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Pollutants‑mediated viral hepatitis 
in different types: assessment 
of different algorithms and time 
series models
Shengfei Pei 1, Li Yang 2, Huixia Gao 2, Yuzhen Liu 2, Erhei Dai 2, Fumin Feng 1* & Jianhua Lu 2*

The escalating frequency of environmental pollution incidents has raised significant concerns 
regarding the potential health impacts of pollutant fluctuations. Consequently, a comprehensive 
study on the role of pollutants in the prevalence of viral hepatitis is indispensable for the advancement 
of innovative prevention strategies. Monthly incidence rates of viral hepatitis from 2005 to 2020 were 
sourced from the Chinese Center for Disease Control and Prevention Infectious Disease Surveillance 
Information System. Pollution data spanning 2014–2020 were obtained from the National Oceanic 
and Atmospheric Administration (NOAA), encompassing pollutants such as CO, NO2, and O3. Time 
series analysis models, including seasonal auto-regressive integrated moving average (SARIMA), 
Holt-Winters model, and Generalized Additive Model (GAM), were employed to explore prediction 
and synergistic effects related to viral hepatitis. Spearman correlation analysis was utilized to identify 
pollutants suitable for inclusion in these models. Concurrently, machine learning (ML) algorithms 
were leveraged to refine the prediction of environmental pollutant levels. Finally, a weighted quantile 
sum (WQS) regression framework was developed to evaluate the singular and combined impacts of 
pollutants on viral hepatitis cases across different demographics, age groups, and environmental 
strata. The incidence of viral hepatitis in Beijing exhibited a declining trend, primarily characterized 
by HBV and HCV types. In predicting hepatitis prevalence trends, the Holt-Winters additive seasonal 
model outperformed the SARIMA multiplicative model ((1,1,0) (2,1,0) [12]). In the prediction of 
environmental pollutants, the SVM model demonstrated superior performance over the GPR model, 
particularly with Polynomial and Besseldot kernel functions. The combined pollutant risk effect on 
viral hepatitis was quantified as βWQS (95% CI) = 0.066 (0.018, 0.114). Among different groups, 
PM2.5 emerged as the most sensitive risk factor, notably impacting patients with HCV and HEV, as 
well as individuals aged 35–64. CO predominantly affected HAV patients, showing a risk effect of 
βWQS (95% CI) = − 0.0355 (− 0.0695, − 0.0016). Lower levels of PM2.5 and PM10 were associated with 
heightened risk of viral hepatitis incidence with a lag of five months, whereas elevated levels of PM2.5 
(100–120 μg/m3) and CO correlated with increased hepatitis incidence risk with a lag of six months. 
The Holt-Winters model outperformed the SARIMA model in predicting the incidence of viral hepatitis. 
Among machine learning algorithms, SVM and GPR models demonstrated superior performance 
for analyzing pollutant data. Patients infected with HAV and HEV were primarily influenced by 
PM10 and CO, whereas SO2 and PM2.5 significantly impacted others. Individuals aged 35–64 years 
appeared particularly susceptible to these pollutants. Mixed pollutant exposures were found to affect 
the development of viral hepatitis with a notable lag of 5–6 months. These findings underscore the 
importance of long-term monitoring of pollutants in relation to viral hepatitis incidence.
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Viral hepatitis refers to liver inflammation caused by infection with one of five known viruses: hepatitis A, B, C, 
D, and E 1,2. This condition poses a significant global public health challenge, affecting billions worldwide and 
contributing to high rates of morbidity and mortality. Hepatitis A and E typically follow a self-limiting course 
with full recovery, whereas hepatitis B and C often progress to chronic infection and are associated with severe 
health outcomes. Historical records trace the prevalence of hepatitis back to ancient times, with documented 
outbreaks dating back 5000 years ago in China and descriptions of jaundice recorded by Hippocrates on the 
island of Sássos in the fifth century BC3. Viral hepatitis causes over 1.4 million deaths annually4. In a multicenter 
international study across 161 countries, the prevalence of hepatitis B virus (HBV) surface antigen (HBsAg) was 
reported at 3.61%5. Despite declines in the disease burden of HBV and HCV infections globally over the past 
three decades, HBV remains prevalent in China6. Consequently, viral hepatitis has emerged as a top global health 
priority, prompting the implementation of extensive public health policies.

To effectively inform health policies aimed at preventing viral hepatitis, accurate prediction of its trends is 
paramount. Research in Iran has identified the Holt Exponential Smoothing (HES) model as highly accurate 
in forecasting HBV incidence7. However, comprehensive predictive studies for viral hepatitis remain limited. 
Existing literature predominantly focuses on clinical and virological factors, often overlooking environmental 
influences. For instance, a study in Spain demonstrated that each additional rainy day increased the risk of 
contracting hepatitis A two weeks later (IRR = 1.03, 95% CI = 1.01–1.05)8. Additionally, Chen et al.9 found a 
correlation between PM2.5 exposure and hepatitis progression to hepatocellular carcinoma, though research on 
the synergistic effects of pollutants with hepatitis infection remains scarce.

This study aims to investigate the epidemiological characteristics of viral hepatitis of viral hepatitis, develop 
predictive models using various methods, and explore the singular, multiple, and interactive effects of pollutants. 
Specifically, our objectives are to: (a) construct and evaluate prediction models using diverse methodologies; (b) 
explore the single and multiple effects of pollutants across different groups; (c) analyze pollutant interactions 
over lagging timeframes.

Patients and methods
Overview of the study area
Beijing, situated in northern China, covers a land area of 16,410.54 square kilometers. It is centrally located at 
approximately 116°20′ east longitude and 39°56′ north latitude. Beijing experiences a warm temperate semi-
humid and semi-arid monsoon climate, characterized by hot and rainy summers and cold and dry winters. 
Administratively, the city comprises 16 districts and serves as the capital of the People’s Republic of China.

Data source
Data on all reported cases of viral hepatitis in Beijing from 2005 to 2020 were sourced from the public health 
science data center website (https://​www.​phsci​enced​ata.​cn/). This dataset includes information on the incidence 
and morbidity of various types of viral hepatitis such as HAV, HBV, HCV, HDV, HEV, and unclassified hepatitis. 
Diagnosis of all patients followed the criteria outlined in the viral hepatitis management guidelines issued by 
the Ministry of Health of the People’s Republic of China. Ethical approval for this study was obtained from the 
China Center for Disease Control and Prevention. To ensure confidentiality, viral hepatitis data were analyzed 
anonymously. Given that viral hepatitis is classified as a statutory infectious disease under national mandatory 
surveillance, informed consent was not required. Monthly pollutions information (2014–2020) were sourced 
from the National Oceanic and Atmospheric Administration (NOAA) (https://​www.​noaa.​gov/) encompassing 
parameters such as AQI, PM2.5, PM10, SO2, CO, NO2 and O3.

Time series analysis of single and multiple interaction
This study employed three models for time series analysis. The SARIMA and Holt-Winters models were primar-
ily used for predicting the incidence trends of viral hepatitis. The Holt-Winters exponential smoothing model 
is effective in smoothing out random fluctuations and assigns varying weights to data across cycles, thereby 
enhancing the accuracy of future trend predictions10. Holt-Winters’ additive model has the following expression:

where, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1, 0 ≤ γ ≤ 1 − α. st−m+h is the seasonal term. α, β, and γ are the smoothing parameters. m is 
seasonal periods, and h is the predicted step size.

The Seasonal Autoregressive Integrated Moving Average (SARIMA) model decomposes the observed values 
into three parts: residuals, seasonal features, and true trends11. The SARIMA (p, d, q) (P, D, Q) s model can be 
expressed as follows:

ŷt+h/t = lt + hbt + st−m+h,

lt = α
(

yt − st−m

)

+ (1− α)(lt−1 + bt−1),

bt = β(lt − lt−1)+ (1− β)bt−1,

st = γ
(

yt − lt−1 − bt−1

)

+ (1− γ )st−m.

https://www.phsciencedata.cn/
https://www.noaa.gov/
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where, Δ and Δs denote non-seasonal and seasonal differences, respectively. φ, Φ, θ and Θ are the parameters of 
the model, εt is white noise with independent and identical distribution12.

Following this, Spearman correlation analysis was used to identify relevant pollutants. Subsequently, the GAM 
generalized additive model (GAMs) was used to explore the interaction of pollutant factors on the prevalence 
of viral hepatitis13. The following model formula are as followed:

α1 is the intercept; X1 and X2 indicate two interaction pollutants; s () indicates penalized spline function. s (X1, 
X2) is a spline function of the interaction between the parameters X1 and X2 (X1 and X2 are all 5–6 months lagged 
variables.). �s(Xt) are the factors of non-interaction pollutants.

Machine learning training process
To predict viral hepatitis across different age groups and subtypes, various machine learning (ML) algorithms 
were employed, and the results compared. The modeling utilized data from 2014 to 2018 for training set and 
data from 2019 to 2020 for testing, with both sets undergoing ten-fold cross-validation. The Gaussian Process 
Regression (GPR) model operates by defining a Gaussian process to model the distribution of functions, fol-
lowed by Bayesian inference in function space14. Four kernel function algorithms—Rbf, Polynomial, Laplace, 
and Bessel—were employed in the GPR model for comparison. The support vector regression (SVR) algorithms 
were also utilized, which map input features to a higher dimensional space, maximizing the margin between 
classes15. The SVR model compared four kernel function algorithms: Linear, Polynomial, Radial and Sigmoid. 
This study used R4.3.1 package e1071 and kernlab to construct SVR and GPR models, respectively. We use pol-
lutants as predictor variables in the model of the ML algorithm. Subsequently, we consider the overall incidence 
of the population, the incidence among different age groups, and the incidence among different types of viral 
hepatitis as outcome variables. This allows us to investigate the sensitivity of different populations to air pollut-
ants in terms of disease incidence.

Single pollution and weighted quantile sum (WQS) statistical analyses
The WQS regression model serves to evaluate the combined effects of multiple exposure variables on a specified 
outcome. Each exposure variable is assigned a weight within the model to quantify its influence on the outcome 
variable16. Initially, this study employs the WQS model to identify pollutants significantly impacting the incidence 
rate of viral hepatitis across various age groups and subtypes. To assess the cumulative impact of simultaneous 
exposure to multiple pollutants and discern individual contributions of each pollutant, a “mixtures” approach 
via WQS regression analysis was utilized. Concurrently, epidemiological data was stratified into different air 
quality categories based on Beijing’s AQI, distinguishing between pollution and good air quality levels. Within 
varying environmental quality states, the WQS regression model was applied to analyze how different pollutants 
influence the incidence and mortality of viral hepatitis.

Results
Demographic characteristics
From Table 1, the incidence of viral hepatitis in Beijing between 2005 and 2020 exhibited a general declining 
trend, with a notable short-term surge observed from 2016 to 2018. Conversely, the mortality rate displayed an 
increasing trend, peaking at 0.77 per 100,000 in 2011. Predominantly, HBV and HCV subtypes accounted for 
approximately 86.25% of cases, while HDV cases were rare, totaling only three. The seasonal distribution indi-
cated spring and summer epidemics. Among age groups, individuals aged 35–64 years constituted the majority 
at 51.23%, followed by those aged 15–34 years at 31.38%.

The analysis of time series model results
Comparing the predicted graphs from Fig. 1A, B, it can be observed that the Holt-Winters model outperforms 
the SARIMA model in time periods. In Table S1, the Deviation indicator reveals that the Holt-Winters model 
demonstrates a relatively minor discrepancy compared to the SARIMA model in predicting outcomes for the 
year 2019. However, the Holt-Winters model exhibits a notable advantage in its predictions for 2020. In Table S2, 
the parameters for the Holt-Winters additive model are determined as α = 0.44, β = 0.09, γ = 1, while the SARIMA 
multiplicative model is specified as SARIMA (1,1,0) (2,1,0) [12]. Despite comparing metrics such as RMSE, it was 
found that there is little discernible difference in the performance of the two models.

Model prediction comparisons
Figure S1 showed illustrates the results of Spearman’s correlation analysis, revealing positive associations 
between five pollutants—PM2.5, PM10, SO2, CO and NO2—and the prevalence of viral hepatitis. Notably, PM2.5 

�p(L)AP(L
s)�d�D

s yt = �q(L)BQ(L
s)εt ,

�p(L) = 1− ϕ1L− ϕ2L− · · · − ϕpL
p,

AP(L
s) = 1− α1L

s − α2L
2s − · · · − αPL

Ps ,
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shows a significant cross-correlation with both PM10 and CO (r = 0.84, P < 0.001). Table 2 compares four ker-
nel algorithms of GPR, indicating relatively better predictive performance for HCV across different genotypes 
(R2test ∈ [0.087, 0.202]). Similarly, among age groups, individuals aged 35 and above exhibit more accurate 
predictions (R2test ∈ [0.024, 0.150]). The Besseldot kernel function within the GPR model demonstrates supe-
rior predictive capability. Table 3 evaluates four kernel algorithms of SVM, highlighting HBV as having better 
predictive outcomes across genotypes (R2test ∈ [0.215, 0.303]). Additionally, individuals aged 35 and above 
show enhanced prediction accuracy (R2test ∈ [0.010, 0.132]). The Polynomial kernel function proves advanta-
geous within the SVM framework. Overall, SVM demonstrates superior predictive performance compared to 
GPR across the evaluated metrics, underscoring its efficacy in modeling the relationships between pollutants, 
genotypes, age groups, and viral hepatitis development.

Assess the combined association between multiple pollutions exposures and viral hepatitis
Table S3 presents the comprehensive sensitivity analysis, indicating that the combined effect of the five pollutants 
on viral hepatitis is βWQS (95% CI) = 0.066 (0.018, 0.114). Among different subtypes, pollutants demonstrate 
significant adverse effects on HAV, HCV, and HEV. Across different age groups, except for the 0–14 age group, 
pollutants show notable adverse effects. Subsequently, based on the results of the overall sensitivity analyses, 
the relevant key factors were initially screened. From Table 4, focusing on individual pollutant effects, PM2.5 
emerges as the primary risk factor for viral hepatitis overall, with a risk effect of βWQS (95% CI) =  − 0.0050 
(− 0.0089, − 0.0013). Among different subgroups, PM2.5 stands out as the most sensitive risk factor, particularly 
impacting HCV and HEV patients and individuals aged 35–64. SO2 primarily affects HCV patients and indi-
viduals aged 35–64, with risk effects of βWQS (95% CI) = 0.0022 (0.0004, 0.0040) and βWQS (95% CI) = 0.0043 
(0.0005, 0.0080), respectively. CO mainly impacts HAV patients, with a risk effect of βWQS (95% CI) =  − 0.0355 
(− 0.0695, − 0.0016). NO2 primarily affects individuals aged 0–14, while PM10 influences HEV patients. In terms 
of combined pollutant effects, pollutants mainly affect HCV patients and individuals aged 35–64 (with risk 
effects of βWQS (95% CI) = 0.0342 (0.0210, 0.0474) and βWQS (95% CI) = 0.0453 (0.0153, 0.1556), respectively).

Regarding environmental pollution periods, as illustrated by Fig. S2, SO2 and CO are key pollutants influenc-
ing the onset and mortality of viral hepatitis. During polluted periods (Fig. S2C), SO2 and PM2.5 predominantly 
affect onset, whereas during periods of good environmental conditions (Fig. S2A), SO2 and PM2.5 are primary 
factors. Similarly, for mortality during polluted periods (Fig. S2D), CO and SO2 play critical roles, while during 
good environmental periods (Fig. S2B), CO and PM2.5 are significant influencers.

Table 1.   Distribution of viral hepatitis cases by age, types and season groups in Beijing, China, 2005–2020.

Characteristic

0–14 15–34 35–64 ≥ 65

Total
Incidence
(10–5%)

Mortality
(10–5%)No of hepatitis cases (%)

Year

2005 128 (1.31%) 3793 (38.85%) 4369 (44.75%) 1473 (15.09%) 9763 45.33 0.18

2006 154 (1.20%) 4925 (38.38%) 5817 (45.34%) 1935 (15.08%) 12,831 59.58 0.59

2007 103 (1.09%) 3492 (36.93%) 4482 (47.40%) 1378 (14.57%) 9455 43.90 0.38

2008 61 (0.86%) 2404 (34.00%) 3423 (48.41%) 1183 (16.73%) 7071 32.83 0.32

2009 43 (0.71%) 1800 (29.74%) 3097 (51.17%) 1112 (18.37%) 6052 28.10 0.67

2010 46 (0.86%) 1374 (25.56%) 2884 (53.65%) 1072 (19.94%) 5376 24.96 0.69

2011 30 (0.59%) 1295 (25.61%) 2847 (56.31%) 884 (17.48%) 5056 23.48 0.77

2012 17 (0.41%) 1097 (26.41%) 2352 (56.63%) 687 (16.54%) 4153 19.28 0.50

2013 16 (0.47%) 902 (26.25%) 1942 (56.52%) 576 (16.76%) 3436 15.95 0.72

2014 8 (0.26%) 763 (24.94%) 1779 (58.16%) 509 (16.64%) 3059 14.20 0.40

2015 14 (0.47%) 737 (24.78%) 1712 (57.57%) 511 (17.18%) 2974 13.81 0.42

2016 9 (0.31%) 727 (25.20%) 1635 (56.67%) 514 (17.82%) 2885 13.40 0.48

2017 9 (0.28%) 948 (29.07%) 1771 (54.31%) 533 (16.34%) 3261 15.14 0.48

2018 7 (0.20%) 952 (26.70%) 1983 (55.61%) 624 (17.50%) 3566 16.56 0.38

2019 9 (0.30%) 668 (22.27%) 1728 (57.62%) 594 (19.81%) 2999 13.93 0.39

2020 5 (0.24%) 479 (23.23%) 1209 (58.63%) 369 (17.90%) 2062 9.57 0.39

Classifications

HAV 113 (4.25%) 839 (31.55%) 1288 (48.44%) 419 (15.76%) 2659

HBV 343 (0.63%) 20,487 (37.40%) 27,194 (49.64%) 6754 (12.33%) 54,778

HCV 112 (0.63%) 3203 (18.13%) 9216 (52.15%) 5140 (29.09%) 17,671

HDV 0 (0.00%) 0 (0.00%) 2 (66.67%) 1 (33.33%) 3

HEV 19 (0.32%) 851 (14.24%) 3766 (63.03%) 1339 (22.41%) 5975

Unclassified hepatitis 72 (2.47%) 976 (33.50%) 1564 (53.69%) 301 (10.33%) 2913

Seasons

Spring (Mar–May) 176 (0.75%) 7486 (31.84%) 11,928 (50.74%) 3919 (16.67%) 23,509

Summer (Jun–Aug) 219 (1.06%) 6668 (32.38%) 10,420 (50.61%) 3283 (15.94%) 20,590

Autumn (Sep–Nov) 134 (0.70%) 6074 (31.65%) 9749 (50.79%) 3236 (16.86%) 19,193

Winter (Dec–Feb) 130 (0.63%) 6128 (29.59%) 10,933 (52.80%) 3516 (16.98%) 20,707

Total 659 (0.78%) 26,356 (31.38%) 43,030 (51.23%) 13,954 (16.61%) 83,999
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Non‑linear interaction of pollutions
From Table S4, significant interaction effects of pollutants with PM2.5-PM10 and PM2.5-CO are observed at lag 
periods of 5–6 months, respectively. Specifically, the interaction effect of PM2.5-PM10 is better fitted at a lag of 
5 month, while the interaction effect of PM2.5-CO shows better fit at a lag of 6 months. Figure 2 illustrates fitting 
effect plots, revealing that the risk of viral hepatitis onset is elevated at lower levels of PM2.5 and PM10 (Fig. 2A 
and B), while high levels of PM2.5 (100–120 μg/m3) and CO (Fig. 2C and D) correspond to increased onset risk. 
Additionally, as depicted in the fitting curves of Fig. S3, the dose–response relationships of SO2 and NO2 with 
viral hepatitis onset become progressively clearer with increasing lag months. At lag 6 month, NO2 achieves its 
maximum risk effect at the level of 30–40 μg/m3.

Discussion
The incidence of viral hepatitis in Beijing Municipality exhibited an overall decreasing trend from 2005 to 2020, 
primarily attributed to widespread hepatitis vaccination and standardized antiviral treatments in China. These 
advancements have significantly reduced new cases among patients17. However, despite these preventive meas-
ures, factors such as improved quality of life and various environmental influences have exacerbated the progres-
sion of hepatitis, leading to increased incidences of cirrhosis and liver cancer. Furthermore, the chronic nature 
of viral hepatitis, combined with limited effective prevention and treatment options, has contributed to a slight 

Fig. 1.   Forecast plots for Holt-Winters (A) and SARIMA (B) models. The deep shaded regions indicate 80% 
confidence intervals, the light shaded regions indicate 95% confidence intervals.
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rise in long-term mortality rates. The primary types of hepatitis in this region are HBV (Hepatitis B Virus) and 
HCV (Hepatitis C Virus). HBV transmission, particularly from mother to child, has historically been prevalent 
in China due to inadequate medical hygiene practices in the past. In contrast, HCV, which often presents with 
subtle symptoms and is not typically part of routine health screenings, has also contributed to its spread. Our 
study identified distinct seasonal patterns, with spring and summer showing higher incidence rates. The age 
group most susceptible to infection was predominantly 35–64 years old, consistent with findings from previous 
research18. This age distribution reflects the prolonged duration of hepatitis infections, with older individuals 
typically experiencing longer periods of infection.

Establishing robust statistical models is essential for predicting the occurrence trends of infectious diseases. 
Commonly utilized in time series analysis are models like Holt-Winters and ARIMA, each offering distinct 
advantages for predictive accuracy and practical application. In the context of viral hepatitis prediction, this 
study compared the Holt-Winters model with SARIMA and found that the former generally outperformed the 
latter. This superiority can be attributed to challenges in determining SARIMA parameters and the potential 
for overfitting due to complex calculations, leading to less stable predictions. The Holt-Winters model proves 

Table 2.   Comparison of the prediction results with different kernal of gaussian distribution regression (GPR) 
models.

Model Series Parameters

Training set Test set

RMSE R2 MAE RMSE R2 MAE

GPR
(rbfdot)

Total cases sigma = 0.476 0.163 0.582 0.120 0.383 0.002 0.325

Classification

HAV sigma = 0.476 0.022 0.574 0.016 0.029 0.001 0.025

HBV sigma = 0.476 0.117 0.517 0.082 0.226 0.033 0.195

HCV sigma = 0.476 0.048 0.647 0.034 0.122 0.087 0.106

HEV sigma = 0.476 0.031 0.400 0.024 0.050 0.080 0.042

Unclassified hepatitis sigma = 0.476 0.005 0.638 0.004 0.007 0.089 0.007

Age

0–14 years sigma = 0.476 0.003 0.412 0.003 0.004 0.000 0.004

15–34 years sigma = 0.476 0.055 0.518 0.042 0.119 0.000 0.105

35–64 years sigma = 0.476 0.097 0.608 0.071 0.217 0.000 0.185

65- years sigma = 0.476 0.034 0.564 0.027 0.067 0.024 0.056

GPR
(polydot)

Total cases degree = 1, scale = 1, offset = 1 0.193 0.223 0.142 0.373 0.060 0.321

Classification

HAV degree = 1, scale = 1, offset = 1 0.030 0.044 0.020 0.030 0.021 0.026

HBV degree = 1, scale = 1, offset = 1 0.137 0.174 0.097 0.222 0.003 0.194

HCV degree = 1, scale = 1, offset = 1 0.062 0.218 0.045 0.118 0.174 0.101

HEV degree = 1, scale = 1, offset = 1 0.033 0.201 0.027 0.052 0.043 0.043

Unclassified hepatitis degree = 1, scale = 1, offset = 1 0.007 0.074 0.005 0.008 0.000 0.007

Age

0–14 years degree = 1, scale = 1, offset = 1 0.004 0.115 0.003 0.004 0.009 0.004

15–34 years degree = 1, scale = 1, offset = 1 0.065 0.132 0.051 0.117 0.039 0.102

35–64 years degree = 1, scale = 1, offset = 1 0.115 0.255 0.085 0.210 0.072 0.180

65- years degree = 1, scale = 1, offset = 1 0.043 0.133 0.035 0.065 0.043 0.054

GPR
(laplacedot)

Total cases sigma = 0.476 0.154 0.765 0.114 0.374 0.037 0.319

Classification

HAV sigma = 0.476 0.021 0.722 0.014 0.029 0.001 0.025

HBV sigma = 0.476 0.109 0.763 0.077 0.218 0.014 0.188

HCV sigma = 0.476 0.047 0.741 0.033 0.121 0.148 0.106

HEV sigma = 0.476 0.028 0.651 0.023 0.050 0.067 0.042

Unclassified hepatitis sigma = 0.476 0.005 0.794 0.004 0.007 0.052 0.007

Age

0–14 years sigma = 0.476 0.003 0.679 0.002 0.004 0.002 0.004

15–34 years sigma = 0.476 0.051 0.769 0.041 0.117 0.000 0.105

35–64 years sigma = 0.476 0.092 0.770 0.068 0.210 0.045 0.180

65- years sigma = 0.476 0.033 0.729 0.026 0.065 0.069 0.055

GPR
(besseldot)

Total cases sigma = 1, order = 1, degree = 1 0.192 0.276 0.142 0.366 0.151 0.307

Classification

HAV sigma = 1, order = 1, degree = 1 0.028 0.197 0.019 0.031 0.000 0.027

HBV sigma = 1, order = 1, degree = 1 0.135 0.248 0.097 0.211 0.022 0.184

HCV sigma = 1, order = 1, degree = 1 0.058 0.338 0.041 0.120 0.202 0.106

HEV sigma = 1, order = 1, degree = 1 0.033 0.235 0.027 0.049 0.085 0.042

Unclassified hepatitis sigma = 1, order = 1, degree = 1 0.006 0.361 0.005 0.007 0.010 0.007

Age

0–14 years sigma = 1, order = 1, degree = 1 0.004 0.286 0.003 0.005 0.000 0.004

15–34 years sigma = 1, order = 1, degree = 1 0.065 0.213 0.051 0.117 0.046 0.105

35–64 years sigma = 1, order = 1, degree = 1 0.115 0.306 0.084 0.204 0.150 0.171

65- years sigma = 1, order = 1, degree = 1 0.041 0.282 0.032 0.063 0.133 0.053



7

Vol.:(0123456789)

Scientific Reports |        (2024) 14:21141  | https://doi.org/10.1038/s41598-024-72047-1

www.nature.com/scientificreports/

effective in capturing epidemiological patterns of hepatitis onset due to its computational simplicity and high 
predictive accuracy19. Furthermore, this study employs machine learning-based methods to predict hepatitis 
onset risks associated with pollutant levels. Evaluation across different hepatitis types and age groups consistently 
shows superior predictive performance for primary hepatitis types and highly susceptible populations, aligning 
with epidemiological insights. This underscores that individuals in sensitive demographics are more vulnerable 
to environmental pollutants, influencing hepatitis susceptibility.

Table 3.   Comparison of the prediction results with different kernal of support vector machines (SVM) 
models.

Model Series Parameters

Training set Test set

RMSE R2 MAE RMSE R2 MAE

SVM
(Linear)

Total cases cost = 0.001, gamma = 0.2 0.221 0.125 0.167 0.354 0.196 0.306

Classification

HAV cost = 0.1, gamma = 0.2 0.030 0.148 0.019 0.022 0.018 0.019

HBV cost = 0.001, gamma = 0.2 0.154 0.168 0.108 0.200 0.215 0.168

HCV cost = 1, gamma = 0.2 0.056 0.364 0.037 0.107 0.004 0.090

HEV cost = 0.001, gamma = 0.2 0.037 0.089 0.031 0.052 0.175 0.043

Unclassified hepatitis cost = 0.001, gamma = 0.2 0.007 0.120 0.006 0.007 0.001 0.007

Age

0–14 years cost = 5, gamma = 0.2 0.003 0.366 0.002 0.004 0.001 0.003

15–34 years cost = 0.001, gamma = 0.2 0.070 0.173 0.056 0.110 0.065 0.098

35–64 years cost = 1, gamma = 0.2 0.113 0.313 0.073 0.214 0.061 0.183

65- years cost = 0.01, gamma = 0.2 0.047 0.099 0.037 0.064 0.132 0.055

SVM
(Polynomial)

Total cases degree = 3, cost = 0.5, 
gamma = 0.2 0.200 0.231 0.135 0.374 0.182 0.325

Classification

HAV degree = 3, cost = 0.1, 
gamma = 0.2 0.030 0.148 0.019 0.022 0.018 0.019

HBV degree = 3, cost = 0.5, 
gamma = 0.2 0.141 0.221 0.090 0.232 0.303 0.201

HCV degree = 3, cost = 1, gamma = 0.2 0.056 0.364 0.037 0.107 0.004 0.090

HEV degree = 3, cost = 0.1, 
gamma = 0.2 0.036 0.164 0.029 0.050 0.065 0.041

Unclassified hepatitis degree = 3, cost = 0.1, 
gamma = 0.2 0.007 0.143 0.005 0.007 0.001 0.006

Age

0–14 years degree = 3, cost = 3, gamma = 0.2 0.003 0.368 0.002 0.004 0.001 0.003

15–34 years degree = 3, cost = 0.1, 
gamma = 0.2 0.068 0.186 0.054 0.112 0.023 0.100

35–64 years degree = 3, cost = 1, gamma = 0.2 0.113 0.313 0.073 0.214 0.061 0.183

65- years degree = 3, cost = 0.1, 
gamma = 0.2 0.045 0.175 0.035 0.065 0.058 0.055

SVM
(Radial)

Total cases cost = 1, gamma = 1 0.150 0.594 0.085 0.393 0.001 0.349

Classification

HAV cost = 1, gamma = 4 0.020 0.680 0.007 0.025 0.012 0.022

HBV cost = 1, gamma = 0.1 0.141 0.191 0.089 0.234 0.264 0.203

HCV cost = 1, gamma = 0.5 0.048 0.581 0.030 0.105 0.036 0.090

HEV cost = 1, gamma = 0.1 0.033 0.237 0.026 0.048 0.023 0.039

Unclassified hepatitis cost = 1, gamma = 4 0.003 0.882 0.002 0.007 0.000 0.007

Age

0–14 years cost = 1, gamma = 0.5 0.004 0.358 0.002 0.004 0.009 0.003

15–34 years cost = 1, gamma = 0.1 0.065 0.173 0.048 0.126 0.001 0.114

35–64 years cost = 1, gamma = 1 0.089 0.645 0.052 0.217 0.001 0.188

65- years cost = 1, gamma = 0.1 0.042 0.232 0.032 0.066 0.010 0.056

SVM
(Sigmoid)

Total cases coef0 = 0.1, gamma = 1 0.150 0.594 0.085 0.393 0.001 0.349

Classification

HAV coef0 = 0.1, gamma = 4 0.020 0.680 0.007 0.025 0.012 0.022

HBV coef0 = 0.1, gamma = 0.1 0.141 0.191 0.089 0.234 0.264 0.203

HCV coef0 = 0.1, gamma = 0.5 0.048 0.581 0.030 0.105 0.036 0.090

HEV coef0 = 0.1, gamma = 0.1 0.033 0.237 0.026 0.048 0.023 0.039

Unclassified hepatitis coef0 = 0.1, gamma = 4 0.003 0.882 0.002 0.007 0.000 0.007

Age

0–14 years coef0 = 0.1, gamma = 0.5 0.004 0.358 0.002 0.004 0.009 0.003

15–34 years coef0 = 0.1, gamma = 0.1 0.065 0.173 0.048 0.126 0.001 0.114

35–64 years coef0 = 0.1, gamma = 1 0.089 0.645 0.052 0.217 0.001 0.188

65- years coef0 = 0.1, gamma = 0.1 0.042 0.232 0.032 0.066 0.010 0.056



8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:21141  | https://doi.org/10.1038/s41598-024-72047-1

www.nature.com/scientificreports/

Different types of viral hepatitis primarily spread through gastrointestinal and bloodborne routes. HAV and 
HEV, for instance, mainly transmit through the gastrointestinal tract, with transmission influenced by pollutants 
such as PM10 and CO. This can be linked to increasing industrialization and declining environmental awareness. 
Higher levels of airborne particulate matter and vehicle emissions exacerbate environmental pollution, thereby 
enhancing transmission through the gastrointestinal route. Other types of viral hepatitis primarily transmit 
through blood and bodily fluids, affected notably by pollutants like SO2 and PM2.5. Epidemiological studies have 
shown an association between PM2.5 levels and liver fibrosis20. Animal research indicates that air pollution can 
activate Kupffer cells, trigger endoplasmic reticulum stress responses, induce cytokine production, and promote 
collagen deposition, thereby exacerbating fibrosis progression21. This suggests environmental pollutants can 
impact hepatic metabolism through the bloodstream route. Furthermore, this study identifies SO2 and CO as 
significant pollutants influencing the onset and mortality of viral hepatitis. CO, due to its high affinity for hemo-
globin binding in the bloodstream, poses a notable threat to the progression and mortality of hepatitis. These 
findings underscore the importance highlighted in China’s infectious disease planning of addressing hepatitis 
transmitted through the bloodstream route.

Current literature on infectious disease prediction and pollutant impacts often focuses on single methodolo-
gies and specific effects. This study, however, employed diverse time-series methods to forecast and analyze the 
interactive effects of viral hepatitis, revealing significant month-to-month prediction intervals marked by consid-
erable fluctuations. These findings underscore the challenge of capturing the inherent volatility in viral hepatitis 
data using conventional models. Moreover, regional constraints within the study area limited the generalizability 
of findings across different types of hepatitis affected by pollutants. Future research endeavors are encouraged to 
validate these macroscopic epidemiological insights at a microscopic level, utilizing animal models to elucidate 
underlying physiological mechanisms.

Table 4.   Comparison of results from the survey-weighted single pollution analyses and WQS regression of 
the matrix specific pollutions mixtures for the viral hepatitis. The parameter estimate (β) is reported in bold 
for significant single pollution or WQS mixture effects. The components with the highest weights are reported 
for mixtures with significant effects. Bold font indicates statistical significance at the 0.05 level. *** P < 0.001, ** 
P < 0.01, * P < 0.05.

Series Mixtures

Single pollution regression survey-weighted
Multiple pollution regression survey-
weighted

βWQS (95%CI) p-Value βWQS (95%CI) p-Value

Total
SO2 0.0074 (− 0.0091,  0.0239) 0.3829

0.0887 (0.0118, 0.1657) 0.0284*
PM2.5 − 0.0050 (− 0.0089,  − 0.0013) 0.0116*

HAV

SO2 − 0.0004 (− 0.0016,  0.0007) 0.4625

0.0099 (0.0021, 0.0177) 0.016*CO − 0.0355 (− 0.0695,  − 0.0016) 0.0461*

NO2 − 0.0002 (− 0.0021,  0.0016) 0.8017

HBV
SO2 0.0013 (− 0.0038,  0.0065) 0.617

0.0112 (− 0.0197, 0.0421) 0.48
PM2.5 − 0.0021(− 0.0049,  0.0005) 0.1222

HCV
SO2 0.0022 (0.0004,  0.0040) 0.02197*

0.0342 (0.0210, 0.0474) 6.34E-06***
PM2.5 − 0.0013 (− 0.0024,  − 0.0002) 0.02201*

HEV

CO − 0.0028 (− 0.0515,  0.0460) 0.9117

0.0115 (0.0015, 0.1556) 0.0286*
SO2 0.0005 (− 0.0008,  0.0019) 0.425

PM2.5 − 0.0014 (-0.0026,  − 0.0002) 0.0229*

PM10 0.0009 (0.0002,  0.0016) 0.0117*

Unclassified
hepatitis

PM2.5 − 0.0002 (− 0.0004,  0.0001) 0.156

0.0017 (− 0.0001, 0.0035) 0.064561
PM10 0.0001 (− 2.47E−05,  0.0003) 0.111

CO − 0.0002 (− 0.0103,  0.0097) 0.9565

NO2 0.0001 (− 0.0004,  0.0006) 0.6488

0–14 years

SO2 − 0.0001 (− 0.0002,  0.0001) 0.3878

0.0001 (− 0.0010, 0.0013) 0.830809PM10 − 3.84E−06 (− 0.0001,  0.0001) 0.9379

NO2 − 0.0002 (− 0.0004, − 5.14E− 06) 0.0499*

15–34 years
SO2 0.0001 (− 0.0025, 0.0027) 0.96

0.0232 (0.0066, 0.1556) 0.0086**
PM2.5 − 0.0010 (− 0.0024, 0.0003) 0.1297

35–64 years
SO2 0.0043 (0.0005, 0.0080) 0.03024*

0.0453 (0.0153, 0.1556) 0.00473**
PM2.5 − 0.0032 (− 0.0054, − 0.0009) 0.00793**

65- years
SO2 0.0001 (− 0.0017, 0.0019) 0.897

0.0127 (0.0009, 0.1556) 0.0408*
PM2.5 − 0.0002 (− 0.0009, 0.0006) 0.652
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Conclusion
The Holt-Winters model outperformed SARIMA in predicting viral hepatitis incidence. SVM and GPR models 
utilizing pollutant data showed potential for enhanced prediction accuracy. Patients with HAV and HEV were 
primarily impacted by PM10 and CO, while SO2 and PM2.5 affected other types. The 35–64 age group exhibited 
higher susceptibility. Long-term exposure to mixed pollutants influenced hepatitis development with a lag of 
5–6 months, emphasizing the need for sustained pollutant monitoring for effective public health strategies.
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