3 patients at baseline (before starting nusinersen treat-
ment, T0), and after 10 months of therapy (before the sixth 
nusinersen infusion, T302). The primary objective of the 
study was to identify CSF prognostic biomarkers at base-
line, by combining proteomics data and a machine learning 

algorithm. The secondary objective was to describe changes 
in the proteomic profile at T302 and identify which bio-
logical pathways are influenced by nusinersen, through the 
application of classical bioinformatics approaches.

Results

Study design and population

The study design is summarized in Fig. 1a.
Sixty-one genetically confirmed SMA patients treated 

with nusinersen, including 19 SMA1, 19 SMA2, and 23 
SMA3 subjects, were enrolled in the study (Fig. 1a). Demo-
graphic characteristics and clinical data of patients are 
reported in Table 1.

The median age at T0 was 2.1 years (IQR: 0.7–4.9) in 
SMA1, 7.7 years (IQR: 2.3–11.8) in SMA2, and 15.3 years 
(IQR: 7-29.3) in SMA3 (Table 1). Differences in age at T0 
were significantly found between the SMA types (SMA1 vs. 
SMA2, p < 0.005; SMA1 vs. SMA3, p < 0.0001; SMA2 vs. 
SMA3, p < 0.005; Kruskal-Wallis test, multiple compari-
son), while gender did not differ among groups (Pearson’s 
Chi squared test p-value = 0.927).

At baseline, median CHOP values in SMA1 was 13/64 
(IQR: 3.7–24), while median HFMSE scores were 9/66 
(IQR: 2.7–13) in SMA2 and 47/66 (IQR: 29–58) in SMA3 
(Fig. 1b).

Identification of putative prognostic biomarkers 
through machine learning

Proteome analysis at T0 identified 1625 unique proteins. 
Principal component analysis (PCA) shows separation of 
proteome profiles in the different SMA subtypes (Fig. 2a). 
PERMANOVA test carried out on Euclidian distance of 
proteomics data at T0 revealed that only SMA subtype 
(F = 5.1894, p = 0.001) and age (F = 3.4401, p = 0.001) can 
significantly explain the variance in the data, while the rest 
of the factors, gender, BMI group, SMN2 copy number, and 
response status, were not significant (p > 0.05). Therefore, 
for the differential abundance analysis, age information was 
used as a confounding factor.

A machine learning approach, the Random forest (RF) 
classification algorithm, was then used to test whether the 
protein expression at T0 could be used to predict the SMA 
subtypes. All the trained RF models obtained gave accu-
racy of 1, which is an indicator of over-fitting, and the same 
accuracy value was obtained from prediction on test datas-
ets, too. To eliminate the possible effects of post-processing 
of the data and hyper tuning of the RF parameters in model 
trainings, that might cause data leaking and over-fitting, 
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Fig. 1 Study design and population. (a) A graphical description of the 
study is shown. (b) Changes in CHOP scores for SMA1 (n = 17), and 
HFMSE scores in SMA2 (n = 18) or SMA3 (n = 23) patients before 
(T0) and after (T302) nusinersen treatment. Plots show points for each 
sample score and paired sample data were connected by lines. Violin 

plot shows the distribution of the scores via density, and box plots 
showing interquartile range; box has sides belonging to lower and 
upper quartiles, and median depicted by horizontal line. Significance 
was tested via paired Wilcoxon rank-sum test. Significance test results 
were shown by “*“ for p-value < 0.05; “**“ for p-value < .01
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(the detailed strategies employed during optimization and 
prevention of overfitting and data leakage are described in 
the Supplementary Methods). All models consistently gave 
accuracy of 1 on both trained and test datasets, signifying 
the strength of the proteomics data in SMA subtype classi-
fication. Lastly, to further decrease the potential bias of the 
model on feature selection for the classification arising from 
the relatively small sample size, 100 different RF models 
were trained by changing the samples in the train and test 
datasets, and common proteins across top 30 features, sorted 
based on mean decrease in Gini coefficient of all 100 RF 
models, were determined (Supplementary Table 1). Accord-
ingly, 9 proteins were obtained as common features from 
the 100 models: heat shock protein 90 beta family member 1 
(HSP90B1), serpin family F member 2 (SERPINF2), golgi 
membrane protein 1 (GOLM1), contactin 1 (CNTN1), PVR 
cell adhesion molecule (PVR), beta-1,4-glucuronyltransfer-
ase 1 (B4GAT1), cathepsin F (CTSF), neurexin 3 (NRXN3), 
and chromosome 16 open reading frame 89 (C16orf89) 
(Fig. 2b). The maximum number of modes for model train-
ing was set to 3, and we observed that the classification of 
the three SMA subtypes can be achieved using combina-
tions of two proteins selected based on their differential 
abundance profiles in SMA subtypes. Out of the 9 selected 
proteins, CNTN1, B4GAT1, NRXN3, and C16orf89 were 

different strategies were followed, including splitting raw 
dataset into train and test, and applying normalization pro-
cedures independently, changing the ratio of train and test 
datasets, and varying size of grids for hyper parameter tuning 

Table 1 Study population description. Age at baseline, gender, number 
of SMN2 copies, response to therapy, respiratory support and nutrition 
information are listed in the table

SMA1 
(n = 19)

SMA2 
(n = 19)

SMA3 
(n = 23)

Total 
(n = 61)

Age at T0 (median, 
Q1-Q3)

2.1 
(0.7–4.9)

7.7 
(2.3–11.8)

15.3 
(7-29.3)

6,9 
(2.3–13)

Gender (F/M) 11/8 12/7 12/11 30/26
SMN2 copies (n,%)
2 SMN2 17 (89%) 2 (10%) 3 (13%) 22 (36%)
3 SMN2 2 (10%) 17 (89%) 10 

(43%)
29 (48%)

> 3 SMN2 0 0 9 (39%) 9 (15%)
Responders (n,%) 11 (52%) 6 (31%) 6 (23%) 23 (37%)
Respiratory support (n,%)
Use of non-invasive 
ventilation

7 (37%) 8 (42%) 1 (4%) 16 (26%)

Tracheostomy 7 (37%) 1 (5%) 0 8 (13%)
Nutrition (n,%)
Oral 7 (37%) 19 

(100%)
23 
(100%)

49 (80%)

Nasogastric tube 8 (42%) 0 0 8 (13%)
Gastrostomy 4 (21%) 0 0 4 (6%)

Fig. 2 Random Forest identified new putative biomarkers for SMA 
severity. (a) PCA plot showing the separate clustering patterns of 
SMA1 (orange), SMA2 (purple) and SMA3 (green) proteomic profiles 
at T0 based on dimensions 1 and 2. On PCA plots, each sample was 
shown by points, and ellipses correspond to 95% confidence intervals 
for each of the subtypes. (b) Nine proteins common among top 30 
features obtained from 100 different Random Forest models for clas-

sification of SMA types at T0. On the left side of figure, the importance 
score (based on mean decrease in Gini index) distributions of each pro-
tein from 100 models were illustrated by box plots. Log2 abundance 
of each protein in each SMA type at T0 were shown by violin plots on 
the right side. Box plots showing interquartile range, and outliers were 
shown by black dots
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protein changes between T0 (before treatment) and T302 
(after 302 days of treatment). When PCA plots were gener-
ated using different pairs of axes, more distinct separation 
was observed when examining dimensions other than first 
two, as PCA results can be influenced by biases originating 
from any of the preceding steps, starting from data collec-
tion to the end of data processing [23] (Fig. 3a-c).

When the significant changes in proteomic profiles in 
response to nusinersen-treatment were examined between 
T0 and T302 for each SMA subtype individually, 147, 135, 
and 289 proteins were founded, changing significantly in 
SMA1, SMA2, and SMA3, respectively. Volcano plots 
highlight downregulated and upregulated proteins at T302 
compared to the baseline (Fig. 3d-f), and the heatmaps show 
hierarchical clustering of significantly changing proteins 
(Suppl. Figure 1a-c).

identified as key proteins that distinctly separate the most 
severe form SMA1 from the milder ones (Fig. 2b).

We checked the correlations between age and the 9 pro-
teins above (Supplementary Table 1). Except SERPINF2 
and CTSF, 7 of them show a significant moderate correlation 
with age (p.adj < 0.05). Among those, only GOLM1 (rho = 
-0.45) had negative correlation, while the other 6 proteins, 
HSP90B1 (rho = 0.61), CNTN1 (rho = 0.48), B4GAT1 
(rho = 0.77), PVR (rho = 0.56), NRXN3 (rho = 0.47), and 
C16orf89 (rho = 0.55) revealed positive associations.

