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Abstract 

The comparison between breast cancer recognition by electrical 

impedance tomography implemented with Gaussian relaxation time 

distribution (EIT-GRTD) and conventional EIT has been conducted to 

evaluate the optimal frequency for cancer detection 𝑓cancer. The EIT-

GRTD has two steps, which are 1) the determination of the 𝑓cancer 

and 2) the refinement of breast reconstruction through time-constant 

enhancement. This paper employs two-dimensional numerical 

simulations by a finite element method (FEM) software to replicate 

the process of breast cancer recognition. The simulation is 

constructed based on two distinct electrical properties, which are 

conductivity 𝜎  and permitivitty 𝜀 , inherent to two major breast 

tissues: adipose tissues, and breast cancer tissues. In this case, the 𝜎 

and 𝜀  of breast cancer 𝜎cancer, 𝜀cancer  are higher than adipose 

tissues 𝜎adipose, 𝜀adipose . The simulation results indicate that the 

most effective frequency for breast cancer detection based on EIT-

GRTD is 𝑓cancer  = 56,234 Hz. Meanwhile, conventional EIT requires 

more processing to determine the 𝑓cancer based on image results or 

spatial conductivity analysis. Quantitatively, both EIT-GRTD and 

conventional EIT can clearly show the position of the cancer in layers 

1 and 2 for EIT-GRTD and only layer 1 for conventional EIT. 
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Introduction 

Breast cancer is characterized by uncontrolled abnormal cell 

growth in breast tissue [1]. This critical condition underscores 

the imperative for heightened awareness, efficacious 

treatments, and prompt recognition to enhance patient 

survival rates. Conventional technologies used in breast cancer 

recognition include mammography, ultrasound, and biopsy. 

Mammography uses X-rays to identify breast abnormalities [2], 

while ultrasound uses sound waves for internal imaging [3]. A 

biopsy involves taking a small sample of breast tissue for 

microscopic analysis to detect cancer cells. Despite their 

advantages, these devices have limitations, such as being less 

sensitive to dense breast tissue on mammography [4], having 

limitations in detecting small lesions on ultrasound, and their 

invasive nature increases the risk of discomfort on biopsy. 

Therefore, precise, non-invasive, and real-time breast cancer 

recognition technologies are needed. 

Electrical Impedance Tomography (EIT) has emerged as an 

affordable, non-invasive [5], radiation-free, and real-time 

medical imaging solution [6][7], particularly applicable in the 

breast area. EIT aims to reconstruct the impedance 

distribution within an object based on electrical 

measurements taken at the object’s boundaries. Since the 

1970s, EIT has been the subject of active research, yielding 

numerous valuable and inspiring findings [8]. Numerous 

studies have employed electrical impedance tomography (EIT) 

for breast cancer detection, employing various layer 

configurations, electrode quantities, and methodologies. 

Gutierrez et al. [9] utilized eight circular electrodes within a 

single layer. Gomes et al. [10] and Rao et al. [11] employed 16 

circular electrodes in a single layer. Conversely, Zarafshani et 

al. [12] utilized 85 electrodes arranged in a planar array, 

whereas Hong Sunjoo et al. [13] employed 92 electrodes 
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distributed across multiple circular layers. The exploration of 

EIT encompasses various methodologies to reveal the 

conductivity distribution within an object [14]. While EIT 

systems offer certain advantages, they also face limitations, 

especially in the optimal frequency determination for cancer 

detection 𝑓cancer , necessitating further investigation within 

conventional EIT.  

To overcome the drawbacks, integrating EIT with the 

Gaussian relaxation time distribution (GRTD) method could 

present a promising approach. This integration is anticipated 

to mitigate this limitation by simplifying the determination of 

optimal frequencies for cancer detection. This study has two 

objectives, which are 1) to conduct a comprehensive analysis 

of the 𝑓cancer between EIT-GRTD and conventional EIT and 2) 

to perform a detailed comparison effectiveness of image 

reconstruction between EIT-GRTD and conventional EIT. Fig. 1 

shows the overview of the breast recognition by EIT-GRTD and 

conventional EIT. 

 

Breast cancer recognition by electrical impedance 

tomography implemented with Gaussian relaxation-time 

distribution (EIT-GRTD) 

Fig.1 shows the overview of breast cancer recognition by 

electrical impedance tomography with Gaussian relaxation-

time distribution EIT-GRTD versus conventional EIT. The 

main difference between the two methods lies in 

determining the optimal frequency value 𝑓cancer for breast 

cancer detection and in the reconstruction of the input 

image. EIT-GRTD utilizes the difference of the predicted 

distribution relaxation time function Δ𝛄∗  input, while 

conventional EIT rely on the discrepancy of impedance Δ𝐙 

between two measured voltages. 

 

 

Gaussian relaxation-time distribution (GRTD) 

GRTD is a refinement of the conventional relaxation time 

distribution (RTD) using Gaussian distribution. With this 

approach, we can more accurately predict the relaxation-

time distribution function 𝛄∗ = (𝛾1
∗, … , 𝛾𝑘

∗, … , 𝛾𝐾
∗ )𝑇 ∈ 𝑅𝐾   

from the imaginary part of impedance 𝐙im =

(𝑍1
im , … , 𝑍𝑚

im, … , 𝑍𝑀
im)

𝑇
∈ 𝑅𝑀 . The correlation of imaginary 

impedance at m-th (𝑍𝑚
im) and relaxation time distribution 

function at k-th (𝛾𝑘
∗) is depicted in the following equation 

[15]: 

𝑍𝑚
im = − ∫

2𝜋𝑓𝜏𝛾
𝑘
∗

1 + (2𝜋𝑓𝜏)2
d𝜏

∞

−∞

 

(1) 

where 2𝜋𝑓and 𝜏 are angular frequency within the measured 

spectrum and relaxation-times, respectively. 

The joint distribution between 𝐙im  and 𝛄∗  is expressed 

as follows [15]: 

(𝑝(𝛄∗|𝐙im)~𝑁(𝛍, 𝚺)) (2) 

 

where N is the Gaussian distribution, p is posterior 

distribution,  𝛍 and 𝚺 are mean and covariance, respectively. 

The optimal frequency for detection the cancer is shown as 

follows: 

𝑓cancer = arg max (𝑝(𝛄∗|𝐙im)~𝑁(𝛍, 𝚺)) (3) 

 

The arg max function in eq.2 serves the purpose of 

determining the optimal value for the input variable that 

maximizes the objective function. Within this framework, 

the objective function pertains to the conditional probability 

in eq.2, wherein 𝛄∗   denotes the variable subject to 

optimization in relation to the dataset 𝐙im. The 𝛄∗ term is 

computed across a range of frequencies at each 

measurement number, with the optimized frequency for 

each measurement determined by the highest 𝛄∗ peak. The 

overall optimized frequency is then selected based on the 

 

Fig.1: Overview of breast cancer recognition by EIT-GRTD versus conventional EIT 
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highest 𝛄∗  peak from the measurement number that best 

represents the object of interest. 

 

Breast Cancer Imaging 

Conventional EIT by frequency difference EIT 

The conductivity distribution 𝛔 of breast cancer is expressed as 

[16] 

𝛔 = [𝜎1(𝐫1), … , 𝜎𝑔(𝐫𝑔) , … , 𝜎𝐺(𝐫𝐺)]
𝑇

∊ ℝ𝐺  (4) 
 

where 𝐫𝑔 = (𝑥𝑔, 𝑦𝑔) ∊ ℝ is the row vector at the mesh point 

(1 ≤ 𝑔 ≤ 𝐺). Standard Jacobian J is utilized to obtain the 𝛔, 

which consist of all combinations of the injection current I and 

measured impedance Z. The standard Jacobian is defined by 
  

𝐉 = [J𝑚
𝑔

, … , J𝑚
𝑔

, … J𝑀
𝐺 ] ℝ𝑀×𝐺  (5) 

 

where G is the total mesh number of spatial resolution and M 

is the total measurement number. The calculation of the J𝑚
𝑔

 for 

the m-th measured pattern at g-th mesh element is calculated 

by [17] 

𝐽𝑚𝑛 =
𝜕𝑍𝑚 

𝜕𝜎𝐺
= − ∫ ∇𝜙(𝐼𝑎) · ∇𝜙(𝐼𝑏)𝑑

 

Ω
Ω (6) 

 

Here, 𝜙(𝐼𝑎) represents the potential field influenced by the 

injected current I into the a-th electrode, while 𝜙(𝐼𝑏) denotes 

the potential field observed at the b-th measuring electrode. 

The variable 𝑍𝑚  corresponds to the measured impedance at 

the m-th measurement instance (1≤m≤M), which is obtained 

from the measurement voltage 𝑣𝑚 .  𝜎𝑔  represents the 

conductivity at the g-th mesh element (1≤g≤G). Ω represents 

the region of the electric field within the EIT sensor. 

Furthermore, Gaussian-Newton is utilized to obtain the 

conductivity distribution which is defined by [18] 
 

𝛔𝑎+1 = 𝛔𝑎 + (𝐉𝑇𝐉 + 𝜆𝐋)−1𝐉𝑇Δ𝐙 (7) 
 

where, a, 𝜆  and L are the a-th electrode, the regularization 

factors which is automatically obtained from L-curve [19] and 

regularization factors based on Tikhonov regularization, which 

is an identity matrix, respectively.  

The Δ𝐙 = [Δ𝑍1, … , Δ𝑍m, … , Δ𝑍M]𝑇 ∊ ℝ𝑀  signifies the 

discrepancy in impedance between two measured voltage 

values: 𝑍𝑓2  is derived from injecting a high-frequency current 

(𝑓2), and 𝑍𝑓1 is obtained from injecting a low-frequency current 

(𝑓1) [20][21]. The Δ𝑍m is expressed by 
 

∆𝑍𝑚 =
𝑍𝑚

𝑓𝑖−𝑍𝑚
𝑓0

𝑍𝑚
𝑓0

 (8) 

 

where the chosen fixed frequency is, 𝑓0= 1,000 Hz while the 

range of 𝑓𝑖 = 17,783 ~ 316,228 Hz, to reconstruct the 

conductivity 𝛔. 

In order to evaluate the performance of conventional EIT 

in breast recognition, the spatial mean conductivity is utilized 

using the following equation [22] 
 

𝛔 = (∑ 𝜎𝑔
𝑔=𝐺
𝑔=1 )/G  (9) 

 

where 𝜎𝑔  denotes the conductivity distribution in the g-th 

mesh voxel. 

 

Time-constant enhancement by EIT-GRTD 

EIT-GRTD, a Gauss-Newton is utilized to time constant 

enhance imaging which is expressed by [16] [19] 

 

𝛔𝑎+1 = 𝛔𝑎 + (𝐉𝑇𝐉 + 𝜆𝐋)−1𝐉𝑇Δ𝛄∗ (10) 

 

Fig. 2: Simulation setup of breast cancer recognition in the case of (a) z-axis view, and (b) y-axis view 

 

Fig. 3: Electrical properties utilized in the simulation [24]. 
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where Δ𝛄∗  is the difference of the predicted distribution 

relaxation time function at the optimal frequency 𝑓opt 

expressed by 
 

Δ𝛄∗ = [∆𝛾1
∗, … , ∆𝛾𝑚

∗ , … , ∆𝛾𝑀
∗ ]𝑇 ∈ ℝ𝑀 (11) 

where 
 

∆𝛾𝑚
∗ = 𝛾𝑚

∗ (𝑠) − 𝛾𝑚
∗ (0) (12) 

 

where, 𝛾𝑚
∗ (𝑠)  and 𝛾𝑚

∗ (0)  are inclusion and initial 

measurement distribution of relaxation time function, 

respectively. In this study, the 𝛾𝑚
∗ (0) was chosen based on the 

measurement results of the lowest relaxation time distribution 

value. 

 

Ethical approval 

The conducted research is not related to either human or 

animal use. 

Simulation 

Simulation Setup and Condition 

Fig. 2 shows simulation setup of breast cancer recognition in 

the case of (a) z-axis view, and (b) y-axis view. In this study, the 

simulation is carried out by a finite element method (FEM) 

simulation software in 3D coordinates. In order to mimic 

breast cancer recognition, a breast container was designed in 

a half-spherical cup shape with diameter ∅cont = 140 mm, a 

height ℎcont= 80 mm, and electrode diameter ∅elec= 3 mm.  

This study represents a preliminary investigation into the 

application of electrical impedance tomography (EIT) for 

breast cancer recognition. The use of simplified, hemispherical 

models in the simulation was chosen initially to establish 

foundational insights into impedance response, specifically 

focusing on impedance as a parameter for locating potential 

cancerous lesions within breast tissue. While we acknowledge 

that real breasts are soft and exhibit non-hemispherical shapes, 

these factors were simplified in this preliminary phase to 

facilitate controlled exploration of impedance characteristics. 

Spherical breast cancer is made with a diameter ∅cancer= 10 

mm with the cancer position set close to layer 1. The breast 

container is composed of adipose tissue and breast cancer. Fig. 

3 shows the electrical properties utilized in this simulation. The 

electrical properties of breast cancer are employed with the 

electrical properties of breast glandular. In this case, we 

 

Fig. 3 Electrical properties utilized in the simulation [26]. 

 

 

Fig. 4: Adjacent pattern in simulation [25] 

 

 

Fig. 5: The determination of the frequency for cancer detection 

𝑓cancer in the simulation study 

 



Setyawan et al.: Breast cancer recognition by EIT-GRTD compared to conventional EIT. J Electr Bioimp, 15, 99-106, 2024 

103 

 

assumed that the conductivity 𝜎 and permittivity 𝜀 of breast 

cancer 𝜎cancer, 𝜀cancer  are higher than adipose tissues 

𝜎adipose , 𝜀adipose . The authors employed glandular breast 

tissue conductivity and permittivity as representative 

parameters for breast cancer tissue, given the absence of 

specific data on its electrical properties along with the 

frequency data we used. Imaging cancer in dense breast tissue, 

which contains a substantial glandular component, is 

inherently challenging. However, data limitations led to this 

approach. Incorporating breast cancer-specific parameters 

into a background with a larger glandular component would 

enhance the simulation's relevance and accuracy. Until breast 

cancer tissue data is available, glandular tissue attributes are 

utilized to approximate the situation as closely as possible. 

 

Simulation method 

The simulation is carried out in this section with Multiphysics 

3D simulation software. The simulation utilizes a breast 

container model of four layers with 64 electrodes. Fig. 4 shows 

the adjacent pattern utilized in this stimulation with 1 mA 

injection current to acquire the voltage measurement 𝑣𝑚  at 

the m-th measurement. Measurements were performed with 

6 frequency variations from 17,783 to 316,228 Hz with 1000 

Hz as background. The Maxwell equation was applied to the 

simulation, defined by  

∇. (𝜎∇∅) + ∇. (𝜀∇ (
𝜕∅

𝜕𝑡
)) = 0 (13) 

 

where ∇, σ, ∅, and ε stand for gradient operator, conductivity 

[S/m], potential [V], and permittivity [F/m], respectively [14]. 

The simulation is assumed to be conducted under static 

conditions. In the boundary condition, the equation is assigned 

as follows [23]: 
 

∇. (𝜎∇∅) = 0 on 𝜕Ω𝑏𝑟𝑒𝑎𝑠𝑡  (14) 
 

to simplify, (𝜎∇∅)  was replaced with H= (𝜎∇∅) , so the 

boundary conditions are the following 
 

∫ 𝐧. 𝐇ds
 

𝜕Ω𝑒𝐻𝐶
= 𝐼0 on      𝜕Ω𝑒𝐻𝐶  (15) 

∫ 𝐧. 𝐇ds
 

𝜕Ω𝑒𝐿𝐶
= −𝐼0 on      𝜕Ω𝑒𝐿𝐶  (16) 

∫ 𝐧. 𝐇ds
 

𝜕Ω𝑒 = 0 on      𝜕Ω𝑒/𝜕Ω𝑒𝐻𝐶,𝐿𝐶  (17) 

 

where n denotes the outward normal vector of the boundary, 

𝜕Ω𝑒  represent the boundary of the electrode, 𝐼0  is current 

injection, and ds is the surface element of the electrode’s 

boundaries. 

 

Simulation Results 

Fig. 5 shows the results of frequency determination for cancer 

detection using the EIT-GRTD. The majority of 𝛾  peaks and 

dominance are observed at a frequency of 56,234 Hz in layers 

EIT-GRTD  Conventional EIT 

56,234 f [Hz] 17,783 31,623 56,234 100,000 177,828 316,228 

 

Layer 1 

      

 

Layer 2 

      

 

Layer 3 

      

 

Layer 4 

      

 

Fig. 6: Image reconstruction result by time constant enhancement breast imaging at 𝑓cancer = 56,234 Hz and conventional EIT 
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1 and 2. However, in layers 3 and 4, EIT-GRTD does not identify 

a significant peak frequency compared in layer 1 and 2. EIT-

GRTD only uses one frequency, whereas conventional EIT uses 

frequencies from 17,783 to 316,228 Hz to determine which is 

more appropriate for detecting cancer.  

Fig. 6 shows the comparison image results between the EIT-

GRTD and conventional EIT. EIT GRTD and conventional EIT 

revealed successful cancer recognition in the first layer within 

the simulation environment at a distance of 5 mm from the 

center of the cancerous sphere to this layer. However, 

recognition accuracy declined for conventional EIT. It 

remained unchanged for EIT-GRTD when the cancerous sphere 

was placed farther away, such as in layer 2, which is positioned 

20 mm from the cancerous sphere. Cancer was not visible in 

conventional EIT at layer 2, indicating limitations in the 

recognition system at greater distances. Only subtle 

indications of cancer could be observed through color 

gradients. Furthermore, in layers 3 and 4, positioned 35 mm 

and 50 mm from the center of the cancerous sphere, both EIT-

GRTD and conventional EIT failed to detect cancer. This 

indicates more pronounced limitations in recognition 

capability as the distance between the sensors and the target 

increases. 

 

Discussion 

Regarding the location of the cancer detection position shown 

in Fig. 6, there are significant differences between the EIT-

GRTD method and conventional EIT. In both methods, cancer 

can be detected accurately in the same position in layer 1 

compared to simulation setting. However, when switching to 

layer 2, the EIT-GRTD method is still able to identify the 

position of cancer precisely, while in conventional EIT, the 

cancer detection position is not clearly visible. Both methods 

exhibited noise on Layer 2. Although the object was isolated to 

Layer 1 in the simulated environment, noise appears in Layer 2 

for both the proposed method and the conventional EIT 

method. This indicates the need for a noise-filtering method in 

future research to improve accuracy. Notably, in the proposed 

method, the noise in Layer 2 is not random but instead reveals 

the location of the object in Layer 1. In contrast, the noise in 

the conventional method is random and does not provide 

useful information about the lesion's location. This distinction 

suggests that, while noise filtering is necessary, the noise 

characteristics in the proposed method still offer valuable 

insights into the object's position. 

The analysis of absolute impedance and spatial mean 

conductivity in four layers is also needed in conventional EIT to 

determine the optimal frequency of cancer detection. Fig. 7 

shows the absolute impedance and spatial mean conductivity 

in four layers of the breast container with increasing frequency. 

Layer 1 has a higher absolute impedance compared to the 

other layers. The absolute impedance value in this simulation 

decreases with increasing frequency. The spatial mean 

conductivity values exhibit a pattern similar to the absolute 

impedance, which indicates the highest value at Layer 1.  

However, a different pattern is observed as the frequency 

increases. There is a decrease in the spatial mean conductivity 

values from 17,783 Hz to 56,234 Hz, which then rises again 

with the increase in frequency until reaching 316,228 Hz. On 

the other hand, layers 3 and 4 consistently show an increase in 

spatial average conductivity as frequency increases. This 

complex behavior highlights the intricate dynamics governing 

the impedance and conductivity responses within the 

container breast model as frequency changes. This analysis still 

faces challenges in determining the best frequency for 

detecting cancer. Overall, the comparison of reconstruction 

 

Fig.7: Absolute impedance |𝐙| and spatial mean conductivity ⟨𝜎⟩ plot in all layers  
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results between EIT-GRTD and conventional EIT shows the 

superiority of EIT-GