Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1989 Jun 15;260(3):885–891. doi: 10.1042/bj2600885

Testing transport models and transport data by means of kinetic rejection criteria.

R M Krupka 1
PMCID: PMC1138759  PMID: 2764910

Abstract

In the case of a transport system obeying Michaelis-Menten kinetics, completely general relationships are shown to exist between the final ratio of internal and external substrate concentrations, alpha, and the V/Km ratios found in zero-trans-entry, zero-trans-exit and equilibrium-exchange experiments (where V is a maximum substrate flux and Km a substrate half-saturation constant). The proof depends on a new method of derivation proceeding from the form of the experimental data rather than, as has been the practice in kinetic analysis, from a hypothetical reaction scheme. These general relationships, which will be true of all mechanisms giving rise to a particular type of behaviour (here Michaelis-Menten kinetics), provide a test for internal consistency in a set of experimental data. Other relationships, which are specific, can be derived from individual reaction schemes, with the use of traditional procedures in kinetic analysis. The specific relationships include constants for infinite trans entry and exit in addition to constants involved in the general relationships. In conjunction, the general and specific relationships provide a stringent test of mechanism. A set of results that fails to satisfy the general relationships must be rejected; here systematic error or unexpected changes in the transport system in different experiments may have distorted the calculated constants, or the system may not actually obey Michaelis-Menten kinetics. Results in accord with the general relationships, on the other hand, can be applied in specific tests of mechanism. The usefulness of the theorem is illustrated in the cases of the glucose-transport and choline-transport systems of erythrocytes. Experimental results taken from several studies in the literature, which were in accord with hyperbolic substrate kinetics, had previously been shown to disagree with relationships derived for the carrier model, and the model was rejected. The new analysis shows that the data violated the general relationships and therefore cannot decide the issue. More recent results on the glucose-transport system satisfy the general relations and agree with the carrier model.

