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This article delves into Alzheimer's disease (AD), a prevalent neurodegenerative condition primarily affecting the elderly. It is
characterized by progressive memory and cognitive impairments, severely disrupting daily life. Recent research highlights the
potential involvement of microRNAs in the pathogenesis of AD. MicroRNAs (MiRNAs), short non-coding RNAs comprising 20-24
nucleotides, significantly influence gene regulation by hindering translation or promoting degradation of target genes. This review
explores the role of specific miRNAs in AD progression, focusing on their impact on B-amyloid (AB) peptide accumulation,
intracellular aggregation of hyperphosphorylated tau proteins, mitochondrial dysfunction, neuroinflammation, oxidative stress, and
the expression of the APOE4 gene. Our insights contribute to understanding AD's pathology, offering new avenues for identifying

diagnostic markers and developing novel therapeutic targets.
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INTRODUCTION

Alzheimer’s disease (AD): an overview

AD stands as a leading neurodegenerative disorder, predomi-
nantly seen in the elderly. Characterized by early-stage subtle
memory lapses and declines in verbal fluency, AD is a major
contributor to dementia, accounting for 50-75% of all cases [1]. In
2010, ~35.6 million individuals suffered from dementia globally,
with projections suggesting a dramatic rise to 135 million by 2050
[1, 2]. In the United States alone, an estimated 6.7 million elderly
individuals currently live with Alzheimer's dementia, a number
expected to double by 2060 in the absence of medical
advancements. Notably, AD has become a significant cause of
death, ranking as the sixth leading cause in the U.S. as of 2019
https://doi.org/10.1002/alz.13016. While deaths from other condi-
tions like heart disease and HIV have declined, Alzheimer’s-related
fatalities have surged by over 145% since 2000 https://doi.org/
10.1002/alz.12638.

The pathological hallmark of AD is neuronal death and synaptic
loss, culminating in severe cognitive dysfunction. Key neuropatho-
logical indicators include extracellular $-amyloid (AB) accumula-
tion and intracellular accumulation of phosphorylated tau, leading
to neurofibrillary tangles (NFTs) [3, 4]. Diagnosis and assessment of
AD severity rely on memory and physical evaluations [5], with a
definitive diagnosis possible only post-mortem through autopsy
findings correlating A3 deposition with clinical symptoms [6]. The
challenge of diagnosing Mild Cognitive Impairment (MCI) at early
stages, a potential precursor to AD, underscores the need for
reliable biomarkers [7, 8]. MicroRNAs (MiRNAs) have emerged as

pivotal biomarkers, playing crucial roles in AD’s progression [9-12].
Differentially expressed miRNAs have the potential to be used as
biomarkers for diagnosing and monitoring AD progression. These
miRNAs regulate several biological functions, with the most
significant and important biological processes and pathways
related mainly to the maintenance of genomic integrity,
proteostasis control, regulation of apoptotic processes, and
neurotrophic support [13]. This review examines the changes in
miRNA expression and their consequent effects on neuronal
dynamics in the AD brain, discussing their significance in
advancing our understanding of the disease’s progression and
potential preventative strategies.

Molecular changes and pathogenesis of AD

In AD, the brain undergoes significant structural alterations,
including a drastic reduction in neuronal count, the formation of
NFTs composed of hyperphosphorylated tau, and the develop-
ment of AR or senile plaques [14, 15]. These plaques,
characterized by protein deposits outside cells encircled by
dystrophic neurites, predominantly consist of A, stemming from
aberrant metabolism of the 3-amyloid precursor protein (APP).
APP, a transmembrane protein, typically undergoes enzymatic
cleavage to produce soluble a-APP and 3-APP [16-18]. However,
in AD patients, this metabolic pathway malfunctions, leading to
the accumulation of AR, a process central to the pathogenesis of
AD [19, 20]. These deposits incite inflammatory responses and
oxidative stress, culminating in neuronal damage and death
[21-23].
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In addition to A deposition, the aberrant aggregation of tau
protein is a crucial aspect of AD pathogenesis. Normally, tau
protein, a microtubule-associated protein, maintains neuronal
structural stability [24]. In AD, however, tau undergoes abnormal
phosphorylation and aggregation, resulting in the formation of
NFTs [25, 26]. The exact mechanisms behind tau aggregation
remain partially understood, but key hypotheses include aberrant
phosphorylation and splice mutation of the tau protein. Hyper-
phosphorylation leads to tau proteins aggregating into fibrillary
tangles, while splice mutations can alter tau protein structure,
promoting aggregation [27]. These tangles accumulate inside
brain neurons, forming NFTs that disrupt normal nutrient
transport and signal transmission within neurons, leading to
neuronal dysfunction and death [28].

AD manifests in two primary forms: early-onset Alzheimer’s
disease (EOAD) and late-onset Alzheimer’s disease (LOAD) [29].
EOAD, typically occurring in individuals under 65, is a rarer genetic
variant of AD. LOAD, on the other hand, is the more common form
of dementia in individuals over 65 and is characterized by sporadic
AD attributed to abnormal amyloid mechanisms [30]. Both EOAD
and LOAD exhibit distinct memory impairments, with EOAD often
presenting with nonamnestic features and LOAD patients showing
increasing semantic memory disorders. These differences under-
score the necessity for tailored approaches in understanding and
treating each AD type [31-33].

Genetic research has pinpointed four genes implicated in
autosomal dominant or EOAD: APP, presenilin 1 (PS1), presenilin 2
(PS2), and apolipoprotein E (APOE). The formation of amyloid
plaques, primarily composed of AR peptides, is significantly
influenced by mutations within these genes [19, 34, 35]. Speci-
fically, mutations in APP and presenilin proteins are known to
elevate the production of AP peptides, especially the more
amyloidogenic APB42, which is closely linked to the development
of amyloid plaques in the brain. This evidence positions the
presenilin proteins as initial factors in the cascade leading to Ap42
accumulation and plaque formation [36, 37]. APOE, a key player in
lipid transport, is encoded by genes on chromosome 19 and plays
a protective role against AD. Present in brain cells like
oligodendrocytes, astrocytes, and microglia [35]. APOE comes in
three isoforms: E2, E3, and E4, with varying frequencies in the
population [38]. Interaction between APOE and AP peptides
suggests a complex relationship where APOE binds to AR,
potentially mitigating the formation of disease-associated fibrils
[39, 40]. APOES3, for instance, is thought to shield neurons from
AB’'s detrimental effects by facilitating its clearance [41]. In
contrast, the APOE4 variant is linked to increased risks of coronary
and cerebrovascular diseases, which are significant risk factors for
AD [42-44].

