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Plant sensors are commonly used in agricultural production, landscaping, and other fields to monitor 
plant growth and environmental parameters. As an important basic parameter in plant monitoring, leaf 
inclination angle (LIA) not only influences light absorption and pesticide loss but also contributes to genetic 
analysis and other plant phenotypic data collection. The measurements of LIA provide a basis for crop 
research as well as agricultural management, such as water loss, pesticide absorption, and illumination 
radiation. On the one hand, existing efficient solutions, represented by light detection and ranging (LiDAR), 
can provide the average leaf angle distribution of a plot. On the other hand, the labor-intensive schemes 
represented by hand measurements can show high accuracy. However, the existing methods suffer from 
low automation and weak leaf–plant correlation, limiting the application of individual plant leaf phenotypes. 
To improve the efficiency of LIA measurement and provide the correlation between leaf and plant, we 
design an image-phenotype-based noninvasive and efficient optical sensor measurement system, which 
combines multi-processes implemented via computer vision technologies and RGB images collected by 
physical sensing devices. Specifically, we utilize object detection to associate leaves with plants and adopt 
3-dimensional reconstruction techniques to recover the spatial information of leaves in computational 
space. Then, we propose a spatial continuity-based segmentation algorithm combined with a graphical 
operation to implement the extraction of leaf key points. Finally, we seek the connection between the 
computational space and the actual physical space and put forward a method of leaf transformation to 
realize the localization and recovery of the LIA in physical space. Overall, our solution is characterized 
by noninvasiveness, full-process automation, and strong leaf–plant correlation, which enables efficient 
measurements at low cost. In this study, we validate Auto-LIA for practicality and compare the accuracy with 
the best solution that is acquired with an expensive and invasive LiDAR device. Our solution demonstrates 
its competitiveness and usability at a much lower equipment cost, with an accuracy of only 2. 5° less 
than that of the widely used LiDAR. As an intelligent processing system for plant sensor signals, Auto-LIA 
provides fully automated measurement of LIA, improving the monitoring of plant physiological information 
for plant protection. We make our code and data publicly available at http://autolia.samlab.cn.

Introduction

Plant sensor, a kind of agricultural sensor that can monitor 
plant growth [1–9] and environmental parameter [10,11], is 
widely used in agricultural production [12–14], landscaping, 
and other fields. Plenty of plant phenotype information col-
lected with plant sensors not only provides ample data for gene 
analysis [9,15–17] but also enables early detection [18,19] and 
intervention [20] for plant health issues. Lou et al. [15] point 
out that as one of the plant phenotypes, leaf morphology is an 

important factor affecting plant architecture, photosynthesis, 
and yields of cut chrysanthemums. Leaves, the vital organs 
of plants, feedback on the internal state of the plant and influ-
ence the environment [15,21] with their physical character-
istics [18,19,22–24] as shown in Fig. 1. Leaf inclination angle 
(LIA), the angle between the leaf surface and the horizontal 
plane of the plant, is a crucial and fundamental parameter in 
plant phenotype data. For example, Zhang et al. [25] note that 
the LIA is mainly regulated by brassinosteroid and auxin sig-
naling, which affects yield gain, reflecting the health status of 
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plants. Moreover, as described in [26], accurate LIA measure-
ments can help to calibrate hyperspectral images and improve 
the efficiency of imaging, suggesting that a proper solution can 
also improve the quality of high-throughput data measurements 
of other plant phenotypes. Therefore, the accurate LIA collection 
can facilitate the monitoring of plant growth status and also con-
tribute to the regulation of the growth environment.

To achieve accurate LIA collection, there are some different 
methods to explore the LIA measurements. As shown in Table 1, 
existing LIA acquisition methods consist of traditional contact 
measurements and batch indirect measurements. The tradi-
tional contact measurements use an inclinometer [27,28] or a 
3-dimensional (3D) digitizer [29], which is capable of precisely 
measuring the LIA parameters of every single leaf requiring 
tedious operations and stimulation of human contact. The 
other indirect measurements with the empirical equation 
[30–34], multidimensional environmental information [32], 
and radiation feedback [33–36] improve the efficiency of LIA 
measurement. The main reasons for the low level of automation 
in the above LIA measurement are that some collection meth-
ods are invasive [27], leaves can be hardly associated with 
plants, and leaf key points cannot be selected automatically. 
With the booming development of computer vision techniques 
[37], a rich variety of computer image-based methods are offered, 
which provide plenty of solutions for the functionality needed 
in LIA measurement [38]. However, these existing methods are 
still difficult to achieve a fully automated, noninvasive, and 
efficient measurement.

To this end, we propose an efficient LIA measurement system 
based on computer vision techniques and spatial geometric [39] 
transformation. It is a nondestructive, efficient, and more targeted 
acquisition system that improves the efficiency of LIA collection, 
reduces the manpower invested in the collection process, and 
avoids the harm of contact collection to plants. Motivated by the 
success of computer vision technologies, we consider a 4-stage 

multi-process solution to overcome the complex influences of 
LIA measurement. First, to solve the problem of invasive data 
collection, we choose RGB images as data input, which is char-
acterized by a low-cost and noninvasive acquisition process. The 
support of RGB images for a variety of other agricultural applica-
tions, such as pest and disease detection and yield estimation, 
gives our system the potential to be integrated with other RGB 
image processing functions. Second, recovering the spatial infor-
mation of the plant while preserving the leaf–plant association 
relationship inside the computational environment is the basis 
of LIA extraction. We utilize the object detection method to find 
the correlation relationship between leaves and plants, and apply 
the binocular reconstruction technique to implement the recon-
struction of the spatial information of plants. Furthermore, as 
for the leaf key points, accurate segmentation of the image and 
morphological analysis of the leaves are key to automating the 
whole process. Finally, it is a challenge to estimate leaf-horizontal 
plane correlations in computational space. We add an inclinom-
eter to capture the correlation between the imaging plane and 
the horizontal plane, and the LIA is captured through a coordi-
nate transformation. These function components address the 
challenges to full process automation of LIA measurements from 
different perspectives, enabling low-spend, high-efficiency, and 
practical LIA acquisition.

Specifically, first, the hardware part of the system consists 
of 2 relatively stationary RGB cameras with an inclinometer, 
and a set of input data consists of 2 RGB images with the angle 
between the hardware and the horizontal plane. Then, we com-
bine object detection, as YOLOv7 [40], and 3D reconstruction 
by RAFT [41] for recovering leaf phenotypic information in 
the imaging space, which is the basis for subsequent calcula-
tions. Next, as for the accurate extraction of the key points of 
leaves, we propose a surface segmentation based on the gradi-
ent of spatial depth and angles, which implements the precision 
segmentation for leaves. Finally, we put forward a method called 
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Fig. 1. The application of AI algorithms helps expand the range of applications of LIA. As a self-regulated LIA, its physical traits can affect pesticide absorption, crop yield, water 
loss, and illumination radiation. LIA also serves as feedback on internal plant properties. Through intelligent analysis, it is able to assess the superiority of genes, monitor the 
water deficit status of leaves, and analyze the efficiency of photosynthesis.
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leaf-image, which enables low-cost, batch-acquisition measure-
ments of LIA through the correlation relationship between leaves, 
the imaging plane, and the physical space. We have collected a 
large amount of real data and have evaluated it with respect to 
the time consumption, accuracy, and practicality of the above 
schemes, which shows that Auto-LIA can efficiently address 
existing problems such as labor-intensive, intrusive acquisition, 
and low automation.