Nusinersen-driven changes in proteomic profile at 
T302

Proteome analysis at T302 identified 1399 unique proteins. 
Initially, all samples from each group, independent from 
their response status, were incorporated into the analysis of 

Fig. 3 Nusinersen modulates CSF proteome at T302. The change in 
clustering based on proteomics between T0 and T302 is shown for (a) 
SMA1, (b) SMA2, and (c) SMA3 patients, based on second- and third-
dimension combinations. PCA plots showing distribution and cluster-
ing of samples, and ellipses correspond to 95% confidence intervals 

for each time point. Volcano plots are used to show the down- or up-
regulated proteins after nusinersen treatment for (d) SMA1, (e) SMA2, 
and (f) SMA3 samples. Significantly changed proteins (p.adj < 0.05) 
were colored on volcano plots based on their higher (orange) or lower 
(blue) abundances at T302 compared to T0
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namely the coagulation and the complement pathways. In 
details, proteome of SMA2 subjects after treatment revealed 
increased coagulation processes (GO terms: protein coagu-
lation cascade, blood coagulation and fibrinolysis), identi-
fied by proteins as fibulin1 (FBLN1), coagulation factor II, 
IX and XII (F1, F9, F12), kininogen1 (KNG1), fibronectin 1 
(FN1), serpin family G member 1 (SERPING1), fibrinogen 
A (FGA), and apolipoprotein E (APOE).

SMA3 proteome after treatment showed enhanced com-
plement activation (GO terms: regulation of complement 
activation and humoral immune response), including pro-
teins as complement C1q B and C chain (C1QB, C1QC), 
complement C8 beta chain (C8B), complement molecules 
(C2, C3, C4A, C6, C7), complement C1r (C1R), comple-
ment C1s (C1S), complement Factor I (CFI), clusterin 
(CLU), and serpin family G member 1 (SERPING1). Com-
plement activation (GO terms: complement activation, clas-
sical pathway) also appeared in SMA1 pathway enrichment 
but was not as significant for this subtype. Proteins included 
were C1S, CFI, C2, and C4A.

Proteome changes in responder versus non-
responder patients

In addition to assessing the temporal changes in protein 
levels for each SMA subtype using all patient samples, we 
conducted a comparison of protein fold changes between 
baseline (T0) and after 302 days of treatment (T302) in 
responder (R) and non-responder (non-R) patients.

Gene ontology (GO) enrichment analysis of biological 
processes (BP) was performed to investigate enriched path-
ways of differentially expressed protein (DEPs) after nusin-
ersen treatment. Overall, a common response across all 
SMA subtypes was observed for proteins down-regulated by 
the treatment, with the main top enriched pathways related 
to axonogenesis (GO terms: regulation of axonogenesis, 
axon guidance, axon development (Fig. 4a-c). Axonogen-
esis related proteins included components of the semapho-
rin family (SEMA6A, SEMA7A, SEMA4B), leucine rich 
repeat and Ig domain containing 1 (LINGO1), plexin-B2 
(PLXNB2), L1 cell adhesion molecule (L1CAM), multiple 
EGF like domains 8 (MEGF8), dystroglycan 1 (DAG1), and 
reelin (RELN).

Other than the axonogenesis, SMA1 subjects showed 
platelet degranulation and aminoglycan metabolic processes 
within the top modulated BPs for down-regulated DEPs.

Pathway enrichment analysis of proteins up-regulated 
after nusinersen treatment, revealed disease-specific results 
for SMA1 and a similar signature for the milder phenotypes 
SMA2 and SMA3 (Fig. 4d-f).

In SMA1 patient’s proteome after treatment, up-regu-
lated DEPs were related to glucose metabolism (GO terms: 
canonical glycolysis, NADH regeneration, glucose cata-
bolic processes to pyruvate), including proteins as pyruvate 
kinase (PKM), enolase 1 (ENO1), aldolase, fructose-bispho-
sphate C (ALDOC), phosphoglyceratemutase 1 (PGAM1).

In SMA2 and SMA3 proteomes, up-regulated DEPs 
mainly belonged to two highly intertwined cascades, 

Fig. 4 Biological processes modulated by nusinersen at T302. Top 
20 GO pathways for biological processes (BP) enriched by mainly 
down-regulated (a-c) and up regulated DEPs (d-f), obtained from 
two clusters from each heatmap, are shown by lollipop plots for each 
SMA type. Fold enrichment represents the ratio of the percentage of 

matched proteins in the query list with pathway-associated proteins 
to the percentage of query with the background. Bar colors are corre-
sponding to the false discovery rate (FDR) corrected p values for each 
enriched pathway, and the size of dots are proportional to the number 
of proteins associated with the respective pathway
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in immunomodulatory processes via T regulatory cells [24], 
the SPOCK1 (p = 0.00094),an extracellular proteoglycan 
that belongs to the secreted protein acidic and rich in cys-
teine (SPARC) family and is involved in the regulation of 
blood brain barrier (BBB) permeability [25], and the heat 
shock proteins HSPA1A/HSPA1B (p = 0.002), which are 
highly conserved cellular response to internal and external 
stress [26]. Fibroblast growth factor receptor 2 (FGFR2, 
p = 0.002), involved in lymphocyte and macrophage/
microglia infiltration as well as myelin and axon degenera-
tion [27], was instead in the pool of downregulated proteins.

Discussion

Advancements in omics technologies have significantly 
expanded our understanding and exploration of biological 
mechanisms, facilitating biomarker discovery in neurosci-
ence [28–31]. Machine learning algorithms, a subset of arti-
ficial intelligence, prove particularly effective in handling 
omics datasets, capturing intricate patterns that might be 

Based on outcome measures improvement at T302, we 
classified as responders 52.6% of SMA1, 33.3% of SMA2, 
and 26.1% of SMA3. When we check the importance of 
response status in treatment-based protein level changes 
by PERMANOVA test for each SMA subtype, only SMA1 
had a significance close to threshold (F = 1.2544, p = 0.085), 
while the protein changes were determined to be similar 
between R and non-R in SMA2 (F = 0.8361, p = 0.739) and 
SMA3 (F = 1.0221, p = 0.416) groups. Accordingly, princi-
pal components analysis showed better separation of treat-
ment-based CSF proteome change between R and non-R 
patients in the SMA1 group compared to the SMA2 and 
SMA3 groups (Fig. 5a-c-d).

The comparison of changes in proteome expression 
between R and Non-R patients identified 45 DEPs in the 
SMA1 group, 26 in SMA2, and 26 in SMA3. Volcano plot 
highlighting downregulated and upregulated proteins at 
T302 in R vs. non-R was therefore depicted for SMA1 only 
(Fig. 5b). Among proteins upregulated in SMA1 Respond-
ers after treatment, we highlight the cellular communica-
tion network factor 3 (NOV/CCN3, p = 0.0005), involved 

Fig. 5 Responders vs. non-Responders analysis. The clustering pat-
terns of the responders (green) and non-responders (dark grey) based 
on changes in protein levels after nusinersen treatment were shown by 
PCA plots based on first two dimensions for (a) SMA1, (c) SMA2, and 
(d) SMA3. Each dot represents one sample, and ellipses correspond 
to 95% confidence intervals for each of the subtypes. (b) Volcano 

plot for comparison of time-wise changes in protein levels in each 
responder and non-responder samples. Fold change differences were 
calculated by subtracting log2 fold change of proteins between T302 
and T0 in non-responders from log2 fold change between T302 and T0 
in responders, and higher and lower changes in responders compared 
to non-responders were shown by orange and blue colors, respectively
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programs, especially in the management of asymptomatic 
patients.A moderate correlation was found between these 
markers and the age at baseline, so that future studies to 
ensure the robustness of our results should focus on larger 
cohorts with a more uniform age distributions.

To translate our findings into clinical applications, tar-
geted assays such as Enzyme-Linked Immuno Assay 
(ELISA) for the identified proteins, validation in indepen-
dent cohorts, and evaluation in more accessible samples like 
serum are underway.

In the second part of the study, we showed that, at T302, 
nusinersen significantly modulates the CSF proteome. Our 
aim was to provide insights about nusinersen-dependent 
protein changes at the biological processes level, rather 
than focusing on individual differentially expressed pro-
teins. Through Gene ontology (GO) analysis of biological 
processes, we found that nusinersen causes both a common 
effect in all types of SMA, regardless of the severity, and 
specific effects in the different forms.

Specifically, nusinersen modulated biological processes 
related to axonogenesis and axon development in all SMA 
patients. SMN1 defects have been shown to significantly 
affect motor neuron axon development, maturation, and 
function in type 1 SMA patients and in a mouse model of 
severe SMA [36]. A marked delay of SMA motor neuron 
axon radial growth, which prevents a correct interaction 
with Schwann cells, have been demonstrated and associated 
with axon degeneration and loss after birth [36]. As a result, 
indirect markers of axon degeneration are released by suf-
fering motor neuron and detectable in CSF and bloodstream, 
such as phosphorylated neurofilament heavy chain (pNfH) 
and neurofilament light chain (NfL), which are increased 
both in pre-symptomatic SMA patients with 2 SMN2 copies 
and symptomatic SMA patients [10, 44–46].

Our findings indicate that nusinersen modulates axono-
genesis processes, in line with recent electrophysiological 
studies demonstrating partial enhancements in axonal mat-
uration in SMA patients undergoing nusinersen treatment 
[47, 48]. Currently, no biochemical biomarkers capturing 
a reduction in axon deterioration upon nusinersen treat-
ment are available, except for neurofilaments, which dos-
age, however, has produced discordant results [10, 45, 46, 
49–52].

Among the differentially expressed proteins belonging 
to the axonogenesis GO term, we detected components of 
the semaphorine family, in particular SEMA4B, SEMA6A, 
SEMA7A which weredownregulated by nusinersen treat-
ment in all patients. These results are consistent with recent 
untargeted proteomic studies that identified a reduction in 
SEMA6A and SEMA7A levels in the CSF of SMA3 patients 
after 22 months of nusinersen treatment [15], as well as the 
downregulation of SEMA7A in responders SMA3 subjects 

overlooked by traditional statistical methods [19–22, 32, 
33].

In the first part of this study, we exploited machine learn-
ing to discover novel prognostic biomarkers for SMA. The 
Random Forest algorithm, applied to the protein expression 
profile of naïve patients, identified different pivotal proteins 
capable of classifying the different SMA types based on their 
differential abundance. Among them, CNTN1 and NRXN3 
clearly differentiated the severe form from the milder ones.

CNTN1, one of the axo-glial adhesion molecules, showed 
the lowest expression levels in SMA1 and higher expression 
in SMA2 and SMA3 patients. CNTN1 is expressed both in 
the central and peripheral nervous system [34] and is pri-
marily located at the paranodes, where it forms a tripartite 
complex contributing to the stabilization of the connection 
between the axon and the myelin loops [35]. Abnormal 
intercellular communication between axons and Schwann 
cells have been recently associated with immature, dysfunc-
tional and vulnerable motor axons in severe SMA patients’ 
human tissues and in a severe SMA mouse model (SMAΔ7 
mice) [36].

Moreover, genetic ablation of Cntn1 in a zebrafish model 
results in infertility, reduced animal size, ataxic swimming 
behavior, and a curved spine, with hypomyelinated neurons 
compared to wild-type [37]. Similarly, the Ctntn1-/- mice, 
display failure to thrive and severe locomotor abnormali-
ties, along with a decreased number of myelinated axons in 
both the spinal cord and the optic nerve [37]. In the Smn1-
/-Smn2+/- mouse model, a transcriptomic analysis identi-
fied the tnfa-il6-cntn1 pathway as one of the top upregulated 
pathways in the central nervous system, where Cntn1 might 
serve as a protective factor for neurons [38]. Together, these 
findings point to a crucial role of CNTN1 in the developing 
nervous system, with possible implications in the pathogen-
esis of SMA.

NRXN3, a member of the neurexin family (NRXN1, 2 
and 3), presynaptic cell adhesion molecules necessary for 
synapse formation and maintenance [39–41], exhibited a 
progressive increase in expression levels, with the lowest 
levels observed in SMA1 patients and the highest in SMA3 
patients at baseline. Interestingly, a reduction or altered 
Nrxn2 splicing have been observed in both transgenic SMA 
mice and zebrafish [42], while in vitro studies in motor neu-
rons derived from SMA patients’ iPSCs showed a reduction 
of NRXN2 expression compared to controls, while an over-
expression of NRXN2 improved the SMA motor neuron 
survival, and increase neurite length, suggesting it might act 
as a gene modifier in SMA [43].

Therefore, considering the role that CNTN1 and NRXN3 
play in the nervous system, we foresee their potential as 
prognostic biomarkers to distinguish severe SMA1 from 
milder phenotypes in the context of newborn screening 
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In addition to complement activation, increased inflam-
matory mediators have been reported in both CSF and 
serum in preclinical models and in SMA patients, indicating 
that immune dysfunction and neuroinflammation processes 
are involved in the pathogenesis of SMA [38, 66–69]. In this 
context, we noted a decreased expression of inflammatory 
markers, including communication network factor 3 (NOV/
CCN3), heat shock proteins HSPA1A/HSPA1B, and fibro-
blast growth factor receptor 2 (FGFR2), at T302 in SMA1 
Responders, suggesting that treatment with nusinersen pro-
motes better control of pro-inflammatory processes.

In summary, this untargeted LC-MS proteomic profiling 
in the CSF of SMA patients revealed differences in protein 
expression in naïve patients and showed nusinersen-related 
modulation in several biological processes after 10 months 
of treatment.

We acknowledge some limitations of the study, includ-
ing the absence of CSF samples from healthy controls and 
untreated SMA patients, the relatively small sample size 
within each SMA subtype, the lack of an assay of widely 
used biomarkers such as NfL to parallel the results obtained, 
and the limited follow-up period of 10 months, that may 
constrain the robustness of the conclusions. Further valida-
tion in larger, independent cohorts, with uniform age dis-
tributions and long-term monitoring, is crucial to confirm 
the prognostic value of the identified biomarkers and better 
understand the duration of the observed treatment effects.

Nevertheless, despite these limitations, the integration 
of proteomics and machine learning in a large cohort of 
patients has enabled the identification of novel prognostic 
CSF protein biomarkers for disease severity stratification, 
providing a new strategy to help guiding precision thera-
peutic treatment.

Additional confirmatory studies on CSF and serum sam-
ples from other SMA patients and healthy controls, even 
after a longer treatment period, are needed to validate these 
results.

Methods

Patients characteristics

Genetically confirmed SMA patients treated with nusin-
ersen, have been enrolled in the study from 4 tertiary Ital-
ian neuromuscular centers (IRCCS Gaslini Institute-Genoa, 
Nemo Center-Milan, Ospedale Bambino Gesù-Rome, and 
Policlinico G. Martino-Messina). SMN2 copy numbers 
were also available for all but one patient.

All SMA1 patients participated in the compassion-
ate Expanded Access Program (EAP) [70], while SMA2 
and SMA3 patients received treatment in a real-world 

after 10 months of nusinersen [11]. Our data, combined with 
the previous ones, suggest semaforines, especially SEMA6A 
and SEMA7A, as a new class of biomarkers for monitoring 
nusinersen treatment in all SMA patients, regardless of their 
severity, reflecting axon maintenance and remodeling, as 
already emerged in other condition [53].

Beyond axonogenesis, nusinersen showed modulation 
of bioenergetic pathways in SMA1 and inflammatory path-
ways in SMA2 and SMA3. Previously, Errico et al. reported 
nusinersen affecting the glucose metabolism selectively 
in the CSF of SMA1 patients through NMR-metabolomic 
analysis [13]. Here, we confirm and strengthen these results 
at a protein level, showing a nusinersen-mediated boost in 
the protein expression of glycolytic enzymes such as PKM, 
ENO1, ALDOC, and PGAM1. SMA1 patient’s reduced tol-
erance to fasting is well known [54–56], and an imbalance 
in glucose metabolism has been reported in SMA2 [57]. Our 
results suggest a correction of glucose metabolism by nusin-
ersen, although additional studies on blood samples will be 
necessary to understand whether this effect is specific to the 
CSF or systemic.

Moreover, with regard to the effects of nusinersen in 
SMA2 and SMA3 proteome, we report an increase in pro-
teins belonging to the coagulation and the complement 
cascades, highly interconnected processes [58, 59], shar-
ing common ancestral pathways [60], and contributing to a 
complex inflammatory network [61]. Furthermore, media-
tors of the coagulation cascade act as inhibitors/activators of 
the complement cascade, and vice versa [59]. In our results, 
SERPING1, an inhibitor of the classical complement cas-
cade, was upregulated in both SMA2 and SMA3 at T302. In 
SMA2, an upregulation of F12, a potent activator of the C1q 
molecule in the classical pathway, was noted, while SMA3 
showed an increase of several complement cascade compo-
nents such as C1q, C1s, C2, C3, C4A, C6 and C7. Recently, 
Faravelli et al. reported that members of the innate immune 
complement pathways, including SERPING1, were among 
the most abundant proteins in the CSF of SMA3 patients as 
detected by untargeted LC-MS [15]. These findings align 
with recent data suggesting that the complement cascade 
activation participates to neuroinflammatory processes and 
contributes to diseases pathogenesis in various neurodegen-
erative disorders, including Parkinson’s, Alzheimer’s and 
Huntington’s diseases, Amyotrophic Lateral Sclerosis and 
SMA [62–65]. As such, different clinical trials investigating 
complement therapeutic targets are ongoing in neurologic 
disorders [65]. Moreover, in a pre-clinical SMA model, the 
aberrant upregulation of the classical complement proteins 
C1q and C3, was associated with dysfunction and selective 
elimination of synapses, and an in vivo treatment with an 
anti-C1q antibody induced a rescue of synapses [64].
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Elution was performed with an EASY spray column 
(75 μm x 50 cm, 2 μm particle size, Thermo Scientific) at a 
flow rate of 250 nl/min with a 100 min non-linear gradient 
consisting of an increase from 7 to 27% solution B (80% 
ACN and 20% H2O, 5% DMSO, 0.1% FA) in 57 min, with 
a further increase to 45% B in 15 min, followed by1-minute 
wash at 80% B and a 20 min re-equilibration at 2% B.

MS scans were acquired at a resolution of 120,000 
between 375 and 1,500 m/z and an AGC target of 4.0E5, 50 
ms maximum injection time. Advanced Peack Determina-
tion was enabled for MS1 measurements. MS/MS spectra 
were acquired in the linear ion trap (rapid scan mode) with an 
AGC target of 3.0E4 and a 30 ms maximum injection time. 
For precursor selection, were prioritized the least abundant 
signals in the three ranges 375–575 m/z, 574–775 m/z and 
774–1500 m/z. Quadrupole isolation with a 0.7 m/z isola-
tion window was used, and Dynamic Exclusion was set at 
25 s. HCD was performed using 30% collision energy.

MaxQuant software version 1.6.17.0 was used to process 
data [77]. A false discovery rate was set at 0.01 for the iden-
tification of proteins, peptides and peptide-spectrum match 
(PSM). A minimum of 6 amino acids was required for pep-
tide identification. Andromeda engine, incorporated into Max-
Quant software, was used to search MS/MS spectra against 
Uniprot human database (release UP000005640_9606 Decem-
ber 2020). In the processing the variable modifications are Ace-
tyl (Protein N-Term), Oxidation (M), Deamidation (NQ), on 
the contrary, the Carbamidomethyl (C) was selected as fixed 
modification. Quantification intensities were calculated by 
the default fast MaxLFQ algorithm with the activated option 
‘match between runs’.

Machine learning algorithm

The Random Forest (RF) machine learning algorithm, pre-
viously applied to metabolomics and proteomics data for 
classification and regression analysis [78, 79], was adopted 
to classify SMA types based on protein expression levels at 
baseline. Random Forest models were trained for classifica-
tion of SMA subtypes using the proteomics data obtained at 
T0. All steps were carried in “R” free software using “caret” 
(ver. 6.0–94) and “randomForest” (ver. 4.7–1.1) packages. The 
detailed strategies employed during optimization and preven-
tion of overfit and data leakage are described in the Supple-
mentary Methods. All the steps were carried out individually, 
with proteomics data only. To investigate the effects of differ-
ent hyperparameter tuning strategies on obtained classification 
accuracies, data partitioning ratio, mtry (number of features to 
be randomly selected at each split), number of trees, and maxi-
mum number of nodes were assigned to different sets of values. 
Besides varying sets of parameters, addition of cross-validation 
and post-processing (normalization, transformation, scaling) of 

setting. Nusinersen was administered following the stan-
dard protocol.

On the day of nusinersen administration, anthropomet-
ric measures, information on ventilatory support (need 
for non-invasive ventilation or tracheostomy), and nutri-
tional route (oral, nasogastric tube, or gastrostomy) were 
noted, and functional outcome measures were performed 
by trained physical therapists at each site (Table 1). SMA1 
patients were scored by the Children’s Hospital of Phila-
delphia Infant Test of Neuromuscular Disorders (CHOP 
INTEND) scale [71], while SMA2 and SMA3 patients were 
evaluated through the Hammersmith Functional Motor 
Scale – Expanded (HFMSE) [72]. Patients were categorized 
into Responders (R) and non-Responders (non-R) based 
on changes in motor function scores from T0 to T302, fol-
lowing previously described criteria. Specifically, SMA1 
patients showing an increase in the CHOP score by 4 points, 
and SMA2-SMA3 subjects achieving a 3-point improve-
ment on the HFMSE scale at T302 were defined Respond-
ers [73, 74].

The study was conducted in accordance with the Dec-
laration of Helsinki and ICH GCP guidelines. All subjects 
and guardians provided written informed consent for the 
analysis of biological samples, following the approval of 
local ethics committees (Prot. SMALiQ_2022, 503/2022 - 
id 12319).

Sample preparation and proteomic analysis

On the day of administration, CSF samples were collected 
after a fasting period of 4–6 h and stored at -80 °C at each 
site. For the purposes of this study, only CSF collected at 
baseline (T0; before the first nusinersen intrathecal admin-
istration) and at day 302 (T302; before the sixth infusion), 
were centralized at IRCCS Gaslini, and subsequently sub-
jected to proteomic analysis.

One hundred ul of CSF were denatured, reduced and 
alkylated in 100 ul of iST-LYSE buffer (PreOmics) for 
10 min at 95 °C, 1000 rpm. Proteins were isolated by PAC 
method [75]. Briefly, protein aggregation was induced by 
addition of 70% ACN and 200 ug of magnetic beads were 
added to capture aggregated proteins. Magnetic beads were 
retained by magnet and the supernatant was removed. Beads 
were washed one time with 1 ml acetonitrile, followed by 
two wash with 1 ml 70% ethanol. Washed beads were resus-
pended in 100 ul TRIS 25 mM pH 8 and captured proteins 
were digested O.N. at 37 °C with 0.7 ug Trypsin and 0.3 
ugLysC. Obtained peptides were desalted in Stage-Tips 
[76] and analyzed by a nano-Ultra High Performance Liq-
uid Chromatography-Tandem Mass Spectrometry system 
(nano-UHPLC-MS/MS) using an Ultimate 3000 RSLC 
coupled to an Orbitrap Fusion Tribrid mass spectrometer.

1 3

  393  Page 10 of 15



Proteomics profiling and machine learning in nusinersen-treated patients with spinal muscular atrophy

package (ver. 3.1.3). In order to divide clustered into two clus-
ters, mainly corresponding to increasing and decreasing pro-
teins for each pairwise comparison, cutree function with k = 2 
was used.

Pathway enrichment

Gene Ontology (GO) enrichment analysis was performed for 
proteins in each cluster, separately. For that purpose, respective 
gene symbols of the proteins in each cluster were converted into 
Entrez ID’s by mapIds function in AnnotationDbi package org.
Hs.eg.db (ver. 3.14.0). If Entrez ID could not be obtained for 
a protein, and additional manual curation step was performed 
using protein ID as query on UniProt website (www.uniprot.
org/uniprotkb/< protein.id>/entry, https://doi.org/10.1093/
nar/gkh131). If the protein IDs for a single protein entry cor-
respond to different proteins, it was excluded from enrichment 
analysis. For each clusters, obtained list of Entrez IDs were 
submitted to ShinyGO (ver 0.76, http://bioinformatics.sdstate.
edu/go/, https://doi.org/10.1093/bioinformatics/btz931) after 
selecting “Human” as the organism with other default settings. 
Enrichment was performed using three different GO pathway 
databases; “GO Biological Process”, “GO Cellular Compart-
ment”, and “GO Molecular Function”. Tables for all enriched 
pathways and lollipop plots were exported.

In addition to the GO enrichment analysis, the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) enrichment analysis 
of biological processes (BP) was performed. The results are 
provided as Supplementary Fig. 2a-f.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s00018-
024-05426-6.
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training and test data after partitioning were included in opti-
mizations to avoid potential data loss. At the end of optimiza-
tions, normalized and scaled T0 proteomics data were used, 
and partitioned into train and test datasets in 80% and 20% 
ratios, respectively. Model training was carried out using 1000 
trees and maximum number of nodes, set to 3. Classification 
accuracy of the trained model on test data was calculated by 
comparing the real and predicted SMA classes. List of impor-
tant variables were recorded for the trained model by extracting 
top 30 features sorted by mean decrease in Gini coefficient. 
Each step, ranging from data partitioning to the selection of 
important variables, was repeated 100 times, with the seed set 
to numbers between 1 and 100. Finally, a set of features com-
mon in all lists of top 30 important variables from 100 trained 
models was obtained.

Statistical analysis

Log2-transformed and median-centered intensity values were 
used for downstream statistical analyses. PERMANOVA with 
Euclidean distance method was used to test significance of sub-
type, sex, age, smn2 gene copy number, and BMI. For com-
parison of protein compositions of SMA1, SMA2, and SMA3 
subtype samples before treatment, analysis of covariance 
(ANCOVA) was used by adjusting for age. Features with raw 
p value less than 0.05 were evaluated as significant and used 
in clustering for each pairwise comparison. Before and after 
treatment comparisons of SMA1, SMA2, and SMA3 patients 
were carried out individually, using paired two-sided t-test, and 
obtained p values were adjusted for multiple hypothesis test-
ing using Benjamini-Hochberg method. Log2 fold changes in 
responders and non-responders were calculated by subtract-
ing the values at T302 from T0 for each SMA subtype, and 
unpaired two-sided t-test was used for the comparison. Raw p 
values were used for significance. For each pairwise compari-
son results, volcano plots were produced using EnhancedVol-
cano (ver. 1.16.0). Principal component analysis (PCA) was 
carried out using FactoMineR (ver. 2.9), and visualizations 
with different pairs of dimensions were obtained using facto-
extra package (ver. 1.0.7).

For correlation analysis between age and 9 biomarker can-
didates, Spearman correlation was performed and obtained p 
values were adjusted using Benjamini-Hochberg method.

Hierarchical clustering

Intensity data of the filtered features were scaled to have a 
mean value of zero with standard deviation of one. The Euclid-
ian distances were calculated between samples and between 
proteins using dist function, and then, Ward-D2 clustering 
was performed for samples and for proteins by hclust func-
tion. Heatmaps were plotted via heatmap.2 function in gplots 
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