Beyond genetic predispositions, environmental factors play a
critical role in AD's pathogenesis. Incidences of head trauma with
loss of consciousness have been correlated with a higher
prevalence of AD [45]. Aging remains the most significant risk
factor, with the disease’s incidence rising as the population ages
[46, 47]. Lifestyle choices, including poor diet, lack of physical
activity, and exposure to pollutants [48-51], alongside cardiovas-
cular conditions like diabetes [52-54], hyperlipidemia, and
hypertension [55-57], have been associated with an increased
risk of AD. Additionally, long-term exposure to toxic substances,
such as pesticides and heavy metals, may elevate AD risk [58-60].
The aging process itself, marked by a decline in cellular function
and repair capacity, contributes to AD development [61]. However,
it's crucial to note that while these environmental factors are
linked to AD, they do not guarantee its onset [62, 63]. The
complexity of AD’s pathogenesis, with many aspects still
unknown, underscores the need for further research.

In summary, AD is a multifactorial disorder influenced by
abnormal metabolism of B-APP, AP deposition, tau protein
aggregation, genetic mutations, environmental factors, and the
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aging process. Understanding the molecular biology underlying
AD is vital for unveiling its pathology and identifying therapeutic
targets. Despite the availability of symptomatic treatments, a cure
for AD remains elusive, highlighting the urgency for continued in-
depth research [9-11]. Recent insights into the role of miRNAs in
AD offer promising directions for unraveling its pathological
processes and developing novel therapeutic strategies.

MIRNAS: REGULATORY FUNCTIONS AND IMPLICATIONS IN AD
MiRNAs are a class of small, non-coding RNA molecules, ranging in
length from 20 to 24 nucleotides, that play a pivotal role in the
regulation of gene expression within eukaryotic cells. These
molecules achieve regulation by binding to the messenger RNA
(mRNA) of target genes, affecting both transcriptional and
translational processes [64]. MiRNAs are integral to a myriad of
cellular functions, including cell proliferation, differentiation,
apoptosis, metabolism, and immune response. The biosynthesis
of miRNAs involves several key steps. Initially, miRNA genes are
transcribed in the nucleus into primary miRNA transcripts (pri-
miRNAs), which can extend to hundreds of nucleotides in
length [65]. These pri-miRNAs are then processed by the Drosha
enzyme and its cofactor into precursor miRNA (pre-miRNA)
fragments, ~70 nucleotides long [64, 66]. Subsequently, pre-
miRNAs are transported to the cytoplasm [67], where they are
further cleaved by the RNAse Ill enzyme Dicer and the TAR RNA-
binding protein (TRBP) into miRNA duplexes. A helicase unwinds
these duplexes, resulting in a single-stranded mature miRNA and
the degradation of the complementary strand [68]. Mature
miRNAs are then incorporated into the RNA-induced silencing
complex (RISC), forming active RISC-miRNA complexes that
modulate gene expression by interacting with target mRNAs
[69] (Fig. 1). MiRNAs regulate gene expression through two
primary mechanisms: by binding completely to the 3’ untranslated
region (3’ UTR) of target mRNAs, leading to mRNA degradation
and gene expression inhibition, or by partially binding to the 3’
UTR to repress the translation process, thereby reducing gene
expression [70, 71]. Interestingly, some miRNAs can also bind to
the 5/ UTR or coding sequences of mRNAs, in some cases even
enhancing translation [72].

A collection of 3028 genes associated with the cell cycle
identified in a 2016 study [73], represents a wide array of protein
classes. These include nucleic acid binding proteins (594),
transcription factors (305), cytoskeletal proteins (232), kinases
(174), phosphatases (111), and chaperones (84). Within this set,
2125 genes have been validated as targets of 424 miRNAs, with
miR-335 alone targeting 301 genes. This highlights the significant
role of miRNAs in post-transcriptional regulation, where individual
miRNAs can influence the expression of numerous mRNAs [74].
This capability makes miRNAs promising therapeutic targets for
complex diseases, such as brain disorders, due to their ability to
regulate multiple genes simultaneously.

MiRNAs have been implicated in the pathogenesis of various
diseases, including cancer [75], cardiovascular diseases [76], and
neurological disorders like AD [77]. In the context of cancer,
aberrant miRNA expression is closely associated with tumor
initiation, progression, and metastasis. In cardiovascular diseases,
miRNAs regulate processes such as cardiac myocyte proliferation
and apoptosis, affecting heart structure and function [78-84].
Specifically, in AD, alterations in miRNA expression levels have
been linked to key pathological features [85], including tau protein
phosphorylation and aggregation, mitochondrial dysfunction, and
AB peptide production (Table 1). These changes in miRNA activity
contribute to neuronal dysfunction and cell death, playing a
critical role in the disease’s progression. The study of miRNAs in
AD offers insights into the molecular mechanisms underlying the
disease and highlights the potential of miRNAs as biomarkers for
diagnosis and targets for therapeutic intervention [86, 871.
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Fig. 1 MiRNAs biogenesis. The microRNA (miRNA) biosynthesis pathway is categorized into classical and non-classical. (1) In the classical
pathway, miRNA genes are transcribed to generate primary miRNAs (pri-miRNAs), which are processed by Drosha and DGCR8 to form
precursor miRNAs (pre-miRNAs), and then transferred to the cytoplasm where Dicer generates double-stranded miRNAs, which ultimately
bind to RISC to regulate the translation of target mRNAs; (2) the non-classical pathway directly generates double-stranded miRNA. [miRNA
microRNA, Pri-miRNA primary microRNA), Pre-miRNA precursor microRNA, RISC RNA-induced silencing complex, mRNA (messenger RNA, ORF
open reading frame, Ago Argonaute, DGCR8 DiGeorge Syndrome Critical Region 8, Dicer Dicer enzyme].

In conclusion, miRNAs are crucial regulators of gene expression,
influencing a wide array of biological processes and disease
pathologies. The aberrant expression of miRNAs is intricately
linked to the development and progression of diseases, including
AD. Understanding the role and mechanisms of miRNAs in the
brain and their impact on disease progression is essential for
developing novel diagnostic and therapeutic strategies, particu-
larly in the context of neurodegenerative diseases like AD.

REGULATION OF AB BY MIRNAS IN AD

The hallmark complications of AD, such as memory impairment
and cognitive decline, are closely associated with changes in
synaptic plasticity [88]. One of the important characteristics of AD
patients is the alteration in synaptic plasticity, which affects the
brain’s ability to adapt and process information [89]. Genome-
wide transcriptome studies have revealed that many key genes
involved in synaptic activity are downregulated in AD [90, 91].
These miRNAs are implicated in the formation of senile plaques
and NFTs, with extracellular amyloid plaques as the most notable
feature. Postmortem analyses of AD patients reveal axonal and
dendritic deformations and synaptic disruption in hippocampal
and neocortical areas surrounding amyloid deposits [92]. The
accumulation of AP peptides, a byproduct of the APP processed
by BACET, plays a crucial role in neuronal cytotoxicity, represent-
ing a key pathogenic factor in AD [93].

Evidence increasingly supports the role of miRNAs in modulat-
ing A production. APP, a large transmembrane glycoprotein [94],
undergoes cleavage by B-secretases and y-secretases to produce
AB, marking the amyloidogenic pathway. Alternatively, the non-
amyloidogenic pathway involves a-secretase cleaving APP, pre-
venting AP peptide formation [95]. Disruption in the balance
between AP production and clearance leads to extracellular AB
accumulation, neurofibrillary tangle formation, neuronal degen-
eration, and loss of function [96]. The expression levels of AP are
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intricately linked to those of APP and BACE1. Mutations in
presenilin-1, a component of the y-secretase complex involved in
AB production, along with deficiencies in presenilin, inactive
mutants, y-secretase inhibitors, and loss of (B-APP or amyloid
precursor-like protein 2 (APLP2), influence p53 expression and
activity, thereby affecting AD progression [97]. Specific miRNAs
have been identified as either upregulated or downregulated in
AD, influencing AB production by modulating BACE1 and/or APP
expression. For instance, miRNAs such as miR-9, miR-29, miR-29a/
b-1, miR-124, miR-101, miR-107, miR-298, and miR-328 have been
associated with increased AR production [98-100].

MiRNAs and BACE1
In AD patients, the expression of miR-149, miR-34a-5p, miR-125b-
5p, miR-15b, miR-16, miR-124, and miR-374b-5p is significantly
reduced in serum and the frontal cortex, inversely correlating with
BACET mRNA expression [101-106]. Introduction of these miRNAs
into AB-induced AD cell models significantly decreases BACE1
mRNA levels and AP accumulation. Specifically, miR-149, miR-34a-
5p, miR-16, miR-29¢, and miR-374b-5p directly target BACE1 to
exert anti-AD effects [101, 102, 105-107]. Animal model studies
further corroborate these findings. In the hippocampus of SAMP8
mice, a common model for studying AD, researchers have
observed the downregulation of miR-340 and the upregulation
of BACE1 [108]. Additionally, in AD model mice, miR-22-3p and
miR-340 have been shown to significantly inhibit BACE1 and
reduce AP levels. MiR-22-3p indirectly affected MAPK14, while
miR-340 has been verified to directly target BACE1 [108, 109].
Moreover, exogenous overexpression of miRNAs can critically
influence AR production. For example, miR-29a expression in
transgenic mice leads to reduced endogenous BACE1 levels and
increased AP [110]. Conversely, miR-195 overexpression in N2a/
APP695 cells results in decreased AR levels, while its inhibition
increases AP levels. This suggests that reduced expression of
specific miRNAs may enhance BACE1 expression and function,
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contributing to the aberrant AR production characteristic of AD
[111]. Furthermore, overexpression of miR-186 in neural cells
decreases AP levels by inhibiting BACE1 expression, highlighting
the complex regulatory network of miRNAs in AD pathogenesis
and offering potential therapeutic targets for modulating A
production [112].

MiRNAs and APP regulation in AD

Clinical research indicates that specific miRNAs play a crucial role
in regulating amyloid APP levels, thereby influencing AD
pathology. For instance, overexpression of miR-106a and miR-
520c has been shown to significantly reduce APP levels in HEK-293
cells, suggesting a potential therapeutic pathway for AD by
targeting APP synthesis [113]. Additionally, evidence points to the
involvement of miR-16 in APP accumulation. Decreased miR-16
expression was observed to correlate with increased APP protein
levels in the brains of spontaneously aged accelerated mouse P8
(SAMP8), a model of AD. Conversely, miR-16 overexpression led to
reduced APP protein levels both in vitro and in vivo, highlighting
its regulatory impact on APP [99]. Similarly, lower expressions of
miR-17, miR-101, and miR-16 have been associated with elevated
APP levels [114], underscoring the inhibitory role of these miRNAs
on APP expression.

These findings illuminate the complex interplay between
miRNAs and key AD pathogenic factors such as BACE1, APP, and
AB, offering new perspectives on the disease’s etiology. However,
the precise contribution of diminished miRNA levels to AD
initiation remains to be fully elucidated. Beyond these miRNAs,
others like miR-128 have been linked to increased AB levels and
AD progression. Notably, miR-128 expression, alongside A levels,
was found to be significantly elevated in the cerebral cortex of
3xTg-AD mice compared to wild-type counterparts. In contrast,
miR-128 knockout mice demonstrated improved cognitive func-
tions relative to 3xTg-AD mice, suggesting a detrimental role of
miR-128 in AD [115]. Moreover, miR-126 inhibition has shown
neuroprotective effects against AB42 toxicity, indicating that both
miR-128 and miR-126 may play critical roles in AD progression
[116].

These insights into miRNA-mediated regulation of APP and A
production not only deepen our understanding of AD’s molecular
basis but also hint at novel miRNA-targeted therapeutic strategies
for managing or potentially altering the course of the disease.

MIRNAS, TAU PHOSPHORYLATION, AND AGGREGATION IN AD
The pathological hallmark of AD is not only characterized by Ap
accumulation but also by the hyperphosphorylation of tau protein,
leading to the formation of NFTs. This process is a critical event in
the disease’s pathogenesis. The detrimental impact of altered
miRNAs in AD extends beyond A pathology to include significant
associations with tau phosphorylation and pathological aggrega-
tion [117]. Tau, a protein encoded by the microtubule-associated
protein tau (MAPT) gene, plays a vital role in stabilizing
microtubules in neuron axons under normal conditions
[118-120]. However, in AD, tau becomes hyperphosphorylated,
losing its affinity for tubulin and contributing to neuronal
dysfunction and degeneration [120, 121].

Landgraf et al.'s genomic study of brain tissue miRNAs from AD
patients identified significant expression changes in over 250
miRNAs across various organ systems and cell types [122].
Notably, miR-132 and miR-425-5p levels were found to be
upregulated, whereas miR-124-3p and miR-512 levels were
downregulated in AD brains. MiR-132, in particular, has been
highlighted for its profound regulatory role within the central
nervous system (CNS). Conditional deletion studies have shown
that miR-132 double-knockout mice exhibit significant cognitive
deficits, implicating miR-132 dysregulation in a broad spectrum of
cognitive disorders [123, 124]. Furthermore, overexpression of

SPRINGER NATURE
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miR-132 in neuronal models has been linked to increased
neuronal apoptosis and enhanced tau phosphorylation, suggest-
ing its pivotal role in AD pathogenesis through the modulation of
tau phosphorylation pathway [125]. Similarly, miR-425-5p over-
expression has been associated with increased apoptosis, activa-
tion of glycogen synthase kinase-3(3 (GSK-3f), and enhanced tau
phosphorylation in AD models [126]. On the other hand,
miR-124-3p appears to offer a neuroprotective effect by inhibiting
abnormal tau hyperphosphorylation through the caveolin-1-PI3K/
Akt/GSK3pB pathway [127]. The reduced expression of miR-512 in
late-stage AD brains, along with its association with tau protein
anomalies, further underscores the complex role of miRNAs in tau
pathology [128].

Additional miRNAs, such as miR-483-5p, miR-125b-5p, have
been implicated in regulating signaling pathways indirectly
influencing tau phosphorylation [129, 130]. For instance, miR-
483-5p-mediated inhibition of ERK1/2 has been shown to reduce
tau phosphorylation, linking it to tau neuropathology in AD [129].
Moreover, melatonin’s effect on tau hyperphosphorylation,
potentially mediated through miR-125b-5p regulation of protein
phosphatase 2A (PP2A) activity, highlights the intricate molecular
interplay involved in tau regulation [130].

These findings collectively suggest that miRNAs play a critical
role in AD by modulating tau phosphorylation and aggregation,
offering potential therapeutic targets for intervention. The
alteration in miRNA expression patterns not only affects neuronal
survival but may also contribute to the accumulation of
pathogenic proteins like hyperphosphorylated tau, thereby
disrupting normal neuronal function and contributing to the
clinical manifestations of AD.

MIRNAS AND INFLAMMATORY RESPONSE IN AD

Inflammation significantly contributes to the pathogenesis of CNS
diseases, with neuroinflammation playing a pivotal role in AD
pathology [131, 132]. Glial cells, including microglia and astro-
cytes, are key players in the inflammatory response to AR toxicity
[133]. Microglia, the brain’s resident macrophages, exhibit
phagocytic functions that are crucial for AB clearance under
healthy conditions. However, Ap aggregates can induce microglial
activation, leading to the release of nitric oxide (NO), reactive
oxygen species (ROS), and pro-inflammatory cytokines such as IL-
18 and TNF-a [134, 135]. This inflammatory response can
exacerbate neuronal damage and accelerate AD pathology [136].
When activated in response to AD pathology, astrocytes transform
into reactive astrocytes that produce toxic factors through the
induction of their downstream target genes [137, 138]. The
interaction between neurons and astrocytes, particularly through
the glutamate/glutamine cycle, is essential for neurotransmission
and closely linked to astrocytic energy metabolism [139, 140]. AD-
induced metabolic remodeling in astrocytes significantly impacts
this cycle, contributing to disease progression [141].

Recent studies have highlighted the interplay between
neuroinflammation and autophagy in AD [142-144], with disrup-
tions in autophagic lysosome maturation and transport leading to
autophagic vacuole accumulation. This accumulation, indicative of
incomplete autophagy, correlates with AP aggregate buildup and
autophagic dysfunction [145]. The resulting imbalance in micro-
glial and astrocytic activity, coupled with impaired immune
interactions between neurons, affects synaptic plasticity, neuronal
survival, and cognition [146].

Microglia’s role in neuroinflammation

Microglia serve dual roles in brain health: they are crucial for
immune defense and maintaining homeostasis. Beyond acting as
the brain’s immune sentinels, microglia contribute to neuronal
proliferation, differentiation, and synaptic connection formation
[147]. Under physiological conditions, microglia patrol the brain,
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providing immune surveillance and supporting neuronal survival.
AR aggregates trigger microglia to undergo morphological and
molecular changes, adopting a disease-associated microglial
(DAM) phenotype characterized by the overexpression of specific
receptors, chemokines, and cytokines [148]. Pattern recognition
receptors (PRRs) such as Toll-like receptors (TLRs), the receptor for
advanced glycation end products (RAGE), and nucleotide-binding
oligomerization domain (NOD)-like receptors (NLRs), play a
significant role in detecting AP formation. For example, studies
have demonstrated that TLR signaling pathways might be
involved in AP clearance, positioning TLRs as potential therapeutic
targets for AD [149, 150]. Increased RAGE expression in AD brains
suggests its involvement in neuronal dysfunction and death,
mediating the effects of AR on neurons and microglia [151].
Additionally, NLRP3 inflammasome deficiency in AD models has
been shown to reduce AR deposition and tilt microglial responses
towards an M2 phenotype, indicating the NLRP3/caspase-1 axis’s
importance in AD pathogenesis [152]. The activation of PRRs leads
to the activation of various transcription factors, including NF-kB,
AP-1, CREB, and IRFs, which regulate a multitude of genes involved
in the inflammatory response. This intricate network of microglial
activation, PRR signaling, and transcription factor regulation
underscores the complex role of neuroinflammation in AD and
highlights the potential for targeting these pathways to modulate
disease progression [153].

The role of astrocytes in neuroinflammation

Astrocytes, the most abundant glial cells in the CNS, originate
from neural stem cells (NSCs) [154]. Their functions parallel those
of microglia to some extent, including maintaining homeostasis
and supplying neurons with metabolites and growth factors.
Astrocytes play a crucial role in synaptic formation, synaptic
plasticity, regulating the blood-brain barrier [155], balancing ions
and fluids, and scavenging free radicals. Moreover, they are
involved in bidirectional communication with neurons, essential
for maintaining CNS homeostasis and neuronal survival [156].
Under pathological conditions, such as in AD, astrocytes undergo
significant morphological and functional transformations, becom-
ing reactive astrocytes. This state is characterized by cellular
hypertrophy and the excessive release of neurotoxic factors.
Studies have highlighted the detrimental effects of reactive
astrocytes on neuronal health [157, 158]. Like microglia, astrocytes
detect AB aggregates via TLRs and RAGE, triggering the activation
of downstream genes and the production of various neurotoxic
factors [159]. AR exposure induces astrocytes to produce ROS,
nitric oxide (NO), and a range of cytokines and chemokines,
exacerbating neuroinflammation and contributing to the pathol-
ogy of AD [134].

MiRNAs in neuroinflammation

The inflammatory response in AD is closely linked to changes in
miRNA expression. Identifying the specific miRNAs involved in the
production of pro-inflammatory cytokines and proteolytic
enzymes is crucial for understanding their role in AD pathology.
For instance, studies have demonstrated that miR-146a over-
expression in microglia can mitigate cognitive deficits, attenuate
neuroinflammation, reduce AP levels, and prevent neuronal loss.
This is achieved by promoting a shift from the M1 pro-
inflammatory phenotype to the M2 anti-inflammatory phenotype
[160, 161]. This shift is associated with decreased production of
pro-inflammatory cytokines and enhanced phagocytosis, offering
neuronal protection. Conversely, data from human AD brains
indicate that increased levels of miR-146 may intensify neuroin-
flammation by targeting complement factor H (CFH), a key
regulatory protein involved in innate immunity and inflammation,
leading to a significant reduction in CFH expression [162].
Additionally, miR-132 has been implicated in the regulation of
inflammation, exerting a negative regulatory effect on
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inflammatory factors. In models of spinal cord injury, substances
like resveratrol have been shown to modulate miR-132 expression,
suggesting a protective role against AD-induced inflammatory
damage [163].

MiR-155, another multifunctional miRNA, has a distinct expres-
sion profile and is involved in various physiological and
pathological processes, including immunity and inflammation
[164, 165]. It regulates T cell function during inflammation and has
been found to be highly expressed in 3xTg AD animal models. The
upregulation of miR-155 leads to enhanced activation of microglia
and astrocytes, triggering the release of inflammatory mediators
and potentially contributing to AD progression through the
modulation of T-cell functions during inflammation [166].

These insights into the roles of specific miRNAs in neuroin-
flammation offer potential therapeutic targets for modulating
inflammatory responses in AD. Pharmacological modulation of
these miRNAs could provide novel strategies for mitigating
neuroinflammation and its detrimental effects on neuronal
health in AD.

MIRNAS AND OXIDATIVE STRESS IN AD

Oxidative stress (OS) is a pivotal factor in the etiology of AD and
other neurodegenerative disorders. It encompasses an array of
detrimental events, including enhanced production of ROS,
mitochondrial dysfunction, anomalies in neuronal energy meta-
bolism, alterations in neurotrophic signaling and cellular stress
responses, dysregulation of calcium handling, and impairments in
autophagy [167-169]. Unlike DNA, RNA is more vulnerable to
oxidative damage due to its predominantly single-stranded
structure, exposing its bases to oxidative agents. Moreover, the
proximity of cellular RNA to mitochondria, the primary sources of
ROS, exacerbates its susceptibility to oxidative modifications.
These modifications are not limited to protein-coding RNAs but
also affect non-coding RNAs, including miRNAs, thus influencing
the complex neurobiological landscape of the mammalian brain
[170, 171].

Clinical and laboratory studies across neurodegenerative
diseases like AD, Parkinson’s disease, and amyotrophic lateral
sclerosis have consistently highlighted OS as a critical early
pathogenic event [172, 173]. OS modulates the expression of
various miRNAs, which in turn regulate genes integral to the OS
response [174]. For instance, Jiao et al. discovered that a natural
coumarin derivative, amphorin, upregulated miR-107 expression,
leading to the inhibition of BACE1, a direct target of miR-107. This
interaction resulted in reduced AP production, suggesting a
therapeutic potential for miR-107 modulation in AD [175].
Similarly, miR-125b has been implicated in promoting APP and
BACE1 expression, and consequently, AP accumulation and
apoptosis, by influencing inflammatory and OS pathways via
SPHK1 targeting [176].

Furthermore, miR-125b induces GSK3{ activity and excessive
tau phosphorylation by targeting NCAM, implicating it in AD
progression [177]. MiRNA-146a, sensitive to NF-kB, modulates
inflammation by targeting the 3’ UTR of CFH, a crucial inhibitor of
brain inflammatory responses. Overexpression of miR-146a has
been shown to induce tau phosphorylation and modulate
superoxide dismutase 2 (SOD2) expression, underscoring its role
in AD pathology [178]. Dysregulation of miR-146a, therefore,
contributes to tau hyperphosphorylation, suggesting that inhibit-
ing this miRNA could offer a new therapeutic approach for AD
[179, 180]. MiR-200c emerges as a neuroprotective agent in the
context of AB-induced endoplasmic reticulum stress, supporting
cell survival and neurite outgrowth by downregulating PTEN and
modulating insulin signaling pathways. This indicates that miR-
200c could serve as both a biomarker and a therapeutic target in
AD, highlighting the potential of miRNAs as tools for early
diagnosis and treatment [181-183].
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The intricate relationships between miRNAs, OS, and neurode-
generative processes in AD point to a significant role for miRNAs
in cellular and biological responses to OS. Understanding these
mechanisms could unveil novel therapeutic strategies centered
around neuroprotective transcriptional repressors and excitatory
effects associated with OS responses, offering new avenues for
combating AD.

MIRNAS, MITOCHONDRIAL, AND SYNAPTIC DYSFUNCTION IN
AD

Synaptic basis of AD

The neuropathological hallmarks of AD include senile plaques
composed of AB aggregates and NFTs formed by hyperpho-
sphorylated tau protein within the brain [184-186]. Synaptic loss is
closely associated with cognitive decline in AD [187, 188],
prompting extensive research into the neurotoxic effects of AP
and hyperphosphorylated tau on synaptic integrity and neuronal
viability [189]. Synapses, crucial for neurotransmission and
cognitive functions, become compromised in AD, marking
synaptic dysfunction as a primary feature and a key driver of
disease progression [190]. AB's impact on synaptic communication
precedes synaptic loss, with AP oligomers disrupting neurotrans-
mitter release—an early event leading to synaptic dysfunction
[191]. Conversely, tau protein, under physiological conditions,
interacts with multiple cellular components, influencing cell
survival and function [192, 193]. Although NFTs comprise toxic
tau forms, tau-induced neuronal dysfunction, and toxicity do not
solely depend on these insoluble aggregates [194]. Emerging
evidence suggests that soluble tau oligomers, rather than NFTs
[195, 196], may exhibit pathological activity, interfering with
essential intraneuronal transport [197].

Recent study utilizing single-nucleus RNA sequencing (snRNA-
seq) have identified distinct microglial profiles associated with AD
pathology, linking them with A and tau burdens. The activation
of microglia by toxic proteins like A and tau not only aims at
clearing these pathogenic entities but can also overstimulate
microglial defense mechanisms, exacerbating neuroinflammation
and furthering neuropathological conditions [198]. Pathways such
as Trem2, Cx3cr1, and the granulin precursor pathway play roles in
modulating microglial responses and promoting the clearance of
harmful stimuli [199]. However, when microglial clearance
becomes compromised, chronic brain inflammation ensues,
serving as both a biomarker and a contributor to AD progression
[200].

Mitochondrial dysfunction and synaptic impairment are integral
to AD’s pathophysiology, affecting neurotransmission and mem-
ory [201]. The role of miRNAs in regulating neuronal mitochondrial
and synaptic functions has garnered increasing interest, with
numerous mMiRNAs implicated in mitochondrial and synaptic
dysfunctions identified in AD [190]. These miRNAs, many of which
are upregulated in the disease, highlight the potential of miRNA
modulation as a therapeutic strategy or biomarker for AD. The
dysregulation of miRNAs may play a pivotal role in AD’s onset and
progression, offering new insights into the molecular under-
pinnings of the disease and opening avenues for targeted
interventions to mitigate mitochondrial and synaptic dysfunction
in AD.

Integrating mitochondrial dynamics, biogenesis, and

miRNAs in AD

Mitochondria, the cellular powerhouses, are critical for generating
the bulk of cellular energy in the form of ATP, essential for
numerous cellular functions [202]. Their evolutionary origin,
theorized to stem from a symbiotic relationship between proto-
eukaryotic cells and aerobic bacteria, highlights their integral role
in eukaryotic cell biology [203]. This unique origin is supported by
similarities between mitochondrial and bacterial DNA, including
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their mode of propagation through binary division. Over time, this
symbiotic bacterium evolved into the mitochondria observed in
today’s eukaryotic cells.

Mitochondrial dysfunction is a hallmark of AD, characterized by
dynamic damage and impaired mitophagy, which are closely
linked to synaptic damage [204]. The laboratory of Reddy and
others has extensively explored how mitochondrial dysfunction
contributes to AD progression, emphasizing the association
between impaired mitochondrial dynamics and synaptic loss
[201, 205-207]. This dysfunction includes alterations in mitochon-
drial DNA, protein import, and respiratory function, all contribut-
ing to the neurodegenerative process.

Recent discoveries have highlighted the presence of mitochon-
drial miRNAs, which regulate genes essential for mitochondrial
function. These miRNAs have been implicated in the pathogenesis
of AD, affecting energy production and contributing to the
disease’s progression [208, 209]. For instance, miR-743a [210] and
miR-23a/b [211] disrupt the tricarboxylic acid (TCA) cycle and
oxidative phosphorylation (OXPHOS), leading to reduced ATP
production and neuronal death. Additionally, miR-210 [212], miR-
338 [213], and miR-34a [214] target OXPHOS-related enzymes,
further compromising neuronal energy demands. In neural cell
lines, miR-16-5p has been shown to target BCL-2, an anti-
apoptotic factor, inducing apoptosis and contributing to neuronal
loss observed in AD [215]. The dysregulation of mitochondrial
fusion protein 2 (mfn2) by miR-195 and the regulation of Nurr1
levels by miR-132 highlight the complex interplay between
mitochondrial miRNAs and mitochondrial function in the context
of AD [216].

Mitochondrial biogenesis is crucial for meeting the high energy
demands of neurons [217], particularly in the brain, which
consumes a significant portion of the body’s energy. This process
is vital for sustaining continuous synaptic activity and action
potential generation by neurons [218]. Kumar et al. found that
miR-455-3p promotes mitochondrial biogenesis, enhancing cell
survival and reducing AR toxicity [219]. Similarly, miR-34a [220]
and miR-23a/b [221, 222] have been identified as regulators of
mitochondrial biogenesis, offering neuroprotection against AP
toxicity by modulating the SIRT1 signaling pathway.

The intricate relationship between mitochondrial dysfunction,
miRNA regulation, and AD underscores the complexity of AD
pathology. Mitochondrial miRNAs play a pivotal role in regulating
mitochondrial dynamics, energy production, and synaptic func-
tion, directly impacting the progression of neurodegenerative
diseases like AD [223]. Understanding the mechanisms by which
mitochondrial dysfunction and miRNA dysregulation contribute to
AD offers potential pathways for therapeutic intervention, aiming
to restore mitochondrial function and neuronal health. As research
continues to unravel these complex interactions, the potential for
developing targeted treatments to mitigate the impact of
mitochondrial dysfunction in AD grows, offering hope for future
advancements in the management and treatment of this
debilitating condition.

Synaptic dysfunction and mitochondrial miRNAs in AD
Synaptic activity is fundamental to brain function and neuro-
transmission. It underpins our ability to process information, form
memories, and adapt to new experiences [224]. In AD, synaptic
dysfunction is a critical pathological feature leading to cognitive
decline, impaired neural processing, and ultimately, neuronal
death. The intricate relationship between synaptic activity and
mitochondrial function highlights the complexity of AD’s impact
on neuronal health.

MiRNAs play a significant role in modulating synaptic function
and neurotransmission. Specific miRNAs, such as miR-484, miR-
132, and miR-212, are crucial for maintaining synaptic integrity
and facilitating neurotransmitter release. miR-132 and miR-212, in
particular, have been shown to enhance neurotransmitter levels,
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thereby supporting efficient neural signaling. However, in AD, the
dysregulation of these miRNAs contributes to a decline in
neurotransmitter availability, limiting neural processing capabil-
ities and exacerbating cognitive deficits [225]. Moreover, Wingo
et al. found that lower miR-484 levels were associated not only
with a higher probability of having AD but also with greater
depressive symptoms [226].

The role of miRNAs extends beyond the regulation of synaptic
activity to encompass mitochondrial functions critical for energy
production and cellular health. Mitochondrial miRNAs are of
particular interest due to their potential involvement in AD
pathogenesis. These miRNAs regulate genes encoding proteins
essential for mitochondrial dynamics, energy metabolism, and
apoptosis, directly impacting neuronal survival and function. While
the significance of mitochondrial miRNAs in regulating mitochon-
drial health is well recognized, their specific contributions to
synaptic functions remain less understood. Current knowledge on
how mitochondrial miRNAs influence processes like mitochondrial
transport, calcium signaling, and synaptic vesicle formation is
limited. These processes are vital for effective neurotransmission
and synaptic plasticity, suggesting that mitochondrial miRNAs
could play a role in modulating these critical aspects of neuronal
function.

The investigation into miRNAs associated with synaptic activity,
neurotransmission, synaptic plasticity, and neurotoxicity has
revealed only a handful of candidates. This gap in knowledge
presents a significant opportunity for research aimed at identify-
ing new miRNAs involved in these processes and understanding
their regulation in the context of AD. Unraveling the specific roles
of mitochondrial miRNAs in synaptic dysfunction could shed light
on the molecular mechanisms driving cognitive decline in AD and
offer new targets for therapeutic intervention.

Interestingly, it has been suggested that a complex interaction
exists between miRNAs, mitochondrial dysfunction, and oxidative
stress. On the one hand, miRNAs can regulate mitochondrial
function, thus affecting the degree of oxidative stress; on the
other hand, mitochondrial dysfunction and oxidative stress also
affect miRNA expression and function [227, 228]. This interactive
relationship plays an important role in balancing the redox state
and maintaining cellular homeostasis within the cell, which is of
great significance for cell survival and function [229]. The
bidirectional influence between miRNAs and mitochondrial health
highlights the importance of these molecules in the cellular
response to oxidative stress and their potential as therapeutic
targets for diseases involving mitochondrial dysfunction.

MIRNAS AND APOE4 IN AD

The APOE4 allele is recognized as the most significant genetic risk
factor for sporadic Alzheimer's disease (sAD) [230], with its role
first proposed by Strittmatter and Roses and subsequently
supported by various genome-wide association studies (GWAS),
cellular, and animal model research [231-234]. APOE’s primary
function in the brain involves the transportation of cholesterol
within high-density lipoprotein particles, but its polymorphic
forms, namely APOE2, APOE3, and APOE4, show varied associa-
tions with AD risk, with APOE4 being strongly linked to increased
susceptibility to the disease [235].

APOE4’s contribution to AD pathogenesis is multifaceted,
affecting lipid and lipoprotein metabolism and influencing the
plasma levels of APOE. Notably, the presence of APOE4 alleles is
inversely related to miR-107 levels in AD patients, suggesting a
genetic interaction that modulates disease risk and progression.
The APOE E3/E3 genotype, conversely, is associated with higher
APOE concentrations and miR-107 levels, indicating a protective or
neutral effect regarding AD. Recent studies have illuminated the
role of specific miRNAs in modulating the effects of APOE4 in AD
[236-238]. For instance, the expression level of miR-195 in brain
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tissue and cerebrospinal fluid samples from AD patients carrying
the APOE4 allele is significantly lower compared to those without
the allele. This reduction in miR-195 levels correlates negatively
with cognitive performance, as measured by the Mini-Mental State
Examination (MMSE) score. However, upregulation of miR-195 in
animal models expressing the APOE4 allele has shown promising
results, including ameliorated cognitive deficits, reduced amyloid
plague burden, and decreased tau hyperphosphorylation [237].
Furthermore, the expression levels of miR-203, phosphorylated tau
(p-Tau), and APOE4 significantly increase in the brain tissue of
mice subjected to traumatic brain injury (TBI), linking TBI with an
elevated risk of AD pathology in the context of APOE4. The use of
miR-203 inhibitors has been shown to reduce the expression of
APOE4 and p-Tau levels, improving hippocampal long-term
potentiation (LTP) defects and ameliorating learning and memory
dysfunctions induced by TBI [238].

The intricate interplay between APOE4, miRNAs, and AD
pathology underscores the complexity of genetic and molecular
mechanisms contributing to the disease. APOE4 not only
influences lipid metabolism and amyloid-beta deposition but also
interacts with specific miRNAs to modulate disease progression
and severity. These findings highlight the potential of targeting
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miRNAs as a therapeutic strategy to mitigate the adverse effects of
APOE4 in AD, offering new avenues for research and treatment
development. Understanding the regulatory roles of miRNAs in
the context of APOE4 can provide insights into personalized
medicine approaches for managing AD, tailoring interventions
based on genetic risk factors and molecular pathologies.

CONCLUSION AND FUTURE PERSPECTIVE ON AD RESEARCH
AND MIRNAS

AD, traditionally characterized by the concurrent presence of A
plaques and tau protein tangles, is undergoing a paradigm shift in
its conceptual understanding. The simplistic linear causality
proposed by the original amyloid hypothesis is being reconsidered,
giving way to a more nuanced view that incorporates age-related,
protective, and disease-promoting factors interacting with the
disease’s core mechanisms. This paper has discussed critical
elements in AD pathogenesis, including AR deposition, intracellular
hyperphosphorylated tau aggregation, synaptic loss, neuroinflam-
mation, OS, and genetic variations, all of which are intertwined
with the dysregulation of a myriad of miRNAs (Fig. 2). MiRNAs
have emerged as pivotal molecules in the regulatory networks
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underlying AD’s complex pathology. Their ability to modulate key
pathogenic processes presents a promising avenue for research
and therapeutic intervention. Unlike the more complex molecular
neuroimaging techniques, such as structural magnetic resonance
imaging (MRI) and positron emission tomography (PET), analyzing
miRNAs in bodily fluids offers a relatively straightforward and
minimally invasive method for studying AD [239, 240]. This
simplicity, combined with their regulatory significance, positions
miRNAs as valuable biomarkers for early detection and progression
monitoring of AD.

To evaluate the potential of miRNAs as early non-invasive
markers for AD diagnosis, a meta-analysis was conducted to
screen differentially expressed miRNAs in blood exosomes of AD
patients. The study revealed significantly lower levels of blood
miR-212 and miR-132 in AD patients compared to healthy controls
[241]. Conversely, serum levels of exosomal miR-135a, miR-193b,
and miR-384 were markedly increased in AD patients [242].
Several miRNAs showing significant differential expression were
selected for validation and diagnostic testing. Notably, miR-132
demonstrated a robust ability to distinguish AD from controls in
blood assays [243]. Most AD patients exhibit memory cognitive
decline, often linked to impaired neurogenesis. Walgrave et al.
identified miR-132 as one of the most consistently downregulated
miRNAs in AD. Decreased miR-132 expression was shown to
impair adult hippocampal neurogenesis (AHN), a process crucial
for memory and cognitive plasticity. In mouse models, miR-132
replacement in the AD hippocampus restored AHN and amelio-
rated associated memory deficits. This effect was influenced by Ap
pathology [244]. Deng et al. found that miR-132 expression was
significantly downregulated, while MAPK1 expression was upre-
gulated in an AD rat model. They suggested miR-132 and MAPK1
have specific binding sites, and that miR-132 can inhibit MAPK1
expression. This inhibition reduced hippocampal oxidative stress
and iNOS expression, thereby improving cognitive function in AD
rats [245]. El Fatimy et al. demonstrated that miR-132 exerts
neuroprotective effects against AD through multiple signaling
pathways. miR-132 mitigates tau protein pathology associated
with tauopathy, reduces phosphorylated tau in P301S tau
transgenic mice, and enhances long-term potentiation [246].
These results suggests that modulation of miR-132 expression
could provide new therapeutic strategies for AD.

A comprehensive understanding of specific miRNAs’ regulatory
roles in AD is essential for advancing therapeutic strategies. Future
research should aim to elucidate the intricate molecular mechan-
isms by which miRNAs influence AD pathogenesis, with a focus on
their interaction with known risk factors and pathological markers.
The integration of large-scale GWAS and transcriptomics studies
has significantly advanced our understanding of the genetic basis
of AD [247]. By identifying associations between single nucleotide
polymorphisms and AD risk, as well as differentially expressed
genes associated with AD, researchers have gained insights into
the molecular mechanisms underlying the disease. One promising
approach involves analyzing molecular interactions within the
context of disease networks, known as interactomes [248]. This
method considers the collective dysfunction of disease-related
genes and their interactions, providing a comprehensive view of
AD pathophysiology at multiple levels [249].

Studies have revealed associations between AD and various
molecular networks, including those involved in lipid metabolism
and immune dysfunction. For instance, the APOE €4 allele has
been implicated in lipid metabolism, while immune dysfunction in
microglia has also been linked to AD [250-253]. Recent research
has identified a significant association between genetic variants in
TMEM106B and APOE mRNA levels in the human brain cortex,
highlighting its potential role in AD [254]. TMEM106B has also
been implicated as a risk gene for frontotemporal lobar
degeneration (FTLD) [255]. Further investigation has revealed
specific microRNA regulators of TMEM106B, such as miR-132 and
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miR-212, which are attenuated in FTLD. Overexpression of
TMEM106B disrupts the endosomal-lysosomal pathway and alters
intracellular protein levels, suggesting its involvement in AD
pathogenesis [256].

By combining genomics, proteomics, and bioinformatics
methods, we can construct miRNA-target gene networks, reveal-
ing the regulatory network of miRNAs in the pathogenesis of AD.
This approach will allow us to study the regulatory pathways and
signaling of miRNAs, providing a comprehensive understanding of
the complex mechanisms involved in AD. Ultimately, this knowl-
edge will support the development of relevant therapeutic
strategies for AD, offering significant insights into the disease’s
pathogenesis and potential treatment avenues.

The potential of miRNAs as therapeutic agents in AD is vast but
yet to be fully realized. Developing miRNA-based therapies will
involve overcoming challenges related to delivery, targeting
specificity, and off-target effects. Innovative approaches, such as
nanoparticle-based delivery systems, could provide solutions to
these challenges, enabling precise modulation of pathological
miRNA levels within the brain. As the field moves forward,
bridging the gap between research findings and clinical applica-
tions will be crucial. This transition will necessitate rigorous clinical
trials to validate the efficacy and safety of miRNA-based
diagnostics and therapeutics. Furthermore, personalized medicine
approaches, which tailor interventions based on individual genetic
and molecular profiles, could significantly enhance treatment
outcomes for AD patients.

In conclusion, miRNAs represent a frontier in AD research with
the potential to revolutionize diagnostics and therapeutics. As our
understanding of their roles in AD deepens, the prospects for
developing effective interventions to delay, halt, or reverse the
progression of this devastating disease become increasingly
tangible. The journey from bench to bedside is complex and
fraught with challenges, but the potential rewards for patients and
society are immense, driving the continued pursuit of knowledge
in this promising area of neuroscience.
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