The advantages of our system lie in the following:
• To best our knowledge, we first propose an image-phenotype-

based optical sensor measurement system for LIA, a low-cost and 
high-efficiency method with a strong relevance between leaf and 
plant.

• The noninvasive automation of the entire process is achieved 
through a multi-process approach, which dissects the structure 
of the leaves and reduces heavy labor.

• We propose a method of noncontact LIA measurement 
based on geometric transformations, which enables the batch 
output of angles and provides indicative ideas for measure-
ments of leaf morphology.

• Our solution demonstrates its competitiveness and usability 
at a much lower equipment cost, with an accuracy of only 
2. 5° less than that of the widely used light detection and ranging 
(LiDAR) schemes.

We expect that the introduction of Auto-LIA, a tool for fully 
automated LIA measurement, will improve the efficiency of LIA 
measurement and promote the development of intelligent agri-
culture. We also expect that it can provide a reference processing 
scheme for other plant phenotype data, which is difficult to 
achieve fully automated extraction.

Materials and Methods

Experimental Design
Indoor plants. Due to the importance of legumes and their 
widespread leaf similarity, research on LIA attributes of legumes 
is conducive to the advancement of multidimensional informa-
tion collection in multiple fields of crops. In addition, the rich 
leaf morphology, high adaptability, and short growth cycle of 
legumes reduce the dependence of Auto-LIA validation on 
seasonal orders. It also enables us to obtain abundant pheno-
typic data with rapid validation in a short period of time. Thus, 
we select Tetraodonta seedlings grown from 7 d to 15 d, as 

shown in Fig. 2A, which cover the whole stage of bean seedlings 
from germination to pre-drafting. Specifically, we use the seed 
soaking and sprouting method to germinate young string bean 
seedlings, which lasts about 2 to 3 d. Then, sprouts are planted 
into pots, and after about 4 d, the seedlings grow cotyledons. 
Next, for approximately 7 to 9 d, plant seedlings develop rapidly, 
a stage at which we collect rich plant phenotypic data. Finally, 
at the time of their drafting, the plants are too tall to capture 
the entire plant with the same photographic parameters, so we 
stop collecting data.

Outdoor plants. To verify the practicability of Auto-LIA, we 
extend the experimental data-capturing environment and exper-
imental subjects. As shown in Fig. 2A (Outdoor data sample), 
we choose castor grown in an outdoor environment as a sample, 
which is growing at Guizhou University (106.65°N, 26.45°E). 
We spend 2 d in an outdoor environment to collect and clean 
50 sets of data with light intensity to measure the performance 
of Auto-LIA’s algorithmic accuracy. In detail, there is no wind 
at the moment of collection, the temperature of the environ-
ment is at 16°C, and the average ambient light is 5,416 lux. By 
comparing the performance of Auto-LIA in indoor and outdoor 
environments, its robustness and utility can be further quanti-
fied. In addition, windy environments may have a potentially 
negative impact on the usability of the collected data. Strong 
windy environments, when the plants are shaking violently, 
exceed the acquisition efficiency of the system’s image acquisition 
tool, which may lead to defocusing during data acquisition, 
resulting in a decrease in the usability of the acquired data.

Data acquisition system. The selection of the sensor deter-
mines the cost of the system and whether the LIA measurement 
is invasive. RGB camera, a noninvasive acquisition tool, which 
is widely used in life and with low cost, provides a good choice 
for LIA measurement. Meanwhile, RGB images provide data 
support for a large number of agricultural applications, such 
as disease identification [42–44], yield estimation [45], and so 
on. The choice of RGB cameras for data acquisition provides 
more scalability for the system. Since the use of RGB cameras 
for spatial reconstruction only captures the correlation between 
the source plane and the spatial points, it does not provide 
sufficient data support for LIA acquisition. We add an incli-
nometer to the acquisition system for measuring the angular 
relationship between the source plane and the level surface. 
This not only minimizes the invasiveness of manual measurements 

Table 1. Comparison of different LIA measurements in 3 dimensions: time-consuming, cost of equipment, and range of application. The time-
consuming includes the time put into data acquisition and data processing. As for the application scenarios, we compare the precision of the mea-
surements as well as the magnitude of the measurement objects. In comparison, our approach exhibits faster acquisition, lower cost expense, and 
stronger leaf correlation.

Type Class

Time-consuming

Cost

Application

Acquire Process Granularity Definition

Indirect Commons [53] Short Short High Average Plot

Direct Hand-held [27] Long Long Low Single leaf All biological

LiDAR [22] Short Long High Average Plot

LDP [54] Short Long Low Average All leaves in view

Ours Short Short Low Single leaf Individual plant
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using inclinometers but also correlates the computational space 
with the ground. These 2 types of sensors form the source of 
information for the entire system.

Data collection. The focal length and wide-angle size of the 
camera limit the setting of the inclination between the system and 
the horizontal plane during LIA acquisition. If the shooting dis-
tance is fixed at 3 m, according to the imaging principle in reality, 
the plant can be fully photographed only when the angle between 
the LIA system and the horizontal plane is 18° to 38°. In order to 
verify the effect of the shooting angle on the measurements, we 

take values for the range uniformly over a span of 5°. Therefore, 
the data we collected are divided into 5 categories according to 
the shooting angle, which are 38. 7°, 32. 5°, 29.35°, 23. 4°, and 
18. 6°. For the LIA measurement work, our data consist of 2 syn-
chronized RGB images, the inclination from the data acquisition 
system to the horizontal plane, and the LIA of leaves under test. 
In the indoor environment, we employ 5 bean seedlings as materi-
als and construct 5 data collection periods, which are separated 
by different shooting angles. In each period, we sample data on 
individual plants and collect data from 2 different viewpoints of 
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a seedling by rotating the plants horizontally. In summary, for 
each plant, we take groups of images from 10 angles, and the 
indoor data collection process yields a total of 50 groups of 
data, i.e., 100 images, 50 shooting angles, and LIAs for all leaves 
can be recognized by the naked eye for accuracy assessment. 
As for the outdoor environment, 7 ramie plants make up our 
sample materials. We collect 10 pairs of data from different 
viewpoints, of which at least 3 plants are in each image. Moreover, 
the time of our data acquisition is limited to 0900 to 1700 every 
day so as to collect clear image information under natural light. 
Due to the time-consuming manual measurements of the LIA, 
and the quality of the captured images limiting the use of the 
data, it takes approximately 20 min to collect a valid piece of 
data after data cleaning.

Data processing. After the data acquisition system has been 
built, we fix the positional relationship between the 2 RGB 
cameras and calibrate them with the details described in the 
Supplementary Materials (Camera Calibration). The relation-
ship is the basis for the subsequent depth estimation function. 
Next, during the data acquisition process, we capture the scene 
information synchronously with 2 RGB cameras in a relatively 
fixed position. An inclinometer is used for measuring the angle 
between the imaging plane and the horizontal surface, and 
manually collecting the actual LIAs in a very short time inter-
val. Finally, all the data are aggregated together and computed 
with the evaluation platform.

Evaluation criteria. The evaluation metrics of this system 
focus on 3 aspects: processing time consumed, number of 
leaves recognized, and average error. The statistics of process-
ing elapsed time mainly consist of the elapsed time from 
image input to batch LIA output, which is an indicator of the 
efficiency of data processing. The recognition rate of leaves is 
calculated by Eq. 1, which is a reflection of the effectiveness 
of the segmentation algorithm. leaveseva is the number of 
leaves, which are segmented, and leavesgt defines the leaves 
we can distinguish from the image:

To verify the accuracy of the LIA acquisition, we adopt the 
metrics in Eq. 2 to estimate the accuracy of the acquisition process. 
LIAgt denotes the true value of LIA collected by the inclinometer, 
LIAm denotes the magnitude of leaf inclination estimated by 
Auto-LIA, and dist indicates the deviation of the measured value 
from the true value. In the statistical process, we use the differ-
ence between each recognized leaf and the true value as an 
evaluation metric of Auto-LIA.

Method
Overview
As shown in Fig. 2, the data acquirement system is displayed in 
part (A), and the framework of Auto-LIA is illustrated in part 
(B) to part (D). First, we use the binocular system described in 
the “Experimental design” section to capture images synchro-
nously and measure the angle between the imaging plane and 
the ground using an inclinometer at the same time. Then, we 
reconstruct the spatial information in computing space with the 
scheme shown in part (B). Next, to extract the locations of key 
points of the leaves, we use both segmentation and morphological 

transformation of the images, as shown in part (C). Finally, part 
(D) shows the association between leaves, the imaging plane, and 
the horizontal surface, which is the theoretical support for 
Auto-LIA.

Plant spacial information semantics
In order to obtain complete information about the plant, we con-
strue a spatial information perception method, which can pro-
vide refined data for LIA measurement. Specifically, the spatial 
information perception method consists of 2 parts: perception 
of semantic information of plants and reconstruction of spatial 
information. As shown in Fig. 2B (1), 2 techniques, object detec-
tion and image alignment, constitute the semantic perception of 
the plant. First, to obtain the semantic information, RGB images 
are fed into YOLOv7 [40] with its detailed parameters shown in 
the Supplementary Materials (Model Adaptation), following 
which the object type, coordinates, and confidence score in the 
images are output. Second, we iterate through all the detected 
objects and select the plant with the highest confidence so that 
the best quality plant in the image is included in the calculation. 
Third, we align the size by expanding in all 4 directions of the 
2 selected boxes output above, details of which will be described 
in the Supplementary Materials (Plant Area Alignment). Fourth, 
we crop the target plants from the original images according to 
the position of the expanded target boxes. At last, the spatial 
information of the plant is reconstructed with RAFT [41] as 
shown in Fig. 2B (2), whose inputs are the cropped images of the 
source plane and the target plane and model parameters are 
detailed in the Supplementary Materials (Model Adaptation). 
On the one hand, the semantic perception of plants reduces the 
size of the images involved in the subsequent computation, which 
reduces not only the computation time but also the negative 
impact of ambient noise on the measurements. On the other 
hand, the reconstruction of spatial information achieves nonin-
vasive spatial information perception and also reduces the equip-
ment cost incurred.

Acquisition of leaves’ key points
In the whole process, the extraction of the key points of leaves 
plays an important role in the calculation of LIA, which is the 
basis of LIA calculation and the key to reducing the computational 
complexity and improving calculation efficiency. The extraction 
of leaves’ key points consists of 2 processes: the accurate segmenta-
tion of leaves and the acquisition of leaves’ keypoints, which are 
described in detail below.

Segmentation with the gradient of leaves in space. To provide 
accurate segmentation of leaves and reduce the negative effect of 
similar RGB messages on the segmentation, we propose a seg-
mentation solution on the basis of the surface of leaves from the 
perspective of physical mechanics. Specifically, the leaves are 
quite thin and light with a tendency to bend, although the leaf 
surfaces of a single leaf will be within the same curved surface 
no matter how it is bent. Only when the force applied to the leaves 
exceeds the strength limit of the leaf, it will cause the leaf to frac-
ture, resulting in 2 different curved surfaces. Thus, we adopt the 
angular transitions between neighboring pixel points in the depth 
map as the basis for surface resolution.

As shown in Fig. 2C (3), 2 leaves in the physical space are 
finely segmented depending on the gradient difference between 
neighboring pixels. Specifically, we take 6 representative points 
to describe the idea of our algorithm in detail. Point L1, point C1, 
point R1 and point L1, point C1, point R1 are labeled on leaf 1 

(1)rate =
leaveseva
leavesgt

× 100%

(2)dist =
|
|
|
LIAgt − LIAm

|
|
|
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and leaf 2, respectively. Generally, for all depth estimation, we 
utilize a Euclidean coordinate system to represent the spatial 
information of leaves. The xOy plane corresponds to the imag-
ing plane, and the z axis represents the depth of the correspond-
ing spatial point. Angle θ1 and angle θ2 respectively correspond 
to the projections of ∠L1C1R1 and ∠L2C2R2 on the plane xOz, 
i.e., the gradient values of the spatial depth. The magnitude of 
the gradient change of the spatial depth difference of neighbor-
ing pixels is adopted as a metric, with a global threshold segTh 
set to implement the segmentation of leaves, and for enhancing 
the robustness of the algorithm, we also define a global anti-
noise threshold nTh called jump pixels. When the gradient is 
greater than the specified threshold segTh, the 2 points are 
considered to be in the same plane, as θ1 and θ2. Conversely, 
the 2 points are considered to be in different surfaces, as angle 
η. Overall, according to the above principle, we achieve accurate 
segmentation of leaves. Compared with threshold-based seg-
mentation and deep learning-based segmentation algorithms, 
our method realizes single-leaf-based segmentation, which pro-
vides a computational basis for the next step of accurately mea-
suring the angle of each leaf.

From the perspective of implementation, the process of 
leaf segmentation is shown in Fig. 3. After the 4-fold trans-
formation of depth map–spatial gradient map–angular map–
angular difference map, the pixels in the depth map are divided 
into 2 categories: leaf edge points and leaf surface points. 
We parse for the segmentation map, and the leaf surface 
points of the same leaf are clustered in one area. We use 
consecutive leaf edge points as the criterion for segmenta-
tion, and each region surrounded by leaf edge points is 
regarded as a separate leaf. Eventually, as illustrated in Fig. 
2C (4), to accurately distinguish the region to which a leaf 
belongs, we use the region size as a criterion to filter other 
regions.

Extraction of leaves’ key points with graphical morphology. 
In order to reduce the complexity of the calculation and improve 
the accuracy of the LIA measurements, we locate the 2 key 
points involved in our process. According to the LIA definition, 
there are 2 key points: the leaf tip point and the leaf root point, 

as shown in Fig. 2C (5). We process each leaf region with the 
morphological open operation to obtain the venation of a leaf, 
which implies the leaf tip and leaf root. The open operation 
can be described as follows: A ∘ B = (A ⊖ B) ⊕ B, where the 
symbols ∘, ⊖, and ⊕ indicate the open operation, the erosion 
operation, and the dilation operation in computer graphics, 
respectively. For the purpose of simplifying the calculation, we 
specify that the point where the leaf vein is closest to the top of 
the image is the leaf root point and the bottom point is the leaf 
tip point. Combining the depth information of these 2 key 
points of a leaf to implement the LIA measurement will be 
described in the next section.

Calculation of the LIA
In order to automate the whole process of noninvasive LIA 
measurement, it is indispensable to transform the measured 
parameters from the plant in the reconstructed space to the 
real world. In this system, leaves are indirectly associated with 
the horizontal surface through the imaging plane, so the 
description in this section will be organized around 2 aspects 
below: the angle calculation in camera coordinate and the angle 
conversion between the imaging plane and the horizontal.

Angle calculation in camera coordinate. The imaging plane 
is a bridge between the captured image and the real scene. To 
construct a complete automated LIA measurement process, 
we quantify the basis for the interconversion of leaf physical 
and imaging information. LIA, a real physical property, is 
calculated after an intermediate parameter: the angle between 
the leaf and the imaging plane. The correlation between the 
imaging plane and a single leaf is shown in Fig. 2D (6). Point 
A and point B represent the leaf root and leaf tip, respectively. 
O1 is the optical center of the camera’s reference plane. In 
Fig. 2D (7), after connecting line O1A and line O1B, the source 
plane and 2 lines intersect at points A′,B′, which are the pro-
jection points of points A,B on the imaging plane. Line AC is 
parallel to line A ′ B′ through the point A, and the angle α is 
the angle between the leaf and the imaging plane that we want 
to obtain. Then, according to the law of cosines, α can be 
converted by Eq. 3:

Depth map Calculate the gradient value 
between adjacent pixels.

Convert the gradients into 
angles with arctan.

Is the angle less than the 
specified  angle threshold?

The pixels represent the 
edge points of the leaf.

The pixels represent the 
surface points of the leaf.No

Yes
Calculate the 

angular difference 
between 

neighboring 
points

Fig. 3. Schematic diagram of gradient-based segmentation. First, the gradient difference between neighboring pixel points in the depth map is extracted. Next, the gradient values 
are converted into angle values with respect to the imaging plane. Finally, the correlation between the angle difference between neighboring pixel points and the prescribed 
threshold is compared. This correlation relationship is used to determine whether each pixel point is a leaf edge point or a leaf surface point.
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In addition, dA and dB denote the distance from point A and 
B to the imaging plane.

Then, AC can be calculated as follows: ||
|

����⃗AC
|
|
|
= dA ⋅

|
|
|

�������⃗A�B�
|
|
|
. 

As for BC, Eq. 4 and the relationship ����⃗BC = �������⃗O1C − ������⃗O1B simpli-
fies the calculation.

Another key parameter, ||
|

����⃗AB
|
|
|
, can be computed with Eq. 5, 

where ∠AO1C is the angle made by the center of light with the 
projection plane:

The above equation is the theoretical support for the angle 
between the leaf and the plane. Combining the position of the 
leaf key point on the projection plane with the 3D data of the leaf 
key point in the virtual space, we are able to obtain the specific 
value of the key angle α, which is a crucial input for the next 
stage.

Angle conversion between imaging plane and horizontal sur-
face. In order to implement the LIA measurement, we need to 
incorporate the intermediate parameters mentioned above with 
the inclinometer readings and convert them to get the measured 
values. In Auto-LIA, we replace intensive labor inputs with spatial 
geometric transformations. As shown in Fig. 2D (8), BH2 and 
O1H1 are 2 lines parallel to the ground plane, respectively, which 
is a strong correlation between the binocular system and the real 
scene in which the plant is located. In detail, O1 is the optical 
center of the source camera, while points A, B define the leaf root 
and tip of the target leaf, respectively. The link between the virtual 
and the real scene is the parallelism with the horizontal plane of 
line O1H and line AH. LIA ϕ, defined as the angle between the 
leaf surface and the ground plane, is determined by the angle 
between AB and AH2.

As shown in Fig. 2D (8), to visualize the geometric trans-
formation between the binocular system and the real scene 
more intuitively, we apply the straight line l to represent the 
source plane. O1C is the line from the optical center to the 
center of the imaging, perpendicular to the imaging plane. 
With the theorem that 2 straight lines are parallel and same-
side interior angles are complementary, LIA can be calculated 
as follows:

So far, we have realized the transition from the intermediate 
perspective to the target LIA and have achieved the noninvasive 
acquisition of LIA.

Results

Visualization
The visualization of the process facilitates the analysis of the 
availability and effectiveness of each process and the timely 
adjustment of the implementation of the program. Therefore, 
we record the intermediate process of Auto-LIA’s data processing 

flow and the experiment shows that our operation is explainable. 
Figure 4A shows 2 synchronous images of the input system. Due 
to the relative distance between the 2 cameras, the same plant 
is in different positions in the images. Figure 4B illustrates 
2 calibrated input images. After calibration, the image is 
deformed compared to the original. Figure 4C shows that the 
left and right images have been cut after detection and alignment 
without losing too much semantic information after the align-
ment operation. In Fig. 4D, the depth image obtained by con-
verting the disparity map detailed in the Supplementary 
Materials (Transform of Disparity Map), whose shape is similar 
to the target plant stored in the computational space, is shown. 
Figure 4E shows different regions of the image cut out according 
to the depth information, in which the leaves that can be distin-
guished by the naked eye are divided into different regions. Since 
the segmentation method proposed in this paper is more sensi-
tive to the depth falloff at the edges of the object, the overlapping 
leaves and the continuous untextured background region are 
more likely to be partitioned into the same region as shown in 
Fig. 4E. To minimize the effect of extra regions, we add a filtering 
operation as post-processing after segmentation so that Auto-
LIA can localize leaf regions more precisely.

Figure 4F is a schematic diagram of leaf vein extraction. Finally, 
we draw the LIA according to the position of the veins in Fig. 4G, 
and the LIA corresponding to the 2 veins is output. After all, each 
of the above steps has fully realized its target function, thus making 
our system more perfect.

Functional verification
To verify the role played by different functions within the Auto-
LIA system, we disable the detection, jump pixel 2 auxiliary func-
tions, and record the effect under different conditions. As shown 
in Table 2 and Fig. 5, the complete combination of these 2 meth-
ods demonstrates differential effects in terms of measurement 
accuracy and computation time. In detail, for the detection opera-
tion, it provides plant–leaf association and has a positive effect 
on the recognition rate, average error, as well as computation 
time, as demonstrated in Table 2. The reason is that the detection 
operation optimizes the measurement process of Auto-LIA from 
3 perspectives: retaining semantic information, decreasing noise 
interference, and reducing computation. First, an anchor frame 
retains all the leaves on the same plant in a single image, pre-
serving the association between the leaves and the plant. The 
algorithm used for stereo matching remains unchanged in this 
process, so both time and space complexity remain unchanged, 
but the size of the inputs involved in the computation is reduced. 
Second, the detection operation reduces the influence of irrele-
vant background on the spatial reconstruction, i.e., unimportant 
occlusions, thin structures, and other information that would 
substitute for inaccurate references are reduced. Finally, the pixels 
outside the anchor are no longer involved in the subsequent com-
putation by cropping, effectively improving the computational 
efficiency and reducing the data processing burden.

In addition, as far as the denoising operation jump pixel is 
concerned, its application facilitates the improvement of com-
putational efficiency and measurement accuracy. As shown in 
Fig. 5, the leaf without using jump pixel is divided into several 
discrete small regions by the noise. On the one hand, a large 
number of discrete small regions may cause a large amount of 
memory occupation during leaf region comprehension, which 
leads to a linear increase in computation time. On the other 
hand, these small regions demonstrate inaccurate segmentation 
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of the leaf region, which could cause inaccurate extraction of 
leaf key points and ultimately inaccurate LIA measurements.

Recommended parameters
To verify the influence of different segmentation thresholds and 
shooting angles on the Auto-LIA system, we select the segmenta-
tion threshold in a multiple relationship, decreasing from 1 to 
1/80. The effect of shooting angle and segmentation threshold on 
LIA acquisition is shown in Fig. 6. Under different segmentation 
thresholds, the recognition rate, average error, and average com-
putational time of each set of data are counted.

On the one hand, the computation elapsed time shows an 
overall upward trend as the segmentation threshold decreases, 
while the elapsed time between different shooting angles shows 
a similar effect. This indicates that the computation time has 

some correlation with the setting of the segmentation thresh-
old, while the correlation with the shooting angle is weak. The 
leaf vein extraction implements an open operation for each leaf 
region, and the time complexity of this operation reaches O(n), 
which is positively related to the number of leaf regions involved 
in the computation. At smaller thresholds, the more subtle gra-
dient changes of the leaf will be more easily captured, resulting 
in an excessive number of segmented regions during segmenta-
tion. Excessive segmentation regions lead to a rise in the num-
ber of leaves involved in the computation, which reduces the 
computational efficiency of the system.

On the other hand, the recognition rate of leaves is closely 
associated with the shooting angle and threshold of the system. 
The trend of the data demonstrates that the shooting angle has 
a greater effect on the recognition rate, while the segmentation 

Input images Detect and 
align.

Segment

Calibrated images

LIAs

Extract points

distortion correction

3D reconstrucion.

A B C D

G F
E

Fig. 4. Process visualization of Auto-LIA. (A) Two synchronous images of the input system. (B) Two calibrated input images. (C) Two cut images without losing too much 
semantic information. (D) Depth image of reconstructed (C). (E) Segmented area of the scene. (F) Schematic diagram of leaf vein extraction with leaves’ regions. (G) Result 
of Auto-LIA’s measurement. The whole visualization proves the soundness of our approach.
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threshold is more effective on the accuracy. The shooting angle 
affects the complete reconstruction of leaf spatial information, 
and the segmentation threshold affects the accurate localization 
of leaf key points. Therefore, we take 32.5° as the shooting angle 

with 0.5 as the segmentation threshold while adapting the 
Auto-LIA system to the real scene.

Accuracy
To assess the accuracy of LIA measurements, we conduct exper-
iments in an indoor environment. Specifically, we gather data 
indoors using a data acquisition device and simultaneously 
measure the true LIA of the leaves using an inclinometer, which 
constitutes a piece of data. The collected data are cleaned and 
classified into 5 groups according to the shooting angle, and 
each group consists of 10 pieces of data. In the data processing 
stage, we feed each piece of data into the system in turn. After 
that, we record the average error of each piece of data under 
different segmentation thresholds, pixel filter sizes, and jump 
pixels with Eq. 2. Finally, we count the minimum error of each 
piece of collected data under its optimal parameters and cal-
culate the average error of each group.

As shown in Table 3, the smallest average error is 5.42°, 
obtained at a shooting angle of 32.50°, while the current optimal 
LiDAR-based scheme reaches 2.5° [46], which indicates the 
competitiveness of Auto-LIA. Meanwhile, these results demon-
strate a strong correlation between the measurement accuracy 
of the system and the shooting angle, and we believe that this 
may be attributed to the following 2 reasons. On the one hand, 
with the adjustment of the lens, the light reflection of the back-
ground affects the information collection of the scene. In the 
process of data cleaning, we find that there are spots in some 
RGB images. These images are performed poorly in the process 

Table  2. Semantic of LIA measurement when using different 
functions. We verify the influence of the detection method and 
jump pixel in the measurement process. The evaluation statistics 
of the results include recognition rate, average error, and calcu-
lation time, which are marked as RR, AE, and CT respectively.

Number 
of leaves Detected

Jump 
pixel RR AE CT

Multiple True 2 100.00% 12.06 3.69

0 50.00% 20.65 70.65

False 2 50.00% 39.74 11.58

0 50.00% 25.10 305.00

Single True 2 100.00% 2.63 3.49

0 100.00% 8.1 75.39

False 2 0.00% - 9.60

0 100.00% 8.1 322.00

Measured: 59.10
Estimated: 67.00

Measured: 68.75
Estimated: 66.12

Measured: 68.75
Estimated: 60.65

Source images The result of LIA under 0 jump pixel The result of LIA under 2 jump pixel 

A B C

Fig. 5. Visualization of functional effects. (A) Two cropped source images are used for LIA estimations. (B) The segmentation results and LIA measurements are obtained by 
running the program without denoising operations. (C) The leaf results are obtained by running the program with the jump pixels set to 2. The set of images demonstrates 
that the denoising operation has a positive effect on leaf segmentation as well as on LIA measurements.
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of 3D reconstruction, and there are a lot of mismatches, which 
lead to inaccurate depth estimation and directly affect LIA 
acquisition. On the other hand, the angle between the imaging 
plane and the leaves might lead to a different occlusion of the 
leaf, which has a serious impact on the RGB information col-
lected by the lens. The ill-posed problem seriously affects the 
accuracy of the depth estimation of the leaf, which is currently 
a hot issue for continuous optimization in 3D reconstruction. 
The problem of occlusion caused by the shooting angle is also 
widespread in other LIA measurements such as LiDAR and 
LDP. Overall, our method provides acceptable accuracy, and 
with proper adjustment, our method can be applied to real-
world scenarios.

Practicality
In order to verify the practical effectiveness of Auto-LIA, we 
carry out validation and testing indoors and outdoors. Based 
on noninvasive considerations, the shooting distance needs to 
be more than 2 m away from the plant being photographed. To 
capture the complete plant while maintaining the shooting 

distance, the shooting angle is limited to 25.6°. We compare 
the luminosity and optimal accuracy of the outdoor and indoor 
scenes at similar shooting angles to verify the effect of different 
environments on Auto-LIA measurements.

The LIA measurement results for the data of the outdoor 
environment are presented in Fig. 7, while the LIA estimation 
results for the data of the indoor environment can be referred 
to Fig. 5. On the one hand, as shown in Fig. 7, the measured 
results in (A) show a small difference from the estimated 
results, while the difference is larger in (D). The difference is 
mainly caused by the hardware equipment, nonideal correc-
tion, and viewpoint occlusion during the 3D reconstruction 
process, which affects the accuracy of the depth estimation. The 
serialized process design leads to the result of depth estimation 
directly affecting all subsequent calculations. This is an unavoid-
able and continuously optimized problem that needs to be 
addressed constantly as deep estimation evolves. On the other 
hand, apart from the difference, the hue and depth information 
in various environments present different effects, but the LIAs 
of the leaves are all able to be figured out successfully. The afore-
mentioned statement suggests that the influence of diverse data 
acquisition environments on LIA estimation is minimized, 
thereby enhancing the robustness of our system.

We categorize the evaluation subjects into 3 groups as 
shown in Table 4, with the basis of the shooting angle and the 
environment.

There is a large gap in environmental parameters between 
group 1 and group 2, i.e., the light intensity in group 2 is 
17.19 times higher than that in group 1, and the temperature 
difference is 2°C, but the average error is 99.6% similar to that in 
group 1 with a similar shooting angle. This indicates the 
robustness of the Auto-LIA system itself for data acquisition 
in different environments. Meanwhile, the data in groups 1 and 
3 are taken in similar environments, where light intensity is 
close to 300 lux and temperatures are both close to 18°C at dif-
ferent shooting angles, but there is a 2.18° bias in their measure-
ment accuracy. The data suggest that the source of the larger 
average error is introduced primarily by the shooting angle in 
the case where only the shooting angle differs.

The 2 sets of controls above demonstrate that the shooting 
environment is not the main factor affecting the Auto-LIA 
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Fig. 6. Auto-LIA performance under different segmentation thresholds and different shooting angles. (A) Line plots of segmentation thresholds versus computational elapsed 
time. (B) Bubble plots between segmentation threshold and leaf recognition rate, and mean deviation of measurements.

Table 3. Evaluation of the accuracy of LIA measurements. The 
experimental data are divided into 5 groups according to the angle 
between the imaging plane and the horizontal plane. The mea-
surement accuracy of the system is optimal when the average 
error reaches the minimum, and its optimal measurement accuracy 
is obtained in group 2.

Group
Shooting 

angle
Measured 

average
Estimated 

average
Average 

error

No. θ LIAgt LIAm dist
1 38.70 61.17 63.25 6.90

2 32.50 59.70 63.83 5.42

3 29.35 57.06 61.77 8.07

4 23.40 52.56 50.57 10.25

5 18.60 62.16 75.77 13.61
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measurement accuracy, but the shooting angle could be the 
major factor.

Monitoring of water deprivation status
In order to validate whether LIA can provide feedback on the 
physiological state of the plant [47], we take the water depriva-
tion status of the plant as an example. In detail, building on the 
experimental process in the “Experimental design” section, we 
control the water intake of the plants and metric the mean LIA 
with the variance (Var) of the LIA at each time period. First, 
we choose 4 pots of bean seedlings and equally divide them 
into 2 groups: the dehydration group and the hydration group. 
For the hydration group, we water them every day at 9:00 AM 
to ensure enough water intake for the plants. As for another 
group, we keep them from watering for 4 d to reduce their 
hydration content. Next, after 4 d, the states of the plants of the 
dehydration group and hydration group are shown in Fig. 8A. 
Finally, we count the mean LIA and the variance of LIAs between 
9:00 AM and 5:00 PM and organize the data in 2-hour intervals. 
As shown in Fig. 8B, the mean LIAs produce a more drastic 
change over time in the well-watered condition, whereas the 
change in the water-deprived group is more sluggish.

Discussion
The phenotypic information of leaves is closely related to the 
inner state of the plant. The presence of water deficiency in the 
plant [47], the presence of diseases in the plant [4], and the state 
of vitamin deficiency in the plant can be expressed by the mor-
phology of the plant leaves. The LIA is an important quantitative 

basis for population classification [21], genotypic superiority and 
inferiority analysis [15], input loss estimation [48], and growth 
status monitoring [47] of plants. However, current widely used 
LiDAR solutions [22] require high equipment costs and high 
collection granularity, while hand-holding measurement [27] 
is labor-intensive. Auto-LIA provides a low-cost and short time-
consuming solution for LIA collection that can correlate leaf 
and plant information, which is essential for precision agricul-
tural development.

Biological relevance
As shown in Fig. 8, LIA in various physiological states within 
similar growth stages shows different trends over time. The 
retarded changes can be attributed to the fact that the synthesis 
and distribution of plant hormones are affected under drought 
conditions, which in turn affects leaf growth and morphological 
changes. At the same time, the variances of LIAs for each time 
period in the well-watered subgroup are always larger than 
those in the drought subgroup. These trends indicate that the 
distribution of LIA in the well-watered subgroup is more dis-
crete, and the plants are more sensitive to externally generated 
stimuli. Overall, the measurement of LIA by Auto-LIA can 
reflect plant physiology and further improve the accuracy of 
monitoring plant health.

In addition, Auto-LIA, a low-cost, noninvasive LIA collection 
solution, extends agricultural applications. As shown in Fig. 9A, 
LIA is one of the bases for analyzing plant genetic traits nowa-
days, while part of the application relies on LIA to have an effect.

First, as shown in Fig. 9B, LIAs at various heights of the same 
plant have different absorption and reflection efficiencies of light 

Estimated: 46.20
Measured: 56.75

Estimated: 28.61
Measured: 38.35

Estimated: 28.61
Measured: 38.35

Estimated: 54.15
Measured: 55.35

A B C D

Fig. 7. (A to D) Performance in practicality. We show the results of LIA measurements for different plants in the same environment. With ambient light, the photos captured by 
the camera are warm in tone. The examples show that Auto-LIA is able to properly measure in outdoor environments as well.

Table 4. Results of the real and estimated LIA at different shooting angles. The environment around the plant includes the scene around 
the plant and the light of the environment. The average error of LIA measurements varies less in dissimilar environments. As a practical 
validation group, LIA measurements in outdoor environments are shown in bold.