Full text

PDF
885

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRITTON H. G. PERMEABILITY OF THE HUMAN RED CELL TO LABELLED GLUCOSE. J Physiol. 1964 Jan;170:1–20. doi: 10.1113/jphysiol.1964.sp007310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brahm J. Kinetics of glucose transport in human erythrocytes. J Physiol. 1983 Jun;339:339–354. doi: 10.1113/jphysiol.1983.sp014720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Devés R., Krupka R. M. A general kinetic analysis of transport. Tests of the carrier model based on predicted relations among experimental parameters. Biochim Biophys Acta. 1979 Oct 5;556(3):533–547. doi: 10.1016/0005-2736(79)90139-1. [DOI] [PubMed] [Google Scholar]
  4. Eilam Y., Stein W. D. A simple resolution of the kinetic anomaly in the exchange of different sugars across the membrane of the human red blood cell. Biochim Biophys Acta. 1972 Apr 14;266(1):161–173. doi: 10.1016/0005-2736(72)90132-0. [DOI] [PubMed] [Google Scholar]
  5. Eilam Y. Two-carrier models for mediated transport. II. Glucose and galactose equilibrium exchange experiments in human erythrocytes as a test for several two-carrier models. Biochim Biophys Acta. 1975 Sep 2;401(3):364–369. doi: 10.1016/0005-2736(75)90236-9. [DOI] [PubMed] [Google Scholar]
  6. Geck P. Eigenschaften eines asymmetrischen Carrier-Modells für den Zuckertrnasport am menschlichen Erythrozyten. Biochim Biophys Acta. 1971 Aug 13;241(2):462–472. doi: 10.1016/0005-2736(71)90045-9. [DOI] [PubMed] [Google Scholar]
  7. HARRIS E. J. AN ANALYTICAL STUDY OF THE KINETICS OF GLUCOSE MOVEMENT IN HUMAN ERYTHROCYTES. J Physiol. 1964 Oct;173:344–353. doi: 10.1113/jphysiol.1964.sp007460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hankin B. L., Lieb W. R., Stein W. D. Rejection criteria for the asymmetric carrier and their application to glucose transport in the human red blood cell. Biochim Biophys Acta. 1972 Oct 23;288(1):114–126. doi: 10.1016/0005-2736(72)90229-5. [DOI] [PubMed] [Google Scholar]
  9. Hoare D. G. The transport of L-leucine in human erythrocytes: a new kinetic analysis. J Physiol. 1972 Mar;221(2):311–329. doi: 10.1113/jphysiol.1972.sp009753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Holman G. D., Busza A. L., Pierce E. J., Rees W. D. Evidence for negative cooperativity in human erythrocyte sugar transport. Biochim Biophys Acta. 1981 Dec 21;649(3):503–514. doi: 10.1016/0005-2736(81)90153-x. [DOI] [PubMed] [Google Scholar]
  11. Karlish S. J., Lieb W. R., Ram D., Stein W. D. Kinetic parameters of glucose efflux from human red blood cells under zero-trans conditions. Biochim Biophys Acta. 1972 Jan 17;255(1):126–132. doi: 10.1016/0005-2736(72)90014-4. [DOI] [PubMed] [Google Scholar]
  12. Krupka R. M., Devés R. The membrane valve: a consequence of asymmetrical inhibition of membrane carriers. I. Equilibrating transport systems. Biochim Biophys Acta. 1979 Jan 5;550(1):77–91. doi: 10.1016/0005-2736(79)90116-0. [DOI] [PubMed] [Google Scholar]
  13. LARIS P. C. Permeability and utilization of glucose in mammalian erythrocytes. J Cell Physiol. 1958 Apr;51(2):273–307. doi: 10.1002/jcp.1030510212. [DOI] [PubMed] [Google Scholar]
  14. Lacko L., Wittke B., Kromphardt H. Zur Kinetik der Glucose-Aufnahme in Erythrocyten. Effekt der Trans-Konzentraion. Eur J Biochem. 1972 Feb;25(3):447–454. doi: 10.1111/j.1432-1033.1972.tb01714.x. [DOI] [PubMed] [Google Scholar]
  15. Leib W. R., Stein W. D. Rejection criterion for some forms of the conventional carrier. J Theor Biol. 1971 Jan;30(1):219–222. doi: 10.1016/0022-5193(71)90048-8. [DOI] [PubMed] [Google Scholar]
  16. Lieb W. R., Stein W. D. Carrier and non-carrier models for sugar transport in the human red blood cell. Biochim Biophys Acta. 1972 Apr 18;265(2):187–207. doi: 10.1016/0304-4157(72)90002-0. [DOI] [PubMed] [Google Scholar]
  17. Lieb W. R., Stein W. D. Testing and characterizing the simple carrier. Biochim Biophys Acta. 1974 Dec 10;373(2):178–196. doi: 10.1016/0005-2736(74)90144-8. [DOI] [PubMed] [Google Scholar]
  18. Lieb W. R., Stein W. D. Testing and characterizing the simple pore. Biochim Biophys Acta. 1974 Dec 10;373(2):165–177. doi: 10.1016/0005-2736(74)90143-6. [DOI] [PubMed] [Google Scholar]
  19. Lowe A. G., Walmsley A. R. The kinetics of glucose transport in human red blood cells. Biochim Biophys Acta. 1986 May 28;857(2):146–154. doi: 10.1016/0005-2736(86)90342-1. [DOI] [PubMed] [Google Scholar]
  20. MILLER D. M. SUGAR UPTAKE AS A FUNCTION OF CELL VOLUME IN HUMAN ERYTHROCYTES. J Physiol. 1964 Jan;170:219–225. doi: 10.1113/jphysiol.1964.sp007325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Martin K. Extracellular cations and the movement of choline across the erythrocyte membrane. J Physiol. 1972 Jul;224(1):207–230. doi: 10.1113/jphysiol.1972.sp009890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Miller D. M. Asymmetry in human erythrocyte sugar transport. J Biol Chem. 1975 May 25;250(10):3637–3638. [PubMed] [Google Scholar]
  23. Miller D. M. The kinetics of selective biological transport. II. Equations for induced uphill transport of sugars in human erythrocytes. Biophys J. 1965 Jul;5(4):417–423. doi: 10.1016/S0006-3495(65)86726-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Miller D. M. The kinetics of selective biological transport. IV. Assessment of three carrier systems using the erythrocyte-monosaccharide transport data. Biophys J. 1968 Nov;8(11):1339–1352. doi: 10.1016/S0006-3495(68)86560-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Miller D. M. The kinetics of selective biological transport. V. Further data on the erythrocyte-monosaccharide transport system. Biophys J. 1971 Nov;11(11):915–923. doi: 10.1016/S0006-3495(71)86263-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. REGEN D. M., MORGAN H. E. STUDIES OF THE GLUCOSE-TRANSPORT SYSTEM IN THE RABBIT ERYTHROCYTE. Biochim Biophys Acta. 1964 Jan 27;79:151–166. doi: 10.1016/0926-6577(64)90048-8. [DOI] [PubMed] [Google Scholar]
  27. SEN A. K., WIDDAS W. F. Determination of the temperature and pH dependence of glucose transfer across the human erythrocyte membrane measured by glucose exit. J Physiol. 1962 Mar;160:392–403. doi: 10.1113/jphysiol.1962.sp006854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weiser M. B., Razin M., Stein W. D. Kinetic tests of models for sugar transport in human erythrocytes and a comparison of fresh and cold-stored cells. Biochim Biophys Acta. 1983 Jan 19;727(2):379–388. doi: 10.1016/0005-2736(83)90423-6. [DOI] [PubMed] [Google Scholar]
  29. Wheeler T. J., Whelan J. D. Infinite-cis kinetics support the carrier model for erythrocyte glucose transport. Biochemistry. 1988 Mar 8;27(5):1441–1450. doi: 10.1021/bi00405a008. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES