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Abstract: Neoadjuvant immune checkpoint blockade (ICB) has achieved significant success in treating various can-
cers, leading to improved therapeutic responses and survival rates among patients. However, in colorectal cancer 
(CRC), ICB has yielded poor results in tumors that are mismatch repair proficient, microsatellite-stable, or have low 
levels of microsatellite instability (MSI-L), which account for up to 95% of CRC cases. The underlying mechanisms 
behind the lack of immune response in MSI-negative CRC to immune checkpoint inhibitors remain an open co-
nundrum. Consequently, there is an urgent need to explore the intrinsic mechanisms and related biomarkers to 
enhance the intratumoral immune response and render the tumor “immune-reactive”. Intestinal microbes, such as 
the oral microbiome member Fusobacterium nucleatum (F. nucleatum), have recently been thought to play a crucial 
role in regulating effective immunotherapeutic responses. Herein, we advocate the idea that a complex interplay 
involving F. nucleatum, the local immune system, and the tumor microenvironment (TME) significantly influences 
ICB responses. Several mechanisms have been proposed, including the regulation of immune cell proliferation, in-
hibition of T lymphocyte, natural killer (NK) cell function, and invariant natural killer T (iNKT) cell function, as well as 
modification of the TME. This review aims to summarize the latest potential roles and mechanisms of F. nucleatum 
in antitumor immunotherapies for CRC. Additionally, it discusses the clinical application value of F. nucleatum as 
a biomarker for CRC and explores novel strategies, such as nano-delivery systems, for modulating F. nucleatum to 
enhance the efficacy of ICB therapy.
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Introduction

Colorectal cancer (CRC) ranks as the third  
most commonly diagnosed malignancy world-
wide, contributing significantly to 9.4% of can-
cer-related deaths globally [1]. Standard thera-
pies for CRC include surgery, radiotherapy, 
immunotherapy, and chemotherapy. Among 
these, neoadjuvant immune checkpoint block-
ade (ICB) therapy has recently emerged as a 
promising treatment strategy [2]. ICB involves 
the administration of monoclonal antibodies, 
such as cytotoxic T-lymphocyte-associated pro-
tein 4 (CTLA4), programmed cell death-1 (PD-
1), and programmed death-ligand 1 (PD-L1), 
which have demonstrated efficacy in several 
clinical trials. This therapeutic approach has 

been widely adopted across various cancer 
types as a preoperative intervention and has 
gained significant traction in recent years. Im- 
portantly, studies have shown that ICB can 
enhance the immune system’s ability to recog-
nize primary tumors as antigens [3].

Although pembrolizumab and nivolumab have 
received approval from the Food and Drug Ad- 
ministration (FDA) for CRC treatment, ICB thera-
py has demonstrated limited efficacy in most 
CRC patients, with therapeutic responses often 
characterized by heterogeneity and short dura-
tion [4]. Merely 20% to 30% of patients under-
going ICB therapy exhibit positive regression 
[5]. Therefore, comprehending the factors that 
impact immunotherapy efficacy and providing 

http://www.ajcr.us
https://doi.org/10.62347/MYZA2640


Fusobacterium nucleatum: a novel regulator of antitumor ICB therapy in CRC

3963 Am J Cancer Res 2024;14(8):3962-3975

timely, effective treatment is crucial for the sur-
vival of CRC patients. Recent evidence sug-
gests that, in addition to tumor genomics, host 
factors such as intestinal microbiota can influ-
ence susceptibility, development, and immuno-
therapeutic responses [6]. This effect is likely 
due to the regulation of innate and adaptive 
immunity by intestinal microbiota [7].

CRC is a complex and heterogeneous disease 
influenced by various factors, including micro-
bial exposures [8]. Recent evidence has re- 
vealed that intestinal microbiota is strongly 
related to local immune responses and can 
affect chemotherapy outcomes of CRC patients 
via various mechanisms [9, 10]. Among the 
microbial species, Fusobacterium nucleatum 
(F. nucleatum), a Gram-negative anaerobe fo- 
und in the oropharyngeal microbiome, has gar-
nered considerable attention [11]. Importantly, 
with the development of sequencing tech-
niques of bacterial 16S ribosomal and whole-
genome shotgun metagenomics sequencing 
methods, F. nucleatum is abundant in CRC tis-
sues. Studies have revealed significant differ-
ences in the abundance of F. nucleatum in nor-
mal tissues, adenoma tissues, and adeno- 
carcinoma tissues of CRC patients [12, 13]. 
Furthermore, F. nucleatum has been thought  
to be associated with microsatellite instability 
(MSI), lower-level T-cell infiltrates, and shorter 
survival of CRC [13-15]. The potential mecha-
nism has been identified as the role of F. 
nucleatum in inducing T-cell apoptosis and 
inhibiting human T-cell responses to mitogens 
and antigens [16-18]. F. nucleatum not only 
mediates the carcinogenesis, development, 
and metastasis of CRC but also regulates the 
response to immunotherapy, shifting the tumor 
environment from an anti-tumor to a pro-tumor 
state [19, 20]. Understanding the mechanisms 
underlying the interactions between F. nuclea-
tum and immunotherapy response in CRC is 
crucial. Targeting the microbiota to improve the 
outcomes of immune checkpoint blockade 
therapy for CRC might be a viable approach. In 
this article, we aim to systematically illustrate 
the potential role and molecular mechanisms 
of F. nucleatum in determining the therapeutic 
responsiveness of CRC patients. We will focus 
on the crosstalk among F. nucleatum, immuno-
therapy, and the host, while also discussing its 
potential application as a biomarker for CRC 
screening, prediction, and diagnosis. Strate- 

gies such as nano-based delivery systems for 
modulating F. nucleatum to restore the tumor 
response to immune checkpoint blockade ther-
apy will also be explored.

Role of F. nucleatum in CRC

F. nucleatum is a gram-negative species that 
commonly resides in the human oral cavity. It  
is a member of the Fusobacteriaceae family, 
which encompasses nine species. Despite its 
prevalence as part of the normal oral microbio-
ta, F. nucleatum is recognized as an opportu-
nistic pathogen due to its involvement in vari-
ous human diseases [21]. Owing to its role as a 
coaggregation factor, F. nucleatum can exert 
coaggregation or adherence functions with 
diverse other bacterial species through the 
RadD Aid1 or CmpA adhesins, such as Pre- 
votella, Bacteroides, Leptotrichia, Selenomo- 
nas, and Campylobacter species [22, 23]. 
Interestingly, F. nucleatum and its derived 
adhesin, Fusobacterium adhesin A (FadA), are 
overexpressed in fecal samples of CRC pa- 
tients, indicating enteral transmission [24]. To 
date, F. nucleatum has been shown to enter 
into colorectal tissues mainly through three 
pathways, via the interaction of its Fap2 pro- 
tein with D-galactose-β (1-3)-N-acetyl-D-galac- 
tosamine (Gal-GalNAc), by FadA interacting with 
E-cadherin, or via Lipopolysaccharide (LPS) of 
F. nucleatum binding to Toll-like receptor 4 
(TLR4) [25, 26] (Figure 1). FadA enables F. nu- 
cleatum to penetrate endothelial cells through 
loosened junctions, allowing it to disseminate 
systemically [27]. It is thought that under the 
context of an impaired oral-intestinal barrier, 
such as decreased stomach acid level, the F. 
nucleatum present in the oral cavity can 
migrate to the gut and enter the bloodstream 
for opportunistic translocation [28]. Furtherly, 
F. nucleatum has been shown to own the ability 
to regulate Cyclooxygenase-2 (COX-2), tumor 
necrosis factor (TNF), interleukin (IL)-6, IL-8, 
and IL-1β through stimulating nuclear factor 
kappa B (NF-κB) pathway [29, 30]. During the 
process of migrating to CRC cells and adhering 
to biofilm, FadA plays a vital role by binding  
with Gal-GalNAc, which is up-regulated in the 
tumor context [23]. This interaction underlines 
the multifaceted role of F. nucleatum in CRC 
pathogenesis, from facilitating its colonization 
and persistence within the tumor microenviron-
ment to potentially influencing tumor immune 
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Figure 1. The three main pathways of F. nucleatum entering into colorec-
tal cancer (CRC) tissues, via the interaction of its Fap2 protein with 
D-galactose-β (1-3)-N-acetyl-D-galactosamine (Gal-GalNAc), by FadA inter-
acting with E-cadherin, or via Lipopolysaccharide (LPS) of F. nucleatum 
binding to Toll-like receptor 4 (TLR4), enabling attachment and invasion of 
CRC cells.

responses. Additionally, it contributes to the 
activation of the Wnt/β-catenin pathway via 
binding with E-cadherin, which is associated 
with inflammatory signaling and oncogenesis. 
Annexin A1 is weighed 35-40 kDa and binds 
phospholipids in a calcium-binding manner 
[31]. This molecule has been proposed to be a 
crucial component of FadA, enabling it to fulfill 
its function in diverse biological processes, 
including cell proliferation, differentiation, 
apoptosis, and migration, thereby influencing 
tumor growth [32, 33]. In CRC, Annexin A1 was 
found to be overexpressed, and its high levels 
were related to unfavorable prognosis, lower 

disease-free survival rates, 
and overall survival [34]. Pre- 
vious research has uncovered 
that Annexin A1 exhibited the 
ability to regulate the Wnt/β-
catenin signaling pathway and 
can activate cyclin D1 (CycD1) 
[23]. What is worthy of note is 
that Annexin A1 can induce 
immune suppression in the 
TME. This process was later 
confirmed to be associated 
with its interplay with epider-
mal growth factor receptor 
(EGFR) [34, 35]. Intriguingly, 
Rubinstein et al. found a com-
plicated interplay within the 
multi-component complex of 
E-cadherin, Annexin A1, and 
β-catenin protein, which im- 
pacts CRC growth [36]. Fur- 
thermore, the gram-negative 
LPS of F. nucleatum can inter-
play with TLR4, which then  
triggers β-catenin and NF-κB, 
thereby inducing colitis-related 
tumor progression [37]. A high 
level of TLR4 has a strong 
association with poor progno-
sis and low overall survival 
among CRC patients [38, 39]. 
There has been substantial 
evidence suggesting that F. 
nucleatum is able to promote 
CRC tumorigenesis via prolif-
eration and metabolism induc-
tion [40, 41]. Moreover, F. 
nucleatum can induce chemo-
resistance in CRC by upregu-
lating baculoviral IAP repeat 

containing 3 (BIRC3) levels or modulating 
autophagy [42, 43]. The role and mechanisms 
of F. nucleatum in the initiation, progression, 
and development of chemoresistance to 5-fluo-
rouracil (5-FU), oxaliplatin, and cisplatin in 
human CRC have been extensively discussed 
previously [44, 45]. This paper specifically turns 
attention to fusobacterial mechanisms that 
influence the therapeutic outcome of ICB in 
CRC.

Challenges in applying ICB to CRC

Over the past decades, although immunothera-
pies have been exerting an increasingly vital 
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influence on cancer therapy, the inevitable 
impact brought by tumor-induced immunosup-
pression in facilitating tumor progression has 
also been observed, as the immune system 
plays a dual role in tumor regulation [46]. 
During the procession of carcinogenesis, new 
antigens are generated and recognized by the 
immune system, leading to the killing of tumor 
cells, thus hindering tumor progression. The 
immunogenicity of tumor cells directly deter-
mines the efficacy of the immune response; 
otherwise, the immune response will be im- 
paired. Significantly, cancer cells can reshape 
an immunosuppressive context, thus develop-
ing immune escape, which contributes to tumor 
progression. Therefore, strategies to mediate 
the immune system to render it “immune-reac-
tive” and fight cancer cells are urgently needed. 
To address this, targeting immune checkpoint 
molecules, including PD-1 or CTLA-4, has been 
the most important method tested to date 
since it was approved as a second-line treat-
ment strategy for CRC with dMMR/MSI-H by 
the FDA in 2017, following a phase III multi-
center trial [4]. In recent years, ICB has played 
a crucial role in the therapy of various malig-
nant tumors due to its ability to activate the 
antitumor immune response by inhibiting the 
interaction between T cell inhibitory receptors 
and their ligands [47]. More importantly, pa- 
tients who benefit from ICB therapy typically 
show a long-lasting response compared with 
chemotherapy [48]. For CRC, the Keytruda 
(pembrolizumab, anti-PD-1 monoclonal anti-
body) has demonstrated remarkable respons-
es in patients with dMMR/MSI-H [49, 50]. 
Unfortunately, according to the Keynote-016 
study, in which three cohorts including the 
MSI-H/dMMR CRC cohort, MSI-H/dMMR non-
CRC cohort, and MSI-H/pMMR CRC cohort 
were investigated for the therapeutic effect of 
Pembrolizumab, and it was found that the ICB 
therapy is not satisfactory for patients with 
pMMR [51]. Since CRC patients with pMMR 
escape this immune surveillance mechanism 
and are resistant to ICB therapy, they occupy 
the vast majority at approximately 85%, dem-
onstrating the reality that the application of ICB 
therapy is very limited for CRC [52].

Considering the limited application of ICB ther-
apy among CRC patients, efforts to identify 
underlying mechanisms and markers that af- 
fect and predict immunotherapeutic response 
are ongoing. Treatment responsiveness to ICB 

therapy can be attributed to both the cancer 
cells and tumor microenvironment (TME). The 
human immune response is strongly associat-
ed with tumor genomics due to the reshaping  
of the immune microenvironment by genomic 
mutations-derived neoantigens [53]. Currently, 
a lack of antigenic mutation burden (TMB), 
exclusion of T cells, recruiting of immune-sup-
pressive cells, and being not responsive to 
interferon (IFN) have been proposed as poten-
tial mechanisms [54, 55]. Mutated peptides 
derived from carcinogenesis can be recognized 
by and bind to MHC molecules and be present-
ed to T cells, leading to the activation of CD8+ 
and CD4+ T lymphocytes to execute anti-tumor 
function. Tumor-infiltrating CD8+ T cells have 
been thought to play the most important role  
in the process of generating IFN-γ [56]. Hence 
strategies targeting CD8+ T cell function, includ-
ing modulating IFN-γ and augmenting major  
histocompatibility complex-class I (MHC-I) pre-
sentation in dendritic cells (DCs), have been 
proposed [57]. Th1 cells are also involved in 
ICB therapy, regulated by signaling factors like 
TGF-β, transcription factor p73 (tumor protein 
p73), regulatory T cells (Tregs), and myeloid-
derived suppressor cells (MDSCs), which affect 
the expression of IFN-γ [58-60]. IFN-γ signaling 
serves an important role in both anti-tumor 
immunity and immune escape. By stimulating 
MHC-I and MHC-II expression in tumor cells and 
antigen-presenting cells (APCs), it promotes 
T-cell and NK cell function to kill tumor cells 
[61]. However, by boosting PD-L1 expression, it 
can hamper anti-tumor immunity and ICB ther-
apy [62, 63].

Mechanisms underlying the influence of F. 
nucleatum on ICB therapy

Ineffective immunotherapy response results 
from intrinsic and extrinsic factors, with multi-
ple mechanisms involved. Extrinsic factors, 
such as the gut microbiome, are thought to 
make a vital inflammatory contribution to carci-
nogenesis and immunotherapy response [64]. 
Multiple biological processes such as cell pro-
liferation, apoptosis, progression, migration, 
immunotherapeutic sensitivity, and therapeutic 
resistance of tumors, are subject to the influ-
ence of the cross-talk between tumor cell and 
their specific microbiota [65]. The role of gut 
microbiota in modulating myeloid-derived cell 
functions in the tumor microenvironment has 
also been demonstrated [66]. On the one hand, 
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gut bacteria can stimulate the innate immune 
system. On the other hand, they can regulate 
lymphocyte subpopulations in secondary im- 
mune organs and influence local mucosal 
immunity [67]. In fecal transfer experiments 
that compared tumor growth in mice with dif- 
ferent commensal microbiota, differences in 
spontaneous antitumor immunity were obser- 
ved. The results demonstrated that several gut 
microorganisms were tightly associated with 
anti-tumor responses via affecting the T-cell 
that infiltrates into the tumor [68]. The most 
widely used immune checkpoint inhibitors, 
such as anti-PD-1, play an important role in 
immunotherapy research. Intriguingly, it has 
been recently reported that the intestinal mi- 
crobiota can influence the efficacy of PD-L1-
mediated antitumor immunotherapy [69]. Th- 
ough as a member of human normal oral and 
gut microbiota, F. nucleatum has also been rec-
ognized as an opportunistic pathogen. Mima et 
al. reported that the amount of F. nucleatum 
was higher in carcinoma tissue than in paired 
adjacent non-tumor tissue based on quantita-
tive PCR [70]. Further investigation found that 
CRC patients with higher F. nucleatum DNA  
had significantly shorter survival, suggesting it 
might be a prognostic biomarker [15]. Studies 
have also found that F. nucleatum is correlated 
with therapeutic response, chemoresistance, 
and, more importantly, the modulating of im- 
mune checkpoint therapy for CRC [71, 72]. 
There are also accumulating findings indicating 
that F. nucleatum in CRC tissue is positively 
related to high levels of MSI-high and the CpG 
island methylator phenotype (CIMP) [73, 74]. 
Therefore, a complex correlation between F. 
nucleatum and ICB therapy exists in CRC, and 
the associated mechanisms are summarized in 
Figure 2. In this context, to provide a better 
understanding of potential mechanisms for 
effectively targeting F. nucleatum in colorectal 
therapy, we would like to review the role of F. 
nucleatum in therapeutic response to ICB 
therapy.

F. nucleatum inhibits T-cell activity

In CRC, high-level infiltrates of CD3+, CD8+, and 
FOXP3+ T-cells are associated with better clini-
cal outcomes [75]. Evidence has revealed that 
F. nucleatum is capable of inhibiting T-cell activ-
ity [76]. Another investigation reported that F. 
nucleatum can down-regulate T-cell-mediated 

adaptive cancer immunotherapy [29]. Further 
studies have shown that the modulation of 
T-cell-mediated immune responses by F. nu- 
cleatum is through the Wnt/β-catenin signaling 
pathway [77]. Consistent with these findings, a 
higher DNA abundance of F. nucleatum in CRC 
tissue is usually accompanied by lower T-cell 
density [70]. Moreover, F. nucleatum can in- 
duce T cell apoptosis and suppress T cell pro- 
liferation, which then reshapes an immunosup-
pressive TME [78]. Mechanistically, it has been 
found that the outer membrane proteins of 
Fap2 arrived from F. nucleatum can interact 
with TIGIT (T cell immunoglobulin and ITIM 
domain), thus inhibiting natural killer (NK) cell 
and T cell activities [79]. What’s more, it is 
accepted that Fap2 exhibits a boosting role  
in inducing this apoptosis-mediated immune 
evading via additional fusobacterial factors. To 
figure out whether the effect aforementioned is 
brought by specific T-cell subsets, J. Borowsky 
et al. then revealed an inverse relationship 
between F. nucleatum and CD3+ cells and 
CD3+CD4+CD45RO+ cells [80].

F. nucleatum expands MDSCs in CRC

As a heterogeneous member present in the 
TME, MDSCs are a group of immunosuppres-
sive myeloid cells. MDSCs in the tumor micro-
environment proliferate and activate during the 
occurrence and development of CRC, inhibit 
the generation of T cells, impair their function, 
and hinder the immunotherapy effect of CRC 
[81, 82]. Compared with healthy people, the 
MDSCs manifest in significantly greater con-
centrations in CRC patients’ tumor tissues [83]. 
To date, many studies have proposed an assis-
tant role of MDSCs in CRC progression [78, 84]. 
Intriguingly, it has recently been reported that 
the MDSCs were enriched in the tumors of mice 
pretreated with F. nucleatum compared to the 
control group [29]. Consistent with this, F. 
nucleatum has been thought to recruit MDSCs 
and tumor-associated macrophages (TAMs) 
into the TME [29, 85]. Accordingly, the up-regu-
lation of F. nucleatum causes microbiota dis-
ruption, which can restrain the response of 
cancer cells to CpG-oligonucleotide immuno-
therapy through decreased TNF [66]. These 
findings implicate that F. nucleatum induced an 
immunosuppressive TME via expanding MDSCs 
in CRC. Furthermore, TME plays a vital role in 
cancer therapy, especially for ICB therapy [86]. 
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Figure 2. The potential mechanisms underlying the influence of F. nucleatum on ICB therapy. F. nucleatum can 
inhibit T-cell activity, downregulate T-cell-mediated adaptive cancer immunotherapy, and modulate T-cell immune 
responses via the Wnt/β-catenin signaling pathway. It also induces T-cell apoptosis, suppresses T-cell proliferation, 
and reshapes the tumor microenvironment (TME) to be immunosuppressive. F. nucleatum can recruit Myeloid-de-
rived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs), contributing to an immunosuppressive 
TME. F. nucleatum suppresses the activity of natural killer (NK) cells by activating TIGIT, reducing their ability to kill 
CRC cells. It also activates CEACAM1 on immune cells, which further inhibits the activity of T and NK cells. Addition-
ally, F. nucleatum interferes with invariant natural killer T (iNKT) cells, impairing their function in anti-tumor immunity 
and contributing to immune evasion. It also upregulates pro-inflammatory cytokines like IL-8 and C-X-C motif ligand 
1 (CXCL1), which recruit MDSCs and potentially disrupt PD-1/PD-L1 signaling.

Therefore, to improve the responses of CRC 
patients to ICB treatment, the role of F. nuclea-
tum in mediating the function of MDSC in TME 
needs to be considered.

F. nucleatum suppress the activity of NK and 
invariant natural killer T (iNKT) cells

In addition to adaptive immune cells, some 
innate immune cells such as macrophages  
and NK cells, also play an important role in 
therapeutic response against ICB therapy. 
TIGIT, whose activation by fusobacteria can 
cause a compromised response to immuno-
therapy, is expressed in NK cells [79]. There- 

fore, related studies support that F. nucleatum 
can retrain the activity of NK cells in killing CRC 
cells via activating TIGIT. Previous studies have 
thought that the activation of CEACAM1, an 
inhibitory receptor on several immune cells can 
inhibit immune cell activities. Gur et al. have 
recently demonstrated that F. nucleatum can 
activate CEACAM1 to regulate anti-tumor im- 
munotherapy by suppressing T and NK cell 
activities [87]. Another research has just re- 
ported that F. nucleatum causes immune 
escape of CRC by down-regulating the cytotox-
icity and activity of NK cells. INKT are an innate-
like T cell subset expressing an invariant T cell 
receptor (TCR) α-chain [88]. Gathering evidence 
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has suggested a strong relationship between 
iNKT cell functions and TME and immune sur-
veillance [89, 90]. In CRC, iNKT cells exhibit a 
vital function in anti-tumor immunity by mediat-
ing cytokines levels and conventional T cells 
[91]. Recently, G. Lattanzi et al. confirmed that 
F. nucleatum is a contributor to iNKT cell-medi-
ated recruitment of neutrophils and reshaping 
the TME, exhibiting an inhibitory property in 
anti-tumor immunotherapy for CRC [92].

F. nucleatum regulates the inflammatory cyto-
kines levels in CRC

Growing evidence has demonstrated the pro-
moting role of pro-inflammatory cytokines in 
the TME, such as regulating angiogenesis and 
activating tumor-specific immune responses. 
Related mechanisms are involved in recruiting 
CD8+ T cells, stimulating TAM polarization, and 
accumulating Treg cells [93, 94]. Earlier resear- 
ch has proposed a significantly positive role of 
F. nucleatum in generating IL-10 and TNF-a 
[95]. Consistently, Yin et al. also confirmed that 
the mice treated with F. nucleatum implicated 
higher inflammatory cytokines levels, in which 
IFN-γ, TNF-α, IL6, IL12, and IL17A were included 
[96]. Specifically, F. nucleatum within CRC tis-
sues has been thought to upregulate the pro-
inflammatory cytokines IL-8 and C-X-C motif 
ligand 1 (CXCL1), which were both thought to 
function in recruiting immune cells, especially 
for neutrophils [97, 98]. This effect has the 
potential for stimulating neutrophils and alter-
ing them into tumor-associated neutrophils 
(TANs), of which the infiltration has recently 
been demonstrated to predict worse outcomes 
of ICB therapy [99]. However, F. nucleatum has 
been evidenced to own the ability to induce the 
generation of these two inflammatory cytokines 
in HCT116 cells [97]. Therefore, it is deduced 
that F. nucleatum might produce a proinflam-
matory microenvironment, which was then ren-
dered an immunosuppressive microenviron-
ment to subsequently be not responsible for 
ICB therapy.