Group

Environment
Shooting angle Average error

Surroundings Light intensity Temperature

1 Indoors 315 18∘C 23.40 10.25

2 Outdoors 5,416 16∘C 25.60 10.21

3 Indoors 280 18∘C 29.35 8.07
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energy, which can be applied to precision agricultural manage-
ment to improve crop yields. In the traditional way, the precise 
collection program on a single plant basis requires a large 
human input and is time-consuming, and human activities may 
cause irritation to the plant. On modern farms, timely data 

collection and effective environmental feedback serve on 
crop yields’ enhancement. The low-cost, noninvasive, strong-
correlation Auto-LIA system achieves an environmentally sus-
tainable collection of LIA, which improves continuity and 
refinement of agricultural management. Therefore, we believe 
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Fig. 8. Association of LIA with plant physiological status, taking hydration as an example. (A) The plant on the left demonstrates the characteristic appearance of bent, shrinking, 
curly leaves under conditions of water deprivation. The plant on the right shows how the leaves look when well watered. (B) Changes over 8 h in the different plants’ LIAs. 
The mean LIAs of the 2 groups show different tendencies of change with time. The variances of LIAs for each group present the distribution of LIA in different time periods.
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Fig. 9. Expansion of LIA applications. (A) LIA influences light absorption and pesticide loss, and also contributes to genetic analysis and other plant phenotypic data collection. 
(B) LIA influences light absorption and reflection. (C) LIA is one of the reference values for crop genetic superiority analysis. (D) LIA influences the amount of loss during 
pesticide spraying. (E) LIA affects the accuracy of data collection for other plant phenotypes.

https://doi.org/10.34133/plantphenomics.0245


Jiang et al. 2024 | https://doi.org/10.34133/plantphenomics.0245 13

that with the gradual promotion of Auto-LIA, mechanisms for 
precise agricultural management, such as LIA-based control-
ling of light angles, would be established to enhance crop yields.

Second, some researchers believe that LIA is a manifestation 
of crop genetic superiority [15], which relates to organic pro-
duction. Figure 9C shows the application of LIA in breeding 
analysis nowadays, which is based on the theory that superior 
gene expression synthesizes more organic matter by regulating 
LIA. Auto-LIA supports the noninvasive collection of data while 
continuously and automatically obtaining the data, and the 
original frequency of the collection of LIA can be improved. 
For complex genetic information analysis, more massive data 
and more intensive collection frequency are conducive to improv-
ing the accuracy of plant genetic analysis. The deployment 
of a large number of Auto-LIA systems enables richer plant 
growth data to be fed back, which provides multidimensional 
and refined information reference for the intelligent breeding 
process.

Third, as shown in Fig. 9D, with plant protection becoming 
a hot topic in recent years, the negative correlation between LIA 
and pesticide loss rate [49] has gradually come into researchers’ 
sights. Auto-LIA, a highly efficient LIA collection method, can 
quickly measure the LIA value of the target plant. The use of 
refined spraying for different LIA is conducive to improving 
the utilisation rate of pesticides, which also leads to a reduction 
in the negative impact of agricultural inputs on the environ-
ment. We expect Auto-LIA to become one of the foundations 
of pesticide precision spraying technology, providing technical 
support for efficient pesticide spraying.

Finally, as described in [26], the accurate measurement of LIA 
has a facilitating effect on the acquisition of other plant pheno-
typic information. In addition to the visible light region, the 
invisible light field represented by Fig. 9D also provides abundant 
data for the precise measurement of plants. We believe that the 
proposal of Auto-LIA not only is a means of data acquisition but 
also provides a facilitating role for the measurement of other 
data.

Furthermore, we hope that as the difficulty of LIA collection 
decreases, LIA will become the basis for more research and 
more agricultural applications will emerge.

Equipment selection
The noninvasive and low-cost acquisition solution provided by 
Auto-LIA offers the feasibility of fine-grained continuous moni-
toring of LIA. Compared with the LiDAR solution, which con-
stantly emits laser particles into the environment, the RGB camera 
solution is less invasive, has lower equipment cost, and is more 
scalable. On the one hand, the equipment cost of the widely used 
RGB camera is much lower than that of LiDAR, which controls 
the cost investment of monitoring to a considerable extent. On 
the other hand, RGB images play an important role in agricultural 
applications. Using images as an information source can expand 
the functions of data processing systems, such as disease detection 
and yield prediction, without increasing acquisition equipment. 
Nevertheless, the adoption of RGB images as a data source also 
brings some problems, such as the information collected is easily 
affected by ambient lighting. The accuracy of indoor plant and 
outdoor environment measurements is shown in Fig. 7 and 
Table 4, and Auto-LIA shows less fluctuation in measurement accu-
racy under different light intensities. As these data shown, the 
scheme Auto-LIA suffers from some light robustness in ensuring 
that the plant leaves are clearly visible. Due to the characteristics 

of RGB imaging, we still need to avoid unclear imaging during 
acquisition. Unclear imaging will result in a marked loss of 
information carried in the image, leading to a decrease in estima-
tion accuracy.

Technical analysis
As shown in Fig. 6, the different technologies used in Auto-
LIA enhance the measurement in terms of both functionality 
and performance. In particular, the detection function enables 
the localization of the target plant and preserves the associa-
tion between the plant and the leaf, which enables targeted 
monitoring of LIA for a single plant. Nonetheless, serialized 
processes, which link the detection function to subsequent 
subprocesses, increase the dependence on the plant being suc-
cessfully targeted. The accuracy of the detection will have a 
direct impact on the measurement of the LIA value of a single 
plant. In dense plant environments, when multiple plants are 
retained in the same detection frame, it also leads to some 
misleading information about the collection of LIA for a single 
plant.

The “jump pixel” operation reduces the noise transfer in the 
overall data processing flow of the Auto-LIA system to a certain 
extent. However, denoising operations can also lead to loss of 
detail during image processing, due to the thinness of the leaves 
perpendicular to the lens, which can be easily mistaken for noise 
and ignored during segmentation. With technological innova-
tion, existing problems will be gradually optimized or even 
solved, and the LIA measurement will be further optimized to 
meet the needs of precise agricultural management and disci-
pline data collection.

Seen from the perspective of the entire computational pro-
cess, the operational approach to data processing is completely 
linear. There is a serial relationship between the 3 processes of 
detection, depth estimation, and segmentation so that the over-
all computational time consumption is the sum of these 3 pro-
cesses. In terms of individual algorithms, YOLOv7 and RAFT 
are both convolutional neural network (CNN)-based deep 
learning algorithms that have smaller model sizes and are faster 
to compute, but use more memory and CPU cores. In terms of 
individual algorithms, both YOLOv7 and RAFT are CNN-
based deep learning algorithms, which have smaller model 
sizes, faster computation speeds, and frameworks that pro-
vide a high degree of parallelization, which use more memory 
resources. In this study, a machine with only 32C and 40G of 
RAM is all that is needed, and a server of the same configura-
tion charges an economical $0.75 per hour. In this study, it can 
be implemented by a machine with just 32C and 40G RAM, 
which corresponds to the same configuration of the server, and 
its computational price is 5.43 per hour, which is very economi-
cal. The “acquisition of leaves’ key points” proposed in this 
study is the algorithm that most affects the computational speed 
in the current computing process. Among them, the adjacent 
region fusion and labeling method requires 2 traversals of the 
depth map. Although the computational complexity of this 
traversal operation is O(n), its computational time is linearly 
related to the number of image pixels involved in the computa-
tion and is logically difficult to parallelize, which leads to a lon-
ger computational time. However, there is no conflict between 
the resources used by these 2 types of operations, and there is 
less conflict between the high-speed, high-resource deep learn-
ing algorithm and the low-speed, low-occupancy segmentation 
algorithm with respect to the utilization of resources under 



Jiang et al. 2024 | https://doi.org/10.34133/plantphenomics.0245 14

parallel conditions. By means of parallel invocation, the utiliza-
tion of computational resources and the average response rate 
of computation can be effectively improved.

Error analysis
As an image-phenotype-based noninvasive and efficient optical 
sensor measurement system, Auto-LIA combines multi-processes 
implemented via computer vision technologies and RGB 
images. For the whole system, the error is mainly introduced 
by 3 processes: detection and localization, depth estimation, 
and gradient-based segmentation.

Key information extraction and alignment. In this study, we 
use a confidence score of 0.6 to filter regions, i.e., when the 
confidence score is less than 0.6, the corresponding alternative 
region is filtered. In addition, of all alternative regions above 
the set confidence threshold, the one with the highest score will 
be selected. Designing an accurate threshold to achieve the 
filtering of the target may result in some plants being missed, 
which leads to a reduction in the final recognition rate. From 
the perspective of design, the exact threshold to achieve target 
filtering may result in some plants being missed, which leads 
to a reduction in the final recognition rate. However, during 
the construction of the dataset provided in this study, we find 
that the better-quality plants have confidence scores centered 
above 0.8. The images with confidence levels lower than 0.6 
generally suffer from overexposure and artifacts, as well as the 
problem that the detected image with the highest confidence 
level between the left and right images does not belong to the 
same plant, which is very unfavorable for the use of subsequent 
distance measurement submethods based on RGB images.

Distance measurement. Building on the noninvasive char-
acter of stereo matching to measure spatial depth, we combine 
disparity mapping with a binocular system to accomplish depth 
measurements. The RAFT algorithm used in this paper is light-
weight and can be easily deployed on mobile devices. However, 
due to the difficulty in acquiring stereo matching datasets, our 
evaluation of the model properties can only refer to the per-
formance on the largest stereo matching dataset available for 
real-world scenarios: the KITTI-2015 [50]. On this dataset, the 
RAFT algorithm is able to achieve a percentage of erroneous 
(EPE > 3.0 px) foreground pixels among published methods, 
i.e., the number of pixels with an estimation bias of more than 
3 px during the estimation process averages at 2.96%. It is clear 
that this dataset has a large and unquantifiable domain gap with 
the data in the agricultural scenario, which has a profound and 
unmeasurable impact on our measurements. The depth estima-
tion session is arguably the most influential part of the whole 
process, as incorrect disparity estimation may cause the accu-
racy of the results of the later serial spatial-based segmentation 
methods. In order to minimize the impact of disparity estima-
tion on the whole process, we add a preprocessing process to 
the distance metric, which assists in reducing the impact of 
continuous mismatch points in complex scenes on the wrong 
matching of key plant regions by means of detection. Meanwhile, 
in the subsequent processing, we use a unique segmentation 
scheme to reduce the impact of discrete mutant mismatch points 
on LIA measurements.

Acquisition of leaves’ key points. The segmentation based 
on gradient provides an efficient tool for location leaves.

The advantage of this algorithm, where the segmentation 
process is serialized with the depth estimation, is that the 
edges are always on the same surface. For final measurement 

accuracy, Auto-LIA implements segmentation based on the 
angular difference between neighboring points in a straight 
line, for which a threshold value can be set. When an instan-
taneous increase in the rate of change of the angle between 
neighboring pixels occurs and is greater than the set angular 
threshold, the portion is recognized as being on another sur-
face, thereby reducing the effect of abrupt changes in edges 
and segmentation errors on the overall abnormally high value 
of the measurement. The adverse effect of the accuracy of the 
segmentation operation on the final result of the LIA measure-
ment is limited to a fixed range. As a result, the error in the 
final measurement arises more from inaccuracies in the dis-
tance measurement than from the accuracy of the segmenta-
tion itself.

Application scene and challenge
Auto-LIA, as a plant phenotypic information collection system, 
can be cost-effectively integrated into larger monitoring plat-
forms and combined with other collection systems to realize 
multi-faceted monitoring of plant physiological status and pro-
mote more precise agricultural management. In terms of pes-
ticide application, Lu et al. [49] investigated the correlation 
between pesticide application loss and LIA. The study shows 
that the spraying angle of pesticides can have an effect on the 
amount of pesticides absorbed by plants.

As one of the upstream tasks of pesticide precision applica-
tion, Auto-LIA provides a fine-grained plant phenotype data 
collection solution that can provide data reference for precision 
spraying. Combined with mechanized and automated spraying 
equipment, Auto-LIA is capable of assisting in reducing the 
waste of agricultural inputs. From the perspective of agricultural 
management, Auto-LIA provides results for agriculture in terms 
of both environmental protection and cost reduction.

Nevertheless, as an emerging technology, Auto-LIA still has 
a lot of improvements to be made. For example, during the col-
lection process, the problem that the target plants cannot be 
detected as a result of the large domain gap between the training 
set and the test environment may be encountered. In that case, 
we suggest to collect image data under specific application sce-
narios and use manual annotation to expand the generalizability 
of the images by fine-tuning to optimize the performance of the 
detection algorithm in order to expand the generalizability of 
Auto-LIA.

Moreover, the real-time computing technique is also one of 
the bottlenecks of Auto-LIA. In order to ensure the usability of 
the segmentation algorithm, our proposed gradient-based seg-
mentation operation has a linear relationship with the number 
of pixels in the selected region, which leads to a longer com-
putation time when the target region is large. We recommend 
that subsequent works strike a better balance between algorith-
mic effectiveness and algorithmic efficiency, and improve the 
usability of the Auto-LIA system by optimizing the segmenta-
tion algorithm.

Conclusion
Existing LIA measurement techniques suffer from low automation, 
high destructiveness, and low refinement. In order to improve the 
efficiency of LIA collection without causing damage to the plant, 
we propose a full-auto method named Auto-LIA. Auto-LIA tackles 
a noninvasive RGB imaging method for data acquisition, which 
reduces the environmental disruption and cost of the process. We 
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apply Auto-LIA to measure plants in different physiological states 
during the same time period, and the LIAs of the plants show dif-
ferent trends according to the attribute of plant water deficiency. 
Auto-LIA refines the management object from a plot to a single 
plant, which facilitates the development of precision agriculture 
management.

As for future applications, on the one hand, some previous 
work mentions that as a plant trait, LIA is an externalized expres-
sion of genotypic superiority or inferiority within the plant. We 
believe that Auto-LIA, a noninvasive collection, will provide 
multi-temporal dimensions of information for analyzing gene 
expression in plants. On the other hand, LIA is a feedback of leaf 
physical traits that can indirectly influence the efficiency of plant 
uptake of agricultural inputs and photosynthesis. We are opti-
mistic that Auto-LIA will provide a means of continuously opti-
mizing the plant growth process and increasing crop yields 
through sustainable regulation.
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