scientific reports

OPEN

Drug-coated balloon versus drug-eluting stent for femoropopliteal total occlusions: intraluminal versus subintimal approaches

Yong Hoon Kim^{1,33}, Ae-Young Her^{1,33}, Young-Guk Ko², Chul-Min Ahn², Seung-Jun Lee², Myeong-Ki Hong², Cheol Woong Yu³, Jae-Hwan Lee⁴, Seung Whan Lee⁵, Young Jin Youn⁶, Chang-Hwan Yoon⁷, Seung-Woon Rha⁸, Pil-Ki Min⁹, Seung-Hyuk Choi¹⁰, In-Ho Chae⁷, Donghoon Choi² & The K-VIS ELLA Investigators^{*}

Because there is a lack of comparative studies assessing drug-coated balloon (DCB) and drugeluting stent (DES) outcomes with respect to intraluminal (IL) and subintimal (SI) approaches in femoropopliteal (FP) total occlusive lesions, we compared the outcomes between DCB (including bailout stenting) and DES treatments for this lesion. A total of 487 limbs (434 patients) were divided into the IL (n = 344, DCB: n = 268, DES: n = 76) and SI (n = 143, DCB: n = 83, DES: n = 60) approach groups. The primary outcome was a major adverse limb event (MALE), defined as aboveankle amputation or repeat revascularization of the index limb. Secondary outcomes included clinically driven target lesion revascularization (TLR), loss of clinical patency, and all-cause death. After adjustment, in each IL and SI approach, the 2-year rates of MALE (p = 0.180 and p = 0.236, respectively), TLR, loss of clinical patency, and all-cause death were similar between the DCB and DES groups. In the DCB and DES groups, both primary and secondary outcomes were similar between the IL and SI approaches. DCB and DES strategies for patients presenting with FP total occlusive lesions demonstrated similar outcomes regardless of the IL or SI approach.

Clinical Trial Registration: NCT02748226.

Keywords Chronic total occlusion, Drug-coated balloon, Drug-eluting stent, Femoropopliteal artery disease

Peripheral arterial disease (PAD) is the third most prevalent cause of atherosclerosis-related morbidity, after coronary heart disease and stroke¹. Approximately 40% of individuals experiencing symptomatic PAD exhibit chronic total occlusion (CTO), which is defined by the presence of atherosclerotic plaques leading to complete

¹Division of Cardiology, Department of Internal Medicine, Kangwon National University College of Medicine, Kangwon National University School of Medicine, 156 Baengnyeong Road, Chuncheon, Gangwon 24289, Republic of Korea. ²Division of Cardiology, Severance Cardiovascular Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-Gu, Seoul 03722, Republic of Korea. ³Division of Cardiology, Korea University Anam Hospital, Seoul, Republic of Korea. ⁴Division of Cardiology, Department of Internal Medicine Chungnam, National University Hospital, Sejong, Republic of Korea. ⁵Division of Cardiology, Department of Internal Medicine, Asan Medical Center University of Ulsan College of Medicine, Seoul, Republic of Korea. ⁶Division of Cardiology, Department of Internal Medicine, Wonju Severance Christian Hospital, Wonju, Republic of Korea. ⁷Division of Cardiology, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea. ⁸Cardiovascular Center, Korea University Guro Hospital, Seoul, Republic of Korea. ⁹Division of Cardiology, Department of Internal Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea. ¹⁰Division of Cardiology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea. ³³These authors contributed equally: Yong Hoon Kim and Ae-Young Her. *A list of authors and their affiliations appears at the end of the paper. ^{\box}email: yhkim02@ kangwon.ac.kr; ygko@yuhs.ac

artery blockage persisting for more than 3 months^{2,3}. Traditional bypass surgery entails a more invasive procedure and a prolonged recovery period than percutaneous transluminal angioplasty (PTA)⁴. Furthermore, a supplement to the Inter-Society Consensus for the Management of Peripheral Arterial Disease (Trans-Atlantic Inter-Society Consensus II, TASC II) emphasizes the increasing trend of adopting an endovascular approach for managing intricate femoropopliteal (FP) lesions, including those categorized as TASC II type D lesions⁵. While PTA effectively restores blood flow initially, more than 60% of patients experience restenosis within 1 year after the procedure because of vessel recoil and neointimal hyperplasia⁶. Drug-eluting stents (DES) have been observed to yield superior 2-year event-free survival (p = 0.01) and primary patency compared (p < 0.01) to bare-metal stents (BM\$)⁷. A single-blind randomized controlled trial (RCT)⁸ showed higher 3-year primary patency (log-rank p < 0.001) and lower clinically driven target lesion revascularization (TLR, p = 0.002) in patients treated with a drug-coated balloon (DCB) than in those treated with PTA. A recent randomized controlled trial (RCT)⁹ including 150 patients with symptomatic femoropopliteal artery (FPA) disease suggested comparable effectiveness and safety of DES versus DCB plus bailout stenting in FPA interventions during a 3-year follow-up period. In that study⁹, more than half of the lesions were total occlusions, and the 3-year primary patency for DCB and DES in occluded lesions (n = 79) was similar (log-rank p = 0.93). In a small registry study¹⁰ involving a limited number of patients (41 patients, 43 lesions), DCB, even without bailout stents, demonstrated comparable 12-month primary patency to DES (92.0% vs. 87.2%, p = 0.47) for total occluded lesions in the superficial femoral artery (SFA). To date, there is limited research on the outcomes of DCB and DES in patients with FP total occlusive lesions; specifically, there is no comparative study between DCB and DES based on intraluminal (IL) and subintimal (SI) approaches. Hence, we aimed to compare the clinical outcomes of DCB and DES in patients with FP total occlusive lesions based on the IL and SI approaches.

Results

Baseline characteristics

Figure 1 shows the flowchart of this study. Table 1 shows the baseline characteristics of the DCB (including the bailout stent group) and DES groups according to the IL or SI approaches. In the IL approach, the number of patients with a history of stroke, those who underwent rotational atherectomy, and the mean values of the total

Fig. 1. Flowchart. *EVT* endovascular therapy,*K*-*VIS ELLA* The Korean Vascular Intervention Society Endovascular therapy in Lower Limb Artery Diseases, *FPA* Femoropopliteal artery, *POBA* plain old balloon angioplasty, *BMS* bare-metal stent, *DCB* drug-coated balloon(including bailout stent group) group, *DES* drugeluting stent group.

	Intraluminal approach (n = 344)			Subintimal approach (n = 143)				
Variables	DCB (n=268, group A)	DES (n=76, group B)	p value	DCB (n=83, group C)	DES (n=60, group D)	p value		
Age, years	68.6±11.9	69.7±9.2	0.395	69.4±11.7	71.9 ± 10.2	0.179		
Male, n (%)	216 (80.6)	61 (80.3)	0.948	77 (92.8)	47 (78.3)	0.023		
BMI, kg/m ²	23.5±3.2	23.1±3.9	0.455	23.1±3.4	23.0±4.0	0.968		
Hypertension, n (%)	205 (76.5)	52 (68.4)	0.178	60 (72.3)	41 (68.3)	0.710		
Diabetes mellitus, n (%)	160 (59.7)	42 (55.3)	0.511	41 (49.4)	25 (41.7)	0.398		
Dyslipidemia, n (%)	169 (63.1)	45 (59.2)	0.592	45 (54.2)	39 (65.0)	0.230		
Coronary artery disease, n (%)	99 (36.9)	30 (39.5)	0.689	31 (37.3)	23 (38.3)	0.905		
Heart failure, n (%)	12 (4.5)	4 (5.3)	0.760	6 (7.2)	2 (3.3)	0.468		
Chronic kidney disease, n (%)	70 (26.1)	13 (17.1)	0.129	22 (26.5)	15 (25.0)	0.839		
COPD, n (%)	8 (3.0)	4 (5.3)	0.309	4 (4.8)	4 (6.7)	0.720		
Previous history of stroke, n (%)	53 (19.8)	6 (7.9)	0.015	10 (12.0)	8 (13.3)	0.805		
Previous history of PTA, n (%)	78 (29.1)	18 (23.7)	0.388	21 (25.3)	18 (30.0)	0.572		
Previous history of amputa- tion, n (%)	15 (5.6)	2 (2.6)	0.381	2 (2.4)	1 (1.7)	0.760		
Current smoker, n (%)	78 (29.1)	18 (23.7)	0.388	23 (27.7)	26 (43.3)	0.074		
Clinical presentation			0.342			0.735		
Claudication, n (%)	169 (63.1)	53 (69.7)		44 (53.0)	34 (56.7)			
CLTI, n (%)	99 (36.9)	23 (30.3)		39 (47.0)	26 (43.3)			
Discharge medications								
Aspirin, n (%)	230 (85.8)	70 (92.1)	0.148	66 (79.5)	53 (88.3)	0.182		
Clopidogrel, n (%)	235 (87.7)	70 (92.1)	0.411	71 (85.5)	55 (91.7)	0.306		
Cilostazol, n (%)	80 (29.9)	16 (21.1)	0.149	33 (39.8)	15 (25.0)	0.075		
Statin, n (%)	216 (80.6)	58 (76.3)	0.422	62 (74.7)	49 (81.7)	0.417		
Lesion length, mm	220.1±111.5	191.7±102.9	0.039	263.9 ± 116.2	255.5±91.9	0.630		
≥150 mm, n (%)	203 (75.7)	47 (61.8)	0.020	71 (85.5)	53 (88.3)	0.627		
TASC-II type			0.143			0.928		
A/B, n (%)	76 (28.4)	15 (19.7)		12 (14.5)	9 (15.0)			
C/D, n (%)	192 (71.6)	61 (80.3)		71 (85.5)	51 (85.0)			
Moderate/severe calcifica- tion, n (%)	90 (33.6)	29 (38.2)	0.495	25 (30.1)	16 (26.7)	0.710		
DCB plus bailout stenting, n (%)	55 (20.5)	0		34 (41.0)	0			
Device maximum diameter, mm ^a	$6.03 \pm 0.41 \ (n = 265)$	$6.36 \pm 0.51 (n = 75)$	< 0.001	$6.23 \pm 0.42 (n = 81)$	$6.48 \pm 0.57 (n = 58)$	0.004		
Device mean diameter, mm ^a	5.92±0.39 (n=265)	6.23±0.37 (n=75)	< 0.001	$6.04 \pm 0.45 (n = 81)$	$6.24 \pm 0.36 (n = 58)$	0.003		
Device total length, mm ^a	182.9 ± 59.0 (n = 265)	187.0 ± 96.6 (n = 75)	0.729	211.9±79.2 (n=81)	200.7 ± 90.3 (n = 58)	0.443		
Stent maximum diameter, mm ^b	$6.35 \pm 0.39 (n = 53)$	$6.36 \pm 0.51 (n = 75)$	0.849	$6.62 \pm 0.50 (n = 33)$	$6.48 \pm 0.57 (n = 58)$	0.151		
Stent mean diameter, mm ^b	$6.28 \pm 0.38 (n = 53)$	$6.23 \pm 0.37 (n = 75)$	0.271	$6.43 \pm 0.61 (n = 33)$	$6.24 \pm 0.36 (n = 58)$	0.019		
Stent total length, mm ^b	139.4±31.6 (n=53)	187.0±96.6 (n=75)	< 0.001	150.8 ± 47.0 (n = 33)	200.7 ± 90.3 (n = 58)	< 0.001		
Pre-procedural ABI ^c	0.56±0.18 (n=218)	0.57±0.17 (n=67)	0.831	$0.55 \pm 0.18 (n = 67)$	0.57±0.19 (n=53)	0.644		
Post-procedural ABI ^d	$0.86 \pm 0.14 \ (n = 170)$	$0.91 \pm 0.14 (n = 48)$	0.010	$0.86 \pm 0.15 (n = 51)$	$0.90 \pm 0.13 (n = 43)$	0.049		
Atherectomy								
Directional, n (%)	19 (7.1)	2 (2.6)	0.184	1 (1.2)	0	0.394		
Rotational, n (%)	33 (12.3)	2 (2.6)	0.010	4 (4.8)	0	0.139		
Concomitant treatment								
Iliac lesion, n (%)	41 (15.3)	11 (14.5)	0.859	17 (20.5)	9 (15.0)	0.511		
Infrapopliteal lesion, n (%)	57 (21.3)	9 (11.8)	0.071	8 (9.6)	7 (11.7)	0.785		
Approach direction								
Ipsilateral retrograde, n (%)	130 (48.5)	40 (52.6)	0.603 45 (54.2) 25 (41.7)		25 (41.7)	0.175		
Contralateral antegrade, n (%)	122 (45.5)	33 (43.4)	0.795	34 (41.0) 27 (45.0)		0.732		
Bidirectional, n (%)	16 (6.0)	3 (3.9)	0.776	4 (4.8)	8 (13.3)	0.123		
Technical success, n (%)	257 (95.9)	73 (96.1)	0.951	82 (988)	58 (96.7)	0.354		
Kinds of device ^e								
Continued								

	Intraluminal approach (n=3	344)	Subintimal approach (n = 143)					
Variables	DCB (n = 268, group A)	DES (n=76, group B)	p value	DCB (n=83, group C)	DES (n=60, group D)	p value		
IN.PACT, n (%)	216 (80.6)			69 (83.1)				
Lutonix, n (%)	27 (10.1)			13 (15.7)				
Ranger, n (%)	25 (9.3)			1 (1.2)				
Eluvia, n (%)		54 (71.1)			30 (50.0)			
Zilver PTX, n (%)		22 (28.9)			30 (50.0)			
Complications								
Distal embolization, n (%)	0	1 (1.3)	0.221	0	0	-		
Vascular rupture, n (%)	3 (1.1)	0	0.354	1 (1.2)	0	0.694		
Bleeding, n (%)	7 (2.6)	0	0.355	2 (2.4)	0	0.510		
Follow-up duration, days	342 (166-680)	240 (129-411)	0.028	421 (183-693)	212 (117–584)	0.013		

Table 1. Baseline characteristics. Values are means ± standard deviation or median (interquartile range) or numbers and percentages. *DCB* drug-coated balloon group (including bailout stent group), *DES* drug-eluting stent group, *BMI* body mass index, *COPD* chronic obstructive pulmonary disease, *PTA* percutaneous transluminal angioplasty, *CLTI* chronic limb-threatening ischemia, *TASC-II* Trans-Atlantic Inter-Society Consensus-II. The p values for continuous data were obtained from the unpaired t-test. The p values for categorical data from chi-square or Fisher's exact test. ^aData is available for 265, 75, 81, 58 limbs in Groups A, B, C, and D, respectively. ^bData is available for 53, 75, 33, 58 limbs in Groups A, B, C, and D, respectively. ^cData is available for 218, 67, 67, 53 limbs in Groups A, B, C, and D, respectively. ^dData is available for 170, 48, 51, 43 limbs in Groups A, B, C, and D, respectively. ^eIN.PACT (Medtronic Inc., Santa Rosa, CA, USA), Lutonix (Bard, Tempe, AZ, USA), Ranger (Boston Scientific, Marlborough, MA, USA), Zilver PTX (Cook Medical, IN, USA).

.....

lesion length were higher in the DCB group than in the DES group. In contrast, postprocedural ABI was significantly higher in the DES group than in the DCB group. The mean values of the maximum device diameter and mean device diameter were higher in the DCB group than in the DCB group. Using the SI approach, the number of male patients was higher in the DCB group than in the DES group. However, the postprocedural ABI and the mean values of the device maximum diameter and device mean diameter were larger in the DES group than in the DCB group. Supplementary Table S1 shows the baseline characteristics of IL and SI approaches in the DCB and DES groups. The number of patients with TASC II types A or B, those with concomitant infrapopliteal treatment, and those treated with Ranger (Boston Scientific, Marlborough, MA, USA) was higher with the IL approach than with the SI approach. The number of male patients, TASC-II types C or D, and the mean values of lesion length, maximum diameter of the device, mean diameter, and total device length were higher with the SI approach than with the IL approach. In the DES group, the Eluvia stent (Boston Scientific, Marlborough, MA, USA) was more frequently used for the IL approach in this study. The number of current smokers, the mean value of lesion length, and the number of those with a lesion length greater than or equal to 150 mm were higher in the SI approach than in the IL approach.

Clinical outcomes

The primary and secondary outcomes at 2 years are shown in Tables 2 and 3, Fig. 2A–D, and Central Illustration. At 2 years, in the IL approach, MALE occurred in 17.1% of patients in the DCB group and in 20.1% of patients in the DES group (adjusted hazard ratio [aHR] 0.533; 95% confidence interval [CI] 0.212-1.338; p=0.180, Fig. 2A). The adjusted clinically driven TLR (p=0.204; Fig. 2B), loss of clinical patency (p=0.304; Fig. 2C), and all-cause death (p = 0.708, Fig. 2D) rates were similar between the DCB and DES groups. In the SI approach, MALE occurred in 17.8% of patients in the DCB group and in 29.6% of patients in the DES group (aHR 0.525; 95% CI 0.181-1.524; p=0.236; Fig. 2A). The adjusted clinically driven TLR (p=0.236; Fig. 2B), loss of clinical patency (p = 0.764; Fig. 2C), and all-cause death (p = 0.667, Fig. 2D) rates were similar between the DCB and DES groups. These results were verified using a propensity (PS)-adjusted analysis. Supplementary Figure S1 shows the Kaplan-Meier curve analysis for MALE, TLR, loss of clinical patency, and all-cause death at 1 year and from 1 to 2 years after the index EVT. Supplementary Tables S2 and S3 show the results of the comparison of outcomes between the DCB and DES groups and between the IL and SI approaches at 1 year and from 1 to 2 years. As shown in Table 3, in the DCB and DES groups, the adjusted MALE rates at 2 years between the IL and SI groups were similar (p=0.788 and 0.634, respectively). Adjusted TLR, loss of clinical patency, and all-cause mortality rates were similar between the IL and SI approaches. Independent predictors of MALE at the 2-year follow-up in the total study population were determined using multivariate Cox proportional hazards models, and the results are summarized in Supplementary Table S4. Hypertension (aHR 2.246; p = 0.013), diabetes mellitus (aHR, 2.097; p = 0.025), and current smoking status (aHR 2.219; p = 0.037) were significant independent predictors of MALE.

Discussion

The main findings of this nonrandomized, multicenter cohort study are as follows: First, after adjusting for each IL and SI approach, the MALE, TLR, loss of clinical patency, and all-cause death rates at 2 years were not significantly different between the DCB and DES groups. Second, in the DCB and DES groups, the MALE, TLR,

	Intraluminal, n = 344									
	DCB(n=268 group)			Unadjusted		Multivariable-adjusted ^a		Propensity score-adjusted		
Outcomes	A)	DES (n = 76, group B)	Log-rank	HR (95% CI)	p	HR (95% CI)	р	HR (95% CI)	p	
MALE	25 (17.1)	8 (20.1)	0.369	0.695 (0.312-1.546)	0.372	0.533 (0.212-1.338)	0.180	0.654 (0.284-1.506)	0.318	
TLR	24 (16.8)	7 (18.9)	0.506	0.751 (0.323-1.750)	0.508	0.541 (0.209-1.397)	0.204	0.682 (0.286-1.627)	0.388	
Loss of clinical patency ^b	118 (64.5)	27 (58.2)	0.863	1.038 (0.683–1.577)	0.863	1.281 (0.799–2.055)	0.304	1.037 (0.676–1.593)	0.866	
All-cause death ^c	16 (10.5)	5 (8.4)	0.728	1.195 (0.437-3.265)	0.728	1.285 (0.347-4.760)	0.708	0.838 (0.294-2.393)	0.742	
	Subintimal, n = 143									
	DCB (n=83, group			Unadjusted		Multivariable-adjusted ^a		Propensity score-adjusted		
Outcomes	C)	DES (n = 60, group D)	Log-rank	HR (95% CI)	p	HR (95% CI)	р	HR (95% CI)	p	
MALE	9 (17.8)	9 (29.6)	0.197	0.549 (0.218-1.385)	0.204	0.525 (0.181-1.524)	0.236	0.432 (0.051-3.668)	0.442	
TLR	9 (17.8)	9 (29.6)	0.197	0.549 (0.218-1.385)	0.204	0.525 (0.181-1.524)	0.236	0.432 (0.051-3.668)	0.442	
Loss of clinical patency ^b	33 (57.4)	25 (59.1)	0.263	0.744 (0.442–1.252)	0.265	0.909 (0.487–1.694)	0.764	0.891 (0.315-2.522)	0.828	
All-cause death ^c	5 (9.0)	2 (7.6),	0.565	1.616 (0.310-8.418)	0.569	1.553 (0.209–11.56)	0.667	1.197 (0.225-6.381)	0.833	
Total, n = 487										
	DCB (n = 351, group	DES (n = 136, group		Unadjusted		Multivariable-adjusted ^a		Propensity score-adjusted		
Outcomes	(A+C)	(B+D)	Log-rank	HR (95% CI)	p	HR (95% CI)	р	HR (95% CI)	p	
MALE	34 (17.2)	17 (24.6)	0.100	0.615 (0.343-1.103)	0.103	0.549 (0.281-1.073)	0.079	0.579 (0.309-1.086)	0.089	
TLR	33 (16.9)	16 (24.0)	0.126	0.629 (0.346-1.145)	0.129	0.552 (0.280-1.089)	0.087	0.582 (0.306-1.107)	0.099	
Loss of clinical patency ^b	151 (62.8)	52 (58.8)	0.623	1.082 (0.789–1.484)	0.624	1.256 (0.880-1.793)	0.210	0.981 (0.513–1.877)	0.953	
All-cause death ^c	21 (10.1)	7 (8.2)	0.923	1.043 (0.443-2.457)	0.923	1.179 (0.403-3.447)	0.764	0.942 (0.391-2.273)	0.895	

Table 2. Clinical outcomes between the DCB and DES Groups according to different approaches at 2 years. *DCB* drug-coated balloon group (including bailout stent group), *DES* drug-eluting stent group, *MALE* major adverse limb events, *TLR* clinically driven target lesion revascularization, *HR* hazard ratio, *CI* confidence interval, *ABI* ankle brachial index. ^aAdjusted by age, male sex, previous history of stroke, current smoker, lesion length, stent mean diameter, stent total length, and post-procedural ABI (Supplementary Table S6). ^bClinical patency was defined as freedom of symptom aggravation by at least 1 Rutherford category change accompanied by a decrease in ABI > 0.15 or absence of restenosis \geq 50% on imaging studies such as duplex ultrasound, computed tomographic angiography, or intra-arterialangiography. ^cAnalyzed on a per-patient basis, the number of patients was 237, 71, 70, and 56 in Groups A, B, C, and D, respectively.

.....

loss of clinical patency, and all-cause death rates at 2 years were not significantly different between the IL and SI approaches. Third, hypertension, diabetes mellitus, and current smoking status were significant independent predictors of MALE in the total study population.

Previously, in patients with FPA disease, a BMS was deployed after PTA to overcome elastic recoil and neointimal hyperplasia¹¹. Restenosis, a concern associated with repeat revascularization after BMS deployment, has decreased with the introduction of modern stents¹² and DCBs¹³. The Zilver PTX stent was safe and clinically durable compared to standard endovascular treatment during the 5-year follow-up period¹⁴. In an RCT, DCBs were safe and effective in delaying restenosis, even in long, complex lesions and restenosis of the FP tract¹⁵. However, in the treatment of patients with FPA disease, there is still insufficient research on the relative superiority of DCB and DES in the treatment of patients with FPA, leading to ongoing debate^{9,10,16,17}. Recently, Mohapatra et al.¹⁸ suggested that DCBs are most frequently applied for medium-length lesions with minimal calcification, whereas DESs are predominantly used for the treatment of heavily calcified lesions. In our study, the presence of lesions with moderate/severe calcification was similar between the DCB and DES groups in both the IL and SI approaches. However, in the IL approach, despite a higher mean lesion length in the DCB group than that in the DES group (p = 0.039; Table 1), the primary and secondary outcomes were similar between the DCB and DES groups (Tables 2, 3).

Regarding lesions with FPA CTO, the cumulative 1-year restenosis rate was comparable between the IL and SI approaches, regardless of whether intravascular ultrasound (IVUS) was used $(p=0.40)^{19}$ or not $(p=0.710)^{20}$ during EVT. In their study¹⁹, the 1-year restenosis rate, defined as either a peak systolic velocity ratio exceeding 2.4 according to duplex ultrasound, or the reappearance of stenosis equal to or greater than 50% of the arterial diameter, as identified through angiography, was 43.4% in the IL approach and 41.0% in the SI approach. In our study, 1-year loss in clinical patency rate was 47.0% for the IL approach and 45.0% for the SI approach (Supplementary Table S5). Another study²¹ showed that the 1-year restenosis rate in the SI group was 45%. One possible consideration for the observed frequency differences could be variations in the definition of restenosis or loss of clinical patency, as well as differences in the inclusion criteria. Although there are lingering concerns regarding the safety and efficacy of the SI approach for CTO lesions of the FP region¹⁹, the outcomes of SI have been enhanced through numerous advancements in techniques and devices^{5,22}. Therefore, to date, there is no evidence favoring either the IL or SI route in terms of midterm results for BMS or drug-eluting devices^{5,19}.

	DCB, n=344									
	Intraluminal	Subintiaml (n = 83	Log-rank	Unadjusted		Multivariable-adjusted ^a				
Outcomes	(n = 268, group A)	group C)		HR (95% CI)	р	HR (95% CI)	p			
MALE	25 (17.1)	9 (17.8)	0.947	0.974 (0.454–2.090) 0.947		0.897 (0.408-1.973)	0.788			
TLR	24 (16.8)	9 (17.8)	0.871	0.939 (0.436-2.022)	0.871	0.862 (0.390-1.905)	0.713			
Loss of clinical patency ^b	118 (64.5)	33 (57.4)	0.354	1.200 (0.816-1.766)	0.355	1.168 (0.783-1.742)	0.445			
All-cause death ^c	16 (10.5)	5 (9.0)	0.917).917 1.055 (0.386–2.885) 0.917		1.177 (0.409-3.387)	0.762			
	DES, n=143									
	Intraluminal	Subintiaml (n = 60.		Unadjusted		Multivariable-adjusted ^a				
Outcomes	(n = 76, group B)	group D)	Log-rank	HR (95% CI)	p	HR (95% CI)	p			
MALE	8 (20.1)	9 (29.6)	0.507	0.725 (0.279–1.885)	0.509	0.766 (0.255-2.298)	0.634			
TLR	7 (18.9)	9 (29.6)	0.366	0.636 (0.236-1.713)	0.370	0.597 (0.190-1.873)	0.377			
Loss of clinical patency ^b	27 (58.2)	25 (59.1)	0.487	0.825 (0.479–1.422)	0.488	0.858 (0.463-1.591)	0.626			
All-cause death ^c	5 (8.4)	2 (7.6)	0.411	1.963 (0.381-10.13)	0.420	4.114 (0.650-26.04)	0.113			
	Total, n = 487									
	Intraluminal	Subintiaml		Unadjusted		Multivariable-adjusted ^a				
Outcomes	(n = 344, group A + B)	(n=143, group C+D)	Log-rank	HR (95% CI)	р	HR (95% CI)	p			
MALE	33 (17.8)	18 (22.0)	0.455	0.803 (0.452-1.428)	0.456	0.753 (0.415-1.366)	0.351			
TLR	31 (17.3)	18 (22.0)	0.345	0.756 (0.423-1.353)	0.347	0.695 (0.380-1.271)	0.237			
Loss of clinical patency ^b	145 (63.6)	58 (58.1)	0.770	1.046 (0.771–1.419)	0.771	1.041 (0.759–1.418)	0.803			
All-cause death ^c	21 (10.2)	7 (8.1)	0.600	1.257 (0.534-2.959)	0.601	1.548 (0.636-3.765)	0.335			

Table 3. Clinical outcomes between the intraluminal and subintimal groups after being treated with DCB or DES at 2 years. *DCB* drug-coated balloon group (including bailout stent group), *DES* drug-eluting stent group, *MALE* major adverse limb events, *TLR* clinically driven target lesion revascularization, *HR* hazard ratio, *CI* confidence interval, *ABI* ankle brachial index. ^aAdjusted by age, male sex, current smoker, lesion length, and device total length (Supplementary Table S7). ^bClinical patency was defined as freedom of symptom aggravation by at least 1 Rutherford category change accompanied by a decrease in ABI>0.15 or absence of restenosis \geq 50% on imaging studies such as duplex ultrasound, computed tomographic angiography, or intra-arterialangiography. ^cAnalyzed on a per-patient basis, the number of patients was 237, 71, 70, and 56 in Groups A, B, C, and D, respectively.

.....

After the first year, the drug coating on the self-expandable nitinol DES was no longer present²³. Hence, we compared the primary and secondary outcomes between the DCB and DES groups, and between the IL and SI groups at 1 year and between 1 and 2 years after the index EVT. The major clinical outcomes were similar between the DCB and DES groups and between the IL and SI approaches, except for variables with an extremely low number of events that precluded the calculation of adjusted hazard ratios (Supplementary Tables S2 and S3). In the IL and SI groups, there was a trend toward higher MALE and TLR rates in the DES group than in the DCB group at one year; however, the difference between the two groups was not statistically significant (Supplementary Table S2).

In a previous report²⁴, restenosis appeared to plateau over time in the BMS group, in contrast to the ongoing restenosis observed in the DCB group during the specified time interval within a one-year period. However, Bausback et al.⁹ found that the introduction of BMS along with DCB did not result in signs of persistent restenosis over time, showing results similar to those with DCB alone. In our study, the rates of lesions treated with DCB and bailout stenting were low in the IL group compared to those in the SI group (20.5% vs. 41.0%, p < 0.001; Table 1). Furthermore, average total stent length $(150.8 \pm 47.0 \text{ mm})$ was more than half of the total lesion length (263.9±116.2 mm). According to a recent report²⁵, treating FP CTO lesions with a DCB showed that the 1-year freedom from restenosis in the IL approach was significantly lower compared to the SI approach (77.0% vs. 84.2%, respectively, p = 0.024) when wire passage (IL vs. SI) was monitored by IVUS during the PTA. In their study²⁵, bail-out stenting was 9.7% in the IL group and 10.5% in the IL group, with no significant difference between the two groups (p = 0.69). We included the variables of maximum diameter, mean diameter, and total length of the device in our analysis to include DES without bailout lesions. Following the multicollinearity test, we incorporated variables showing noncollinearity into a multivariate Cox regression analysis (Supplementary Tables S6, S7). However, in the Toyoshima et al. study²⁵, while the IL group in their study clearly demonstrated excellent 1-year freedom from restenosis after DCB treatment compared to the SI group, there are some differences when compared to our study. First, as seen in Fig. 1, we focused on native FPA CTO lesions and excluded patients who had undergone previous bypass grafting or had in-stent restenosis, whereas they included patients with in-stent restenosis in their study population. Second, in bail-out stenting lesions, unlike our study, they included the presence or absence of device use and bail-out stenting as variables but did not present variables such as the maximum and average diameter and total length of the device or stent, which were not included in their PSM. Furthermore, we compared the IL and SI approaches not only in the DCB treatment group but also in the

Fig. 2. Kaplan–Meier curve analysis for MALE (A), TLR (B), loss of clinical patency (C), and all-cause death (D).

DES treatment group for the same study population. Third, in Republic of Korea, the use of IVUS during PTA is limited due to restrictions on medical insurance coverage, which makes its use practically limited. However, their use of IVUS during PTA to precisely determine the path of wire tracking in CTO lesions likely provided a relative advantage²⁶. IVUS allowed for more accurate assessment of lesion location, plaque characteristics, the need for bail-out stenting, and the size, position, and length of bail-out stents²⁷. This capability likely helped avoid unnecessary bail-out stenting and allowed for the selection of shorter stent lengths when bail-out stenting was required. The differences between our study and theirs²⁵ may be due to variations in study populations, the variables used to compare the two groups, and the use of IVUS, which may have led to different results. However, the high rate of bail-out stenting and the long average total stent length observed in group C of our study should be validated through further research.

As anticipated, the maximum and mean diameters of the devices were higher in the DES group than in the DCB group (Table 1, Supplementary Tables S1, S5). Similar to previous RCT results^{9,16}, the TLR rate was similar between the DCB and DES groups. Therefore, the DES group did not exhibit a lower restenosis rate despite the larger device diameter. In the DES group, sustained external pressure from the oversized nitinol stents led to arterial injury and neointimal hyperplasia, especially as the effectiveness of anti-restenosis drugs diminished²⁸.

As no comparative study exists between DCB and DES using IL and SI approaches, we compared the clinical outcomes of DCB and DES in patients with total occlusive FP lesions, based on the IL and SI approaches. We hope that our study results will provide valuable information to interventional cardiologists, radiologists, and vascular surgeons involved in EVT for total occlusive FP lesions.

This study had some limitations. First, this was a non-randomized registry study, and despite applying multivariable and PS-adjusted analyses, there still exists a significant potential for confounding bias and the influence of unmeasured variables. Second, because the choice of each device was at the discretion of the operator, controlling indication bias proved to be challenging. Third, the passage of the IL or SI through the wires was not confirmed by intravascular ultrasound during the procedure. Fourth, the number of enrolled limbs was small, making it difficult to draw definitive conclusions. Fifth, because both the DCB and DES treatment groups included various types of devices, the potential for heterogeneous treatment effects related to the specific devices used remains. Sixth, as this study did not include an evaluation of vessel patency through imaging studies for all participants, this is a major weakness. Finally, despite the reference vessel diameter being a crucial criterion for device selection and treatment strategies, the K-VIS ELLA, as a registry database, contains many missing values for reference vessel diameter, making it insufficient to evaluate the statistical significance between groups. We consider this a significant limitation of our study.

In conclusion, in this prospective observational multicenter registry study, both the DCB and DES strategies for patients presenting with FP total occlusive lesions demonstrated similar outcomes, regardless of the IL or SI approach.

Methods

Study population

Between January 2006 and August 2021, The Korean Vascular Intervention Society Endovascular Therapy in Lower Limb Artery Diseases (K-VIS ELLA) registry (ClinicalTrials.gov NCT02748226)²⁹, examined a total of 4393 limbs (2951 patients). Of these, 3746 limbs (2564 patients) underwent endovascular therapy (EVT) for FP arterial (FPA) disease. This dedicated registry compiled information on patients who underwent EVT across 19 medical institutions in the Republic of Korea. The exclusion criteria were as follows: (1) limbs with prior bypass surgery (n = 85, 2.3%); (2) in-stent restenosis (n = 493, 13.2%); (3) cases with no available follow-up data (n = 379, 10.1%) or insufficient data on the EVT devices used (n = 53, 1.4%); (4) non-total occlusive lesions (n = 1380, 36.8%); (5) lesions where plain old balloon angioplasty (POBA) was performed (n = 369, 9.9%) or those where BMS were deployed (n = 500, 13.3%). Finally, 487 limbs (434 patients) with total occlusive lesions of the native FPA treated with DCB or DES remained (Fig. 1). They were divided into IL (n = 344, 70.6%) and SI (n = 143, 70.6%)29.4%) approach groups. In each group, lesions were subdivided into the DCB group (including the bailout stent group; groups A [n = 268] and C [n = 83]) and the DES group (groups B [n = 76] and D [n = 60]) (Fig. 1). The study protocol was approved by the Institutional Review Board (IRB) of each hospital and the Severance Hospital IRB ethics committee (approval number: 4-2013-0463) and was conducted according to the principles of the 2004 Declaration of Helsinki. All prospectively enrolled participants provided informed consent, whereas participants in the retrospective cohort were exempt from providing informed consent. The enrolled data were collected from all participating centers using a web-based system. Initially, all patients underwent a thorough clinical assessment. Clinical and imaging data along with patient demographics and comorbidities were collected and retrospectively assessed. Follow-up evaluations were scheduled at 6, 12, and 24 months after the initial procedure. The median follow-up duration was 338 days (interquartile range 155-673 days), with 203 patients (46.4%) being followed for more than 1 year after the procedure.

Endovascular procedure and medical treatment

Experienced interventional cardiologists conducted all the endovascular procedures, and device selection for each case was at the operator's discretion. Typically, IL wiring with either a 0.018-inch or a 0.035-inch guidewire was preferred. If the wire passage was unsuccessful, an SI approach was employed to reenter the distal true lumen. The guidewire tip was maneuvered into the SI channel, forming a loop, and then advanced distally with the aid of a 4–5Fr catheter or a microcatheter until it re-entered the true lumen at the distal stump. We classified the wire passage as SI when the wire tip looped, and linear or spiral dissections were evident at the proximal and distal stumps²⁰. Predilatation using a plain balloon was the standard procedure, except when the limbs were initially treated with atherectomy. In cases with calcified or long-segment lesions, atherectomy devices were selectively employed for pretreatment following successful IL wire passage. The operator determined the dilatation pressure for the DCB, consistently setting it above the nominal pressure during a 180-s dilatation after achieving proper vessel preparation. Post-DCB treatment, if angiography revealed flow-limiting dissection or residual stenosis of 30% or more, provisional stenting with BMS was undertaken due to Korean medical insurance considerations, assigning these limbs to the DCB group. After implanting a bare-metal stent or DES, a non-compliant balloon was used for post-dilation in order to attain residual stenosis below 30%. Dual antiplatelet therapy with aspirin and clopidogrel was maintained for at least 6 months after the procedure unless contraindicated. Cilostazol was administered at the surgeon's discretion.

Study definitions and clinical outcomes

Technical success was ascertained with target vessel vascularization, maintaining residual stenosis below 30%, and when no flow-limiting dissection was observed. CTO is characterized by the presence of atherosclerotic plaques, resulting in complete arterial blockage that endures for a period exceeding 3 months². The primary outcome was the incidence of major adverse limb events (MALE)²⁹. MALE was defined as an above-ankle amputation or repeat revascularization of the index limb. Secondary outcomes included clinically driven target lesion revascularization (TLR), loss of clinical patency, and all-cause death. Clinically driven TLR was characterized by the need for reintervention within a 5 mm range proximal or distal to the initial treatment segment. This intervention is prompted by the presence of more than 50% angiographic diameter stenosis coupled with a simultaneous deterioration of symptoms or a reduction in the ankle-brachial index (ABI) exceeding 0.15 compared with the immediate post-procedural ABI²⁸. Clinical patency was defined as the absence of symptom exacerbation, indicated by a minimum of one Rutherford category change, coupled with a reduction in the ABI greater than 0.15. Alternatively, it was determined by the absence of restenosis equal to or exceeding 50% on imaging modalities,

including duplex ultrasound, computed tomographic angiography, or intra-arterial angiography³⁰. Limbs (or patients) were tracked from the procedure date until the occurrence of an outcome event. The principal investigators at each participating center identified and formally adjudicated all clinical events.

Statistical analyses

Statistical Package for the Social Sciences (SPSS) software version 20 (IBM, Armonk, NY, USA) was used to perform statistical analyses. All data were analyzed on a per-limb basis, unless otherwise indicated. Values are means±standard deviation or numbers and percentages. We established a dedicated 'missing' category²⁸ for variables exhibiting more than a 4% absence of values. For variables with less than a 4% absence, we performed a singular imputation utilizing the group median and mode for continuous and categorical variables, respectively. The p values for continuous data were obtained using unpaired t-tests. p values for categorical data were obtained using the chi-square test or Fisher's exact test. Univariate analyses were performed for all variables in the DCB or DES groups and in the IL or SI groups; a p-value of < 0.05 was considered statistically significant. Subsequently, a multicollinearity test³¹ was performed for the included variables to confirm noncollinearity among them (Supplementary Table S6). We assessed the variance inflation factor values to gauge the extent of multicollinearity among variables. A variance inflation factor measurement greater than 5 was deemed to represent a high correlation³². To ascertain the presence of multicollinearity, we considered indicators such as a tolerance value below 0.1 or a condition index exceeding 10³³. Finally, the following variables were included in the multivariate Cox regression analysis: adjusted for age, male sex, previous history of stroke, current smoking, lesion length, mean stent diameter, total stent length, and postprocedural ABI (Supplementary Table S6). To address confounding variables, we conducted a PS-adjusted analysis using a logistic regression model. All the baseline characteristics outlined in Table 1 were considered in the PS-adjusted analysis (Supplementary Table S5). The c-statistic for the PS-matched (PSM) analysis in this study was 0.894. Using the nearest available pair-matching method in a 1:1 ratio, patients in the DES group were matched to those in the DCB group. The caliper width was set as 0.05. The results of the collinearity test for MALE between the IL and SI groups are presented in Supplementary Table S7. Different clinical outcomes were assessed using the Kaplan-Meier curve analysis, and differences between the groups were examined using the log-rank test. Statistical significance was defined as p < 0.05.

Data availability

Data is contained with the article or Supplementary Material.

Received: 18 January 2024; Accepted: 30 August 2024 Published online: 11 September 2024

References

- 1. Criqui, M. H. et al. Lower extremity peripheral artery disease: Contemporary epidemiology, management gaps, and future directions: A scientific statement from the American Heart Association. Circulation 144, e171–e191 (2021).
- 2. Rogers, J. H. et al. Overview of new technologies for lower extremity revascularization. Circulation 116, 2072–2085 (2007).
- 3. Banerjee, S. *et al.* A percutaneous crossing algorithm for femoropopliteal and tibial artery chronic total occlusions (PCTO algorithm). *J. Invas. Cardiol.* **31**, 111–119 (2019).
- Bisdas, T. et al. Tips and tricks to cross chronic total occlusions in the superficial femoral artery. J. Cardiovasc. Surg. 60, 567–571 (2019).
- Jaff, M. R. et al. An update on methods for revascularization and expansion of the TASC lesion classification to include belowthe-knee arteries: A supplement to the Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). J. Endovasc. Ther. 22, 663–677 (2015).
- 6. Rocha-Singh, K. J. et al. Performance goals and endpoint assessments for clinical trials of femoropopliteal bare nitinol stents in patients with symptomatic peripheral arterial disease. Catheter. Cardiovasc. Interv. 69, 910–919 (2007).
- 7. Dake, M. D. *et al.* Sustained safety and effectiveness of paclitaxel-eluting stents for femoropopliteal lesions: 2-year follow-up from the Zilver PTX randomized and single-arm clinical studies. *J. Am. Coll. Cardiol.* **61**, 2417–2427 (2013).
- 8. Schneider, P. A. *et al.* Treatment effect of drug-coated balloons is durable to 3 years in the femoropopliteal arteries: Long-term results of the IN.PACT SFA randomized trial. *Circ. Cardiovasc. Interv.* **11**, e005891 (2018).
- 9. Bausback, Y. et al. Drug-eluting stent versus drug-coated balloon revascularization in patients with femoropopliteal arterial disease. J. Am. Coll. Cardiol. 73, 667–679 (2019).
- 10. Hayakawa, N. *et al.* Optimal intraluminal drug-coated balloon versus drug-eluting stent in patients with chronic total occlusion of the superficial femoral artery: A retrospective analysis. *Cardiovasc. Revasc. Med.* **43**, 87–96 (2022).
- 11. Schillinger, M. et al. Balloon angioplasty versus implantation of nitinol stents in the superficial femoral artery. N. Engl. J. Med. 354, 1879–1888 (2006).
- 12. Dake, M. D. *et al.* Paclitaxel-eluting stents show superiority to balloon angioplasty and bare metal stents in femoropopliteal disease: Twelve-month Zilver PTX randomized study results. *Circ. Cardiovasc. Interv.* **4**, 495–504 (2011).
- 13. Rosenfield, K. et al. Trial of a paclitaxel-coated balloon for femoropopliteal artery disease. N. Engl. J. Med. 373, 145-153 (2015).
- 14. Dake, M. D. *et al.* Durable clinical effectiveness with paclitaxel-eluting stents in the femoropopliteal artery: 5-year results of the zilver PTX randomized trial. *Circulation* 133, 1472–1483 (2016).
- 15. Schmidt, A. *et al.* Drug-coated balloons for complex femoropopliteal lesions: 2-year results of a real-world registry. *JACC Cardiovasc. Interv.* 9, 715–724 (2016).
- Liistro, F. et al. Drug-eluting balloon versus drug-eluting stent for complex femoropopliteal arterial lesions: The DRASTICO study. J. Am. Coll. Cardiol. 74, 205–215 (2019).
- Zenunaj, G. et al. Primary drug-coated balloon versus drug-eluting stent for native atherosclerotic femoropopliteal lesions: A systematic review and meta-analysis. Ann. Vasc. Surg. 92, 294–303 (2023).
- Mohapatra, A. *et al.* Nationwide trends in drug-coated balloon and drug-eluting stent utilization in the femoropopliteal arteries. J. Vasc. Surg. 71, 560–566 (2020).
- 19. Tomoi, Y. et al. Subintimal versus intraluminal approach for femoropopliteal chronic total occlusions treated with intravascular ultrasound guidance. J. Am. Heart Assoc. 10, e021903 (2021).
- 20. Kim, K. *et al.* Clinical outcomes of subintimal vs intraluminal revascularization approaches for long femoropopliteal occlusions in a Korean multicenter retrospective registry cohort. *Circ. J.* **82**, 1900–1907 (2018).

- 21. Ishihara, T. *et al.* Comparable 2-year restenosis rates following subintimal and intraluminal drug-eluting stent implantation for femoropopliteal chronic total occlusion. *J. Endovasc. Ther.* **23**, 889–895 (2016).
- Bhatt, H. et al. Crossing techniques and devices in femoropopliteal chronic total occlusion intervention. Cardiovasc. Revasc. Med. 18, 623–631 (2017).
- 23. Dake, M. D. *et al.* Polymer-free paclitaxel-coated Zilver PTX stents—Evaluation of pharmacokinetics and comparative safety in porcine arteries. *J. Vasc. Interv. Radiol.* 22, 603–610 (2011).
- 24. Steiner, S. *et al.* Midterm patency after femoropopliteal interventions: A comparison of standard and intervoven nitinol stents and drug-coated balloons in a single-center, propensity score-matched analysis. *J. Endovasc. Ther.* **23**, 347–355 (2016).
- Toyoshima, T. et al. Intraluminal vs subintimal drug-coated balloon angioplasty for the treatment of femoropopliteal chronic total occlusions. JACC Cardiovasc. Interv. 17, 608–618 (2024).
- 26. Song, L. *et al.* Intravascular ultrasound analysis of intraplaque versus subintimal tracking in percutaneous intervention for coronary chronic total occlusions and association with procedural outcomes. *JACC Cardiovasc. Interv.* **10**, 1011–1021 (2017).
- 27. Tsukagoshi, J. The mid-term effect of intravascular ultrasound on endovascular interventions for lower extremity peripheral arterial disease: A systematic review and meta-analysis. J. Vasc. Surg. 79, 963–972 (2024).
- Lee, S. J. et al. Device effectiveness for femoropopliteal artery disease treatment: An analysis of K-VIS ELLA registry. JACC Cardiovasc. Interv. 16, 1640–1650 (2023).
- 29. Ko, Y. G. *et al.* Baseline characteristics of a retrospective patient cohort in the Korean Vascular Intervention Society endovascular therapy in lower limb artery diseases (K-VIS ELLA) registry. *Korean Circ. J.* **47**, 469–476 (2017).
- Lee, Y. J. et al. Drug eluting stent vs drug coated balloon for native femoropopliteal artery disease: A two centre experience. Eur. J. Vasc. Endovasc. Surg. 61, 287–295 (2021).
- 31. Vatcheva, K. P. et al. Multicollinearity in regression analyses conducted in epidemiologic studies. Epidemiology 6, 227 (2016).
- 32. Kim, J. H. Multicollinearity and misleading statistical results. Korean J. Anesthesiol. 72, 558-569 (2019).
- Marcoulides, K. M. et al. Evaluation of variance inflation factors in regression models using latent variable modeling methods. Educ. Psychol. Meas. 79, 874–882 (2019).

Author contributions

Yong Hoon Kim and Ae-Young Her researched data and wrote the manuscript. Yong Hoon Kim, Ae-Young Her, Young-Guk Ko, Chul-Min Ahn, Seung-Jun Lee, Myeong-Ki Hong, Cheol Woong Yu, Jae-Hwan Lee, Seung Whan Lee, Young Jin Youn, Chang-Hwan Yoon, Seung-Woon Rha, Pil-Ki Min, Seung-Hyuk Choi, In-Ho Chae, and Donghoon Choi contributed to study design. Yong Hoon Kim, Ae-Young Her, Young-Guk Ko, Chul-Min Ahn, Seung-Jun Lee, Myeong-Ki Hong, Cheol Woong Yu, Jae-Hwan Lee, Seung Whan Lee, Young Jin Youn, Chang-Hwan Yoon, Seung-Woon Rha, Pil-Ki Min, Seung-Hyuk Choi, In-Ho Chae, and Donghoon Choi contributed to the collection research data. Yong Hoon Kim, Young-Guk Ko, Myeong-Ki Hong, Cheol Woong Yu, Jae-Hwan Lee, Seung Whan Lee, Seung-Woon Rha, Pil-Ki Min, Seung-Hyuk Choi, In-Ho Chae, and Donghoon Choi contributed to provide intellectual inputs for the discussion. Yong Hoon Kim, Ae-Young Her, Chul-Min Ahn, Seung-Jun Lee, Young Jin Youn, Chang-Hwan Yoon, and Pil-Ki Min contributed to data analysis and edited the manuscript. Yong Hoon Kim, Young-Guk Ko, Myeong-Ki Hong, Cheol Woong Yu, Jae-Hwan Lee, Seung Whan Lee, Seung Jin Youn, Chang-Hwan Yoon, and Pil-Ki Min contributed to data analysis and edited the manuscript. Yong Hoon Kim, Young-Guk Ko, Myeong-Ki Hong, Cheol Woong Yu, Jae-Hwan Lee, Seung Whan Lee, Seung-Woon Rha, Pil-Ki Min, Seung-Hyuk Choi, In-Ho Chae, and Donghoon Choi contributed to provide intellectual inputs for the discussion. Yong Hoon Kim, Ae-Young Her, Chul-Min Ahn, Seung-Jun Lee, Young Jin Youn, Chang-Hwan Yoon, and Pil-Ki Min contributed to data analysis and edited the manuscript. Yong Hoon Kim, Young-Guk Ko, Myeong-Ki Hong, Cheol Woong Yu, Jae-Hwan Lee, Seung Whan Lee, Seung-Woon Rha, Pil-Ki Min, Seung-Hyuk Choi, In-Ho Chae, and Donghoon Choi contributed to provide supervisor role during the full processes of manuscript submitting and editing. All authors have read and approved the manuscript, and all authors take full responsibility for this work.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-024-71745-0.

Correspondence and requests for materials should be addressed to Y.H.K. or Y.-G.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2024

The K-VIS ELLA Investigators

Woong Chol Kang¹¹, Sung-Ho Her¹², Yoon Seok Koh¹³, Byung-Hee Hwang¹⁴, Ae-Young Her^{1,33}, Weon Kim¹⁵, Cheol Woong Yu³, Sang Cheol Jo¹⁶, Sanghoon Shin¹⁷, Yun Hyeong Cho¹⁸, Woo-Young Chung¹⁹, In-Ho Chae⁷, Chang-Hwan Yoon⁷, Jung Kyu Han²⁰, Seung Whan Lee⁵, Seung-Hyuk Choi¹⁰, Young Jin Choi²¹, Su Hyun Kim²², Sang-Ho Park²³, Pil-Ki Min⁹, Donghoon Choi² & Young-Guk Ko^{2⊠}, Chul-Min Ahn², Young Jin Youn⁶, Jung-Hee Lee²⁴, Yu Jeong Choi²⁵, Sung Kee Ryu²⁶, Ju Han Kim²⁷, Sang-Rok Lee²⁸, Hoyoun Won²⁹, Ju Yeol Baek³⁰, Jae-Hwan Lee⁴, Jang-Hwan Bae³¹ & Hyun-Sook Kim³²

¹¹Gachon University Gil Medical Center, Incheon, Republic of Korea. ¹²Daejon St. Mary's Hospital, The Catholic University of Korea, Daejeon, Republic of Korea. ¹³Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea. ¹⁴St. Paul's Hospital, The Catholic University of Korea, Seoul, Republic of Korea. ¹⁴St. Paul's Hospital, The Catholic University of Korea, Seoul, Republic of Korea. ¹⁴St. Paul's Hospital, The Catholic University of Korea, Seoul, Republic of Korea. ¹⁵Kyung Hee University Hospital, Seoul, Republic of Korea. ¹⁶Gwangju Veterans Hospital, Gwangju, Republic of Korea. ¹⁷National Health Insurance Service IIsan Hospital, Goyang, Republic of Korea. ¹⁸Myongi Hospital, Goyang, Republic of Korea. ¹⁹Seoul National University Boramae Medical Center, Seoul, Republic of Korea. ²⁰Seoul National University Hospital, Seoul, Republic of Korea. ²¹Sejong General Hospital, Bucheon, Republic of Korea. ²²St. Carollo Hospital, Suncheon, Republic of Korea. ²³Soon Chun Hyang University Cheonan Hospital, Cheonan, Republic of Korea. ²⁴Yeungnam University Hospital, Daegu, Republic of Korea. ²⁵Eulji University Hospital, Daejeon, Republic of Korea. ²⁶Eulji General Hospital, Seoul, Republic of Korea. ²⁷Chonnam National University Hospital, Gwangju, Republic of Korea. ²⁸Chonbuk National University Hospital, Jeonju, Republic of Korea. ²⁹Chung-Ang University Hospital, Seoul, Republic of Korea. ³⁰Cheongju St. Mary's Hospital, Cheongju, Republic of Korea. ³¹Chungbuk National University Hospital, Cheongju, Republic of Korea. ³²Hallym University Sacred Heart Hospital, Seoul, Republic of Korea.