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Rate From Reward Sensitivity Deficits Produced
by Early-Life Adversity in a Rodent Touchscreen
Probabilistic Reward Task
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ABSTRACT
BACKGROUND: Exposure to adversity, including unpredictable environments, during early life is associated with
neuropsychiatric illness in adulthood. One common factor in this sequela is anhedonia, the loss of responsivity to
previously reinforcing stimuli. To accelerate the development of new treatment strategies for anhedonic disorders
induced by early-life adversity, animal models have been developed to capture critical features of early-life stress and
the behavioral deficits that such stressors induce. We have previously shown that rats exposed to the limited bedding
and nesting protocol exhibited blunted reward responsivity in the probabilistic reward task, a touchscreen-based task
reverse translated from human studies.
METHODS: To test the quantitative limits of this translational platform, we examined the ability of Bayesian
computational modeling and probability analyses identical to those optimized in previous human studies to quantify
the putative mechanisms that underlie these deficits with precision. Specifically, 2 parameters that have been shown
to independently contribute to probabilistic reward task outcomes in patient populations, reward sensitivity and
learning rate, were extracted, as were trial-by-trial probability analyses of choices as a function of the preceding trial.
RESULTS: Significant deficits in reward sensitivity, but not learning rate, contributed to the anhedonic phenotypes in
rats exposed to early-life adversity.
CONCLUSIONS: The current findings confirm and extend the translational value of these rodent models by verifying
the effectiveness of computational modeling in distinguishing independent features of reward sensitivity and learning
rate that complement the probabilistic reward task’s signal detection end points. Together, these metrics serve to
objectively quantify reinforcement learning deficits associated with anhedonic phenotypes.

https://doi.org/10.1016/j.bpsgos.2024.100362
Childhood and adolescent exposure to poverty, trauma, and
chaotic environments have been associated with the develop-
ment of neuropsychiatric illness that can persist into adulthood
(1–3). Early-life adversity affects more than 30% of children in the
United States (4) and has been implicated in the emergence and
maintenance of mental illnesses including major depression,
bipolar disorder, posttraumatic stress disorder, and substance
use disorders. Although several psychological domains have
been hypothesized to mediate such risk—including cognitive
(e.g., executive functioning, memory) and affective (e.g., reward
processing, reactivity to social and affective stimuli, emotion
regulation) domains—the emergence of anhedonia, a blunted
responsivity to previously rewarding activities, has attracted
substantial interest (5–7). Coordinated bidirectional cross-
species research efforts, including clinical and preclinical
studies, have aimed to characterize key features of early-life
adversity and consequent anhedonic phenotypes in humans
and model them in laboratory animals to accelerate the devel-
opment of novel therapeutic strategies (8–11).
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Regarding early-life adversity, one rodent paradigm that
was specifically designed to simulate early-life poverty and
unpredictable maternal care is the limited bedding and nesting
(LBN) protocol. Numerous studies have documented that
implementing resource scarcity to dams and their pups elicits
a chaotic and unpredictable/fragmented environment, which in
turn has been shown to produce depressive- and anhedonic-
like behavioral phenotypes in males and associated abnor-
malities in the reward circuit (12,13). Importantly, correspond-
ing research endeavors of functionally similar early-life
adversity phenotypes in the human laboratory have demon-
strated that unpredictable maternal behaviors lead to neuro-
developmental deficits in children (14). Accordingly, self-report
instruments have been developed to quantify exposure to
fragmented and unpredictable environments during childhood,
thereby allowing for risk assessments of subsequent psychi-
atric disorders (15,16).

Regarding anhedonia, one laboratory-based technique that
has proven useful in objectively quantifying deficits in reward
y of Biological Psychiatry. This is an open access article under the
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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responsivity is the probabilistic reward task (PRT). This para-
digm uses visual discrimination methodology and asymmetric
probabilistic reinforcement contingencies such that correct
responses to one alternative (rich) are rewarded more often
than correct responses to the other (lean). As predicted by
signal detection theory (17–19), healthy control participants
reliably demonstrate an adaptive response bias toward the rich
stimulus; however, as was originally observed when probing
anhedonic phenotypes in patients with major depressive dis-
order (MDD) (20,21) and subsequently other disorders
including bipolar disorder (22) and substance use disorder
(23,24), a blunted response bias is commonly observed that is
correlated with self-reported anhedonia. Highlighting the rich-
ness of the behavioral repertoire that can be derived from this
task, PRT studies of patient samples have also probed for
possible abnormalities in the probability of specific responses
as a function of the immediately preceding trial. For example,
compared with healthy control participants, unmedicated in-
dividuals with MDD were characterized by a lower probability
of selecting the more frequently rewarded (rich) stimulus after
correct identification of the rich stimulus in the immediately
preceding trial that had not been rewarded (because a prob-
abilistic reward had not been scheduled) (21). Thus, a blunted
response bias in MDD was mainly driven by a reduced ability to
sustain a preference for the more advantageous stimulus in the
absence of immediate rewards.