F. nucleatum affects anti-PD-1/PD-L1 signal-
ing

As a checkpoint receptor expressing immune 
cells, PD-1 signaling is associated strongly with 
immune escape by interacting with PD-L1 
[100]. However, anti-PD-1/PD-L1 signaling has 

exhibited dissatisfactory outcomes in CRC, ex- 
cept for those with MSI-high and a high TMB. 
What on earth influences the response of CRC 
cells to anti-PD-1/PD-L1 treatment is required 
to be identified. Numerous investigations have 
confirmed the relationship between F. nuclea-
tum and anti-PD-1 immunotherapy in CRC. Gao 
et al. demonstrated that F. nucleatum can 
assist with therapeutic responses to PD-1 
blockade both in mice models and CRC pa- 
tients. Mechanically, it induces PD-L1 expres-
sion via recruiting CD8+ TILs, stimulating STING 
signaling and inducing IFN-γ [101]. However, 
another newly published research proposed 
that the F. nucleatum can impede the action of 
anti-PD-1 inhibitors. By comparing the metabo-
lomic and microbiome data from CRC patients 
with post-immunotherapy, the researchers fo- 
und that F. nucleatum was related to poor 
response to immunotherapy. Mechanically, this 
study suggested that F. nucleatum-derived su- 
ccinic acid is capable of disrupting the GMP-
AMP synthase interferon-β pathway, which then 
dampens the therapeutic response of CRC 
cells to anti-PD-1 treatment [102]. Throughout 
these findings, there still exists controversy 
about the role of F. nucleatum in correlating 
with anti-PD-1/PD-L1 therapy, thus deeper ex- 
plorations are appealed in futural research.

F. nucleatum as a potential biomarker and 
therapeutic target

Effective biomarkers are of vital importance to 
detect premalignant lesions and provide timely 
treatment, which could greatly improve the sur-
vival rate of CRC patients [103]. Consistently, 
biomarkers for therapeutic efficacy prediction 
of cancer immunotherapy are also required for 
clinical care, as long as for further progress  
of cancer immunotherapy. Up to date, PD-L1, 
MMR, and MSI examination are generally app- 
lied as predictive immunotherapy biomarkers 
for CRC. Recently, microbiota-based biomark-
ers have emerged as a novel hotspot due to 
their role and influence on immunotherapy 
response. Emerging evidence has supported 
that F. nucleatum significantly overexpressed 
feces and tumor sites of CRC patients. Wang et 
al. investigated CRC patients’ RFS and found 
that high levels of F. nucleatum were correlated 
with worse RFS, compared with those with no/
low F. nucleatum levels [104]. They highlight 
that the F. nucleatum could serve as a valuable 
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predictive and prognostic biomarker for unfa-
vorable prognosis in CRC.

Nanomedicine-based strategies targeting F. 
nucleatum for CRC therapy

In consideration of the inhibitory effect of F. 
nucleatum in responses to ICB therapy, elimi-
nating this microbe from tumor tissues might 
be a promising strategy to enhance cancer 
therapy. Although deeper validation is required, 
the existing evidence supports that eradicating 
the intratumoral microorganisms can induce 
cancer-associated neoantigens, which might 
be conducive for patients receiving ICB [105]. 
Nowadays, some antibiotics including metroni-
dazole and β-lactams, have been applied to 
eradicate F. nucleatum to inhibit tumor growth 
[106]. Noteworthy, nanotechnology is an em- 
erging rapidly target-based modality for drug 
delivery to deep tumor sites owing to its  
high permeability and safety, providing novel 
strategies to enhance ICB response [107]. 
Therefore, nano-based medicines have the 
potential to specifically abolish intratumoral 
microorganisms [108]. Wang et al. constructed 
a liposomal delivery of antibiotics targeting 
bacteria F. nucleatum-infected CRC model, and 
the results indicated that bacteria were abol-
ished. Moreover, the elimination of F. nuclea-
tum improved ICB therapeutic outcomes by 
exposing microbial epitopes [109]. Qu et al. cre-
atively constructed an ultrasonic stimulation-
responsive albumin-based nanoplatform (Au@
BSA-CuPpIX), which was entrapped by biomi-
metic mineralization [110]. This nanocomplex 
was found to efficiently kill F. nucleatum, at the 
same time, down-regulating the anti-apoptosis 
protein levels in tumor sites. In addition, tumor 
volume and metastases of xenografts and 
orthotopic CRC mice model were significantly 
reduced. To deliver antibiotics against F. nu- 
cleatum in tumor sites with minimal damage, 
Geng et al. designed a biomimetic nanomedi-
cine (FtnDOX), which loads antibiotic MTZ into 
the nanovehicle through azobenzene [111]. 
Expectedly, this nanomedicine efficiently rele- 
ased antibiotics to kill F. nucleatum and pro-
moted immunogenic death, enhancing tumoral 
response to ICB. Chen et al. devised a mimetic 
nanocomplex with F. nucleatum wrapping on 
the Colistin-loaded liposomes. They demonst- 
rated that the nanomedicine effectively elimi-
nated intratumoral F. nucleatum and enhanced 

the therapeutic efficacy of ICB. In summary, 
targeting F. nucleatum to eliminate it can turn 
an immunologically cold tumor into a hot state, 
which then enhances the immune response of 
tumor cells to ICB therapy. Nowadays, although 
antibiotics against F. nucleatum are the most 
efficient treatment, direct administration of 
antibiotics is facing the difficulty of compro-
mised therapeutic efficacy and some adver- 
se effects. To address these issues, various 
tumor-targeted nanocarriers for drug delivery 
have been proposed, which provide a novel 
strategy for augmenting ICB therapeutic out- 
comes.

Future perspectives and concluding remarks

The interplay between the host, intestinal 
microbes, and immunotherapy, particularly in 
the context of CRC, is an area of growing inter-
est and research. Emerging preclinical and clin-
ical findings have shed light on the involvement 
of F. nucleatum and its metabolites in carcino-
genesis and therapeutic response to ICB thera-
py. F. nucleatum has been implicated in various 
mechanisms that influence the efficacy of ICB 
therapy in CRC. These include its role in regulat-
ing T-cell activity, expanding MDSCs, suppress-
ing NK and iNKT cell functions, and upregu- 
lating inflammatory cytokines. These actions 
collectively contribute to the creation of an 
immunosuppressive TME that compromises 
the efficacy of ICB therapy. Moreover, the iden-
tification of F. nucleatum may hold promise as 
a biomarker for predicting responses to ICB 
therapy. By understanding the presence and 
abundance of F. nucleatum in CRC patients, cli-
nicians may be better equipped to tailor treat-
ment strategies and optimize therapeutic out-
comes. Recently, nanoplatform-based strate- 
gies offer innovative approaches for accurately 
eliminating F. nucleatum. augmenting the re- 
sponse to ICB therapy in CRC. This field holds 
the potential to revolutionize the treatment par-
adigm for F. nucleatum-associated cancers 
and improve patient outcomes. However, while 
the association between F. nucleatum and ICB 
therapy in CRC is becoming increasingly evi-
dent, further in-depth preclinical and clinical 
exploration is urgently required to unveil the 
underlying cooperation and action. Compre- 
hensive studies are required to uncover the 
complexities of the interaction between F. nu- 
cleatum, the host immune system, and immu-
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notherapy agents. Despite the challenges, the 
development of F. nucleatum as a therapeutic 
target holds the potential to enhance the effi-
cacy of ICB therapy in CRC. By targeting F. 
nucleatum and modulating its activity within 
the TME, researchers may uncover novel strat-
egies to overcome immunosuppression and 
improve treatment responses. Furthermore, 
unraveling the complexities of the host-mi- 
crobe-immunotherapy interaction contributes 
to a comprehensive understanding of indivi- 
dual tumor progression and lays the ground-
work for risk assessment and precision medi-
cine approaches in CRC management. By inte-
grating microbiome analysis into clinical de- 
cision-making, clinicians may be able to per-
sonalize treatment regimens and optimize 
patient outcomes.
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