Due to the ability of the PRT to provide objective quantifi-
cations of anhedonic phenotypes, it has been selected as a
recommended task to probe positive valence systems in the
latest revision (25) of the Research Domain Criteria’s (26)
initiative toward advancing medication development for psy-
chiatric conditions that include anhedonia. Given this collective
value, and in the spirit of coordinated research efforts in pre-
clinical therapeutics development across species, the PRT has
been reverse translated using touchscreen technology for rats
(27), mice (28), and nonhuman primates (29), all of which pro-
duce outcomes similar to those observed in human partici-
pants (18).

Given the parallel development of the LBN paradigm and
anhedonia task described above, we evaluated in a recent
study whether the LBN protocol in male rats would produce
expected deficits in the PRT’s signal detection metrics of
reward responsivity. As described in Kangas et al. (30),
response bias toward the more richly rewarded stimulus was
blunted in 2 independent cohorts of adult rats previously
exposed to the LBN procedure during early life compared with
control rats reared under standard housing conditions. More-
over, this anhedonic phenotype was shown to be significantly
associated with unpredictable and chaotic maternal interaction
with the affected pups, as quantified by entropy metrics of
dam/pup behavior, thus confirming construct validity.

The purpose of the current work was to test the quantitative
limits of cross-species continuity in this LBN/anhedonia plat-
form. Specifically, several recent human PRT studies have
highlighted the value of Bayesian computational modeling as
an important analytic technique to complement the signal
detection end points and elucidate the behavioral mechanisms
of blunted reward responsivity in anhedonic patient pop-
ulations with greater precision (31). Two key parameters that
have been shown to independently contribute to PRT
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outcomes are reward sensitivity (i.e., which captures the im-
mediate hedonic impact of rewards, that is, consummatory
pleasure) and learning rate (i.e., which captures the ability to
learn from reinforcing consequences, specifically reward pre-
diction errors, which refer to the difference between expected
and obtained rewards). For example, in a recent study of ad-
olescents with either a low or high risk of depression based on
maternal history (32), expected blunting of reward responsivity
in the PRT and neuroimaging correlates were driven by deficits
in reward sensitivity but not learning rate. In another study (33),
compared with placebo, an 8-week treatment with a kappa
opioid receptor antagonist, which has been hypothesized to
have anti-anhedonic effects, was associated with higher
response biases as well as higher learning rates. Of note, ef-
fects on learning rate, but not reward sensitivity, after kappa
opioid receptor treatment was a priori hypothesized in light of
1) preclinical evidence that kappa opioid receptor antagonism
restores dopaminergic signaling within brain reward pathways
[e.g., nucleus accumbens (34)] and 2) computational modeling
indicating that dopaminergic manipulations affect learning rate
but not reward sensitivity (31,35,36).

Despite its effectiveness in characterizing deficits in human
PRT performance, it is currently unknown whether these
computational modeling approaches can effectively distin-
guish reward deficit determinants in laboratory animals.
Therefore, secondary analyses were conducted of anhedonic
phenotypes in male participants exposed to the LBN paradigm
versus outcomes in healthy control participants (30). Specif-
ically, trial-by-trial reinforcement learning was examined using
Bayesian computational modeling and probability analyses
optimized in previous human studies to determine 1) whether
these quantitative approaches are similarly effective in rats at
distinguishing reward sensitivity from learning rate and, if so, 2)
how these profiles contribute to the LBN-induced anhedonic
phenotypes observed.

METHODS AND MATERIALS

Subjects

Thirty-two male Sprague Dawley rats, offspring of 6 timed-
pregnant dams (delivered embryonic day 15; Envigo), were
utilized in the current studies, in which primary outcomes were
presented in Kangas et al. (30). These rats were subjected to
either standard or LBN rearing protocols at the University of
California, Irvine. Around postnatal day (P) 100, these rats were
transported to McLean Hospital via overnight shipping. Upon
their arrival, subjects were quarantined in an isolated, climate-
controlled vivarium bay with unrestricted access to rodent
chow and water. Following clearance from quarantine, they
were transferred to a larger vivarium with otherwise identical
housing conditions. Although subjects continued to have un-
restricted access to water in their home cage, to establish
sweetened condensed milk as a reinforcer, they were food
restricted via daily postsession portions of 10 to 15 g of rodent
chow. All research assistants and vivarium technicians
responsible for conducting the behavioral studies and animal
husbandry duties were blinded to the subjects’ group assign-
ment (i.e., control or LBN). The study’s procedures were
approved by the Institutional Animal Care and Use Committee
at McLean Hospital and in accordance with guidelines from the
2 www.sobp.org/GOS
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Committee on Care and Use of Laboratory Animals of the
Institute of Laboratory Animals Resources, Commission on Life
Sciences (37).

Early-Life Adversity Paradigm

On P2, 6 dams were randomly assigned as either control or
LBN. To create litters of 12 with equal numbers of sexes where
possible, pups were cross-fostered between litters born within
12 hours of each other. Early-life adversity was imposed using
the LBN paradigm, which consists of limiting the nesting and
bedding materials in home cages between P2 and P9 as
described previously (12,13). For the LBN group, a plastic-
coated mesh platform was placed 2.5 cm above the floor of
a standard cage. Cob bedding was reduced to cover the cage
floor sparsely, and only one half of a single paper towel was
provided for nesting material on the platform. Conversely,
control dams and litters resided in standard home cages that
contained ample cob bedding and 1 whole paper towel that
dams shredded for nesting material. Figure 1 shows a repre-
sentative photograph of control and LBN housing conditions.
Both control and LBN cages were undisturbed from P2 to P9
and housed in temperature- and humidity-controlled rooms.
On P10, LBN groups were transferred to home cages identical
Biological Psychiatry: Globa
to control conditions. Rats were weaned on P21 and then
group housed.
PRT Training and Testing

Upon their arrival and subsequent release from quarantine at
McLean Hospital and following the establishment of food re-
striction conditions, subjects began PRT training and testing
protocols. Empirical validation and task optimization of the
touchscreen-based rat PRT can be found in Kangas et al. (27).
Details of the rat touch-sensitive experimental chamber can be
found in Kangas and Bergman (38), and a task schematic and
photograph are presented in Figure 1.

Line-Length Discrimination Training. Trials began with
presentation of a white line on a black background positioned
3 cm above 2 blue response boxes (5 3 5 cm) that were left
and right of center. The line was either long (600 3 123 pixels;
31.5 3 6.5 cm) or short (200 3 60 pixels; 10.5 3 3.25 cm).
Long and short line-length trial types varied in a quasi-random
order across 100-trial sessions such that there were exactly 50
trials of each type, but a given trial type was not presented
more than 5 times in a row. Subjects were trained to respond
Figure 1. Representative photographs of the
LBN (upper left) and control (lower left) housing
conditions, PRT task schematic (upper right),
and PRT (lower right). LBN, limited bedding and
nesting; P, postnatal day; PRT, probabilistic
reward task.

l Open Science November 2024; 4:100362 www.sobp.org/GOS 3

http://www.sobp.org/GOS


Computational Modeling and Early-Life Adversity
Biological
Psychiatry:
GOS
to the left or right response box depending on the length of the
white line (long line: respond left, short line: respond right, or
vice versa). Response box designation was counterbalanced
across subjects. During the line-length discrimination training
phase, each correct response was reinforced with 0.1 mL of
30% sweetened condensed milk that was paired with an 880-
ms yellow screen flash and a 440-Hz tone and followed by a 5-
second blackout period. Each incorrect response immediately
resulted in a 10-second blackout period without reinforcement.
A correction procedure (39) was programmed during initial
discrimination training in which each incorrect trial was
repeated until a correct response was made and was dis-
continued after ,10 repeats of each trial type occurred in 2
consecutive sessions. Concordant with the performance
criteria used in previous human PRT studies (20–22), discrim-
ination training sessions continued without correction until
accuracies for both line-length trial types were $80% correct
for 2 consecutive sessions. After this training criterion had
been met, PRT testing commenced.

PRT Testing. On approximately P200, subjects underwent a
5-session testing protocol using 3:1 probabilistic reinforce-
ment contingencies such that a correct response to one of the
line lengths (long or short) was reinforced 60% of the time (rich
stimulus), whereas a correct response to the other line length
was reinforced 20% of the time (lean stimulus). Incorrect re-
sponses were never reinforced. The line length associated with
the rich and lean contingency was determined for each subject
during their final 2 line-length discrimination training sessions
by examining their accuracies and designating the line length
with a higher mean accuracy as the stimulus to be rewarded on
the lean schedule. This method was specifically designed to
examine the effects of early-life adversity on response bias
generated by responsivity to asymmetrical probabilistic con-
tingencies rather than the amplification of a preexisting
inherent bias that is a function of uncontrolled variables.

Data Analysis

To interrogate the effects of LBN on PRT performance beyond
the blunted log b response bias metrics reported previously
[cf., (30)], we fit a computational model of trial-level perfor-
mance, which allows the parsing of 2 constructs critically
implicated in reward learning tasks: reward sensitivity, which
captures consummatory pleasure, and learning rate, which
captures the subject’s ability to learn from reward feedback
(31,40). This Bayesian model fit 4 reinforcement learning
models to the group-level PRT choice data [for details about
the mathematical implementation, see (31)]. Model 1 was the
stimulus-action Rescorla-Wagner model with separate sensi-
tivities for reward and nonreward events, which postulates that
subjects treat nonrewards as actual punishments and as-
sumes that subjects correctly assign the rewards to particular
stimulus-action combinations. Model 2 was the basic
stimulus-action Rescorla-Wagner model, which assumes that
subjects correctly assign the rewards to particular stimulus-
action combinations. Model 3 was the belief model, which as-
sumes that because subjects are unsure about the presented
stimulus, they assign rewards to both stimuli, with only a certain
preference for the actually presented stimulus. Model 4 was the
4 Biological Psychiatry: Global Open Science November 2024; 4:10036
action-only model, which assumes that subjects only learn
about the value of each action, independent of the stimuli.

Following prior recommendations (31), models were fitted
using an empirical Bayesian random-effects approach and
compared through integrated group-level Bayesian information
criterion factors. To constrain individual subjects’ parameter
inference by an empirical prior distribution, data were fitted
concurrently. Finally, to evaluate the robustness of the find-
ings, the Bayesian modeling was run 3 times, and in each run,
the model with the lowest integrated Bayesian information
criterion value was considered the winning model. All 4 models
yielded the 2 parameters of interest—reward sensitivity and
learning rate. Unpaired t tests and Cohen’s d were used to
evaluate group differences and effect sizes (control vs. LBN) in
reward sensitivity and learning rate, respectively, using the
winning model. These computational parameters can be dis-
entangled using a mathematical formulation of reward learning,
which relies on prediction errors and has been associated with
dopaminergic activity (36,41,42). Thus, let us consider an
experiment in which rewards are administered stochastically
on a select number of trials (in the case of the PRT, 30 rich
rewards and 10 lean rewards within a block of 100 trials). We
can denote rt = 1 when a reward is received in trial t, and rt =
0 when no reward is dispensed. The variable r is used to
represent the subjective value that a subject assigns to the
reward. Within this framework, a subject has a so-called
expectation (Qt) of the average reward that it might gain on a
given trial through a prediction error, which represents the
difference dt = rrt 2 Qt (i.e., the discrepancy between the
obtained rrt and expected Qt reward). This prediction error is
then utilized to adjust future expectations (43), according to the
formula Qt11 = Qt 1 εdt, where 0 # ε # 1 is a learning rate.
Therefore, the 2 parameters—r and ε—could contribute to
anhedonic behavior. The larger the r, the more sensitive a
subject is to the reward. Conversely, ε captures the extent to
which reward prediction errors modulate learning, specifically
the speed at which reward affects behavior (44). Thus, a high ε

points to a large impact of reward feedback of the prior reward
feedback on the current decision, whereas a low learning rate
reflects a relatively small impact.

As an additional check of model fit, we also generated sur-
rogate datasets for each subject using the winning model’s
parameters. The subject-specific model parameters were fed
back into the underlying equations to simulate responses that
were theoretically plausible under the same task conditions.
This simulation process was repeated 500 times for each sub-
ject to ensure a robust sample of predicted responses. Then, we
examined whether the surrogate response biases reasonably
captured the general pattern observed in the empirical data.

In subsequent analyses, to investigate the effects of LBN on
PRT performance with more granularity, as in prior human PRT
studies (21,22), we computed the probability that rats chose
rich- or lean-associated response as a function of the prior
stimulus type (rich vs. lean) and whether their correct response
was rewarded or not. For example, what is the probability that
rats chose the rich-associated response when the preceding
rich or lean stimulus had been rewarded or not (because the
probabilistic reward was not scheduled)? As in prior human
PRT studies that used these metrics, an arcsine transformation
was applied to these percentages. Next, 2 mixed analyses of
2 www.sobp.org/GOS
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Figure 3. Effects of control (n = 17) and LBN (n = 15) rearing conditions
[see (30)] on reward sensitivity (left panel) and learning rate (right panel).
Horizontal lines represent group mean (6SEM), and data points represent
values for individual subjects. ***p, .001. LBN, limited bedding and nesting.
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variance (ANOVAs) were performed. In the first analysis, we
evaluated the effects of prior rewards by running a mixed
ANOVA with preceding stimulus (rich, lean), current stimulus
(rich, lean), and response (rich-associated, lean-associated) as
repeated measures and group (LBN, control) as the between-
subject factor. In the second analysis, an identical ANOVA
was performed, but prior nonrewarded trials were considered.
For brevity, only effects involving group were followed up and
reported.

RESULTS

Model Selection

Of the 4 reinforcement learning models examined (stimulus-
action Rescorla-Wagner model with separate sensitivities for
reward and nonreward events, basic stimulus-action Rescorla-
Wagner model, belief model, action-only model) across the 3
runs, the belief model was associated with the lowest inte-
grated Bayesian information criterion value at the group level
and thus yielded the most parsimonious account of the data
(see Figure S1 for model outcome comparisons). As detailed
above, the belief model assumes that because subjects are
unsure about the presented stimulus, they assign rewards to
both stimuli, with only a certain preference for the stimulus that
was actually presented. As an additional verification of model
fit, surrogate datasets were generated for each subject using
belief model parameters and fed back into the underlying
equations to simulate across 500 iterations the responses that
were theoretically plausible under the same task conditions.
Figure 2 presents the surrogate response bias as predicted by
the belief model, which also captured the general pattern of
response bias reasonably well. This suggests that these
computational parameters serve as a reliable proxy for un-
derstanding and predicting performance on the PRT.

Computational Outcomes

Reward sensitivity and learning rate were extracted from run 1,
which fit the data best. Figure 3 presents outcomes from
Figure 2. Real (white bars) and surrogate (gray bars) mean (6SEM)
response bias data using the belief model.

Biological Psychiatry: Globa
Bayesian computational modeling and probability analyses us-
ing trial-by-trial reinforcement learning metrics identical to those
previously optimized in human PRT studies (31). As the left
panel shows, significant group differences were observed in
reward sensitivity (t30 = 4.10, p = .0003, d = 1.46). Conversely,
however, as shown in the right panel, learning rate did not differ
statistically between groups (t30 = 1.67, p = .11, d = 0.59).

Probability Analyses Effects of Prior Rewards

The preceding stimulus (rich, lean) 3 current stimulus (rich,
lean) 3 response (rich-associated, lean-associated) 3 group
(LBN, control) model was run on trials following rewarded re-
sponses and revealed various main effects and 2-way in-
teractions not involving group. Critically, several interactions
involving group were significant, including the preceding
stimulus 3 group (F1,30 = 5.56, p , .025) and response 3

group (F1,30 = 10.06, p , .003) interactions, which were qual-
ified by a 4-way interaction effect (F1,30 = 4.74, p , .037). To
disentangle the 4-way interaction, we performed 2 follow-up
ANOVAs and entered current stimulus, response, and group
as factors for trials that were preceded by a rewarded rich
versus lean stimulus. For both groups, the probability of
choosing the rich-associated alternative was significantly
higher than the probability of choosing the lean-associated
alternative (both ps , .005). However, as shown in
Figure 4A, when considering trials preceded by a rewarded rich
trial, the only effect that involved group was a significant
response 3 group interaction (F1,30 = 4.84, p , .036).
Bonferroni-corrected simple tests revealed that, compared
with the control group, the LBN group displayed a significantly
lower probability of choosing the rich-associated alternative
after the preceding rich trial had been rewarded (irrespective of
the current stimulus type; p , .034) and instead had a signif-
icantly higher probability of choosing the lean-associated
alternative (p , .038). As shown in Figure 4B, when consid-
ering trials preceded by a rewarded lean trial, the only signifi-
cant effect that involved group was the main effect of group
(F1,30 = 4.97, p , .035), which was qualified by a significant
response 3 group interaction (F1,30 = 5.99, p , .020).
Bonferroni-corrected simple tests revealed that, compared
with the control group, the LBN group had a significantly lower
probability of choosing the rich-associated alternative after the
preceding lean trial had been rewarded (irrespective of the
current stimulus type; p , .019) and instead showed a
l Open Science November 2024; 4:100362 www.sobp.org/GOS 5
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Figure 4. Effects of control (gray bars) and LBN (black bars) rearing
conditions [see (30)] on the likelihood of choosing the rich- vs. lean-
associated response when the prior trial was a rich and rewarded trial
type (A), a lean and rewarded trial type (B), or the prior trial was not
rewarded (C). *p , .05, **p , .005. LBN, limited bedding and nesting.
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significantly higher probability of choosing the lean-associated
alternative (p , .022). In the control group (p , .001), but not
the LBN group (p . .39), the probability of choosing the rich-
associated alternative was significantly higher than the prob-
ability of choosing the lean-associated alternative (p , .001).

Probability Analyses: Effects of Prior No Rewards

As shown in Figure 4C, the preceding stimulus (rich, lean) 3
current stimulus (rich, lean) 3 response (rich-associated, lean-
associated) 3 group (LBN, control) run on trials following
correct but not rewarded responses revealed only a significant
response 3 group interaction (F1,30 = 17.86, p , .001). For
6 Biological Psychiatry: Global Open Science November 2024; 4:10036
both groups, the probability of choosing the rich-associated
alternative was significantly higher than the probability of
choosing the lean-associated alternative (irrespective of the
prior and current stimulus type; both ps , .001). However,
Bonferroni-corrected simple tests revealed that, compared
with the control group, the LBN group showed a signifi-
cantly lower probability of choosing the rich-associated
alternative after the preceding correct trial had not been
rewarded (irrespective of the prior and current stimulus
type; p , .001) and instead had a significantly higher
probability of choosing the lean-associated alternative
(p , .001).
DISCUSSION

Exposure to early-life adversity using a rodent model of
simulated poverty induced blunted reward responsivity as
quantified by PRT signal detection metrics [see (30) for psy-
chophysical details]. The current work extends the translational
value of this research platform via secondary analyses of
Kangas et al. (30) that confirmed Bayesian computational
models, identical to those optimized for use in human PRT
performance (31), and distinguished independent features of
reward sensitivity and learning rate that contribute to deficits
associated with anhedonic phenotypes. Specifically, reward
sensitivity was significantly impaired compared with control
subjects. Conversely, learning rate did not differ significantly
between the groups. These computational findings are signif-
icant considering that youths at increased risk for MDD (32) as
well as adults who eventually show poor response to an 8-
week antidepressant treatment (45) are characterized by
reduced reward sensitivity using the same Bayesian modeling.
Thus, the current findings suggest a platform for evaluating
novel pharmacological treatments to alleviate anhedonic
phenotypes, which are poorly addressed by currently available
interventions (46). More fundamentally, we believe that
demonstration in laboratory animals and humans of similar
effects of given manipulations on precise computational pa-
rameters, which dissect behavior in more granularity, offers
some of the most compelling cross-species confluence (47).
Moreover, confirming correspondence in behavioral mecha-
nisms across quantitative approaches [i.e., signal detection
theory (30) and Bayesian analyses (current findings)] should
bolster the predictive validity of preclinical models and in turn
enhance translational relevance.

Likewise, sequential analyses of choice and consequence
during rich versus lean stimulus trial types also served to
provide detailed trial-by-trial characterizations of response
allocation that, when aggregated, produced the signal
detection–derived anhedonic phenotypes. Specifically, they
revealed that, although both groups were more likely to choose
the response associated with the rich stimulus, compared with
control subjects, the LBN group was less likely to select the
rich-associated response following a trial in which they were
rewarded in the presence of the rich stimulus, rewarded in the
presence of the lean stimulus, or not rewarded at all on the
preceding trial. This suggests a lack of trial type specificity in
their contributions to the session-wide blunting of adaptive
response biases in subjects exposed to early-life adversity
compared with healthy control subjects.
2 www.sobp.org/GOS
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Conclusions

Taken together, isolating distinct critical mechanistic features
in task outcomes across species can identify behavioral
mechanisms in reward processing. Ultimately, it is hoped that
coordinated bidirectional studies that use these computerized
tasks and computational metrics across human and experi-
mental animals will accelerate the development of therapeutic
strategies for neuropsychiatric conditions prominently char-
acterized by anhedonia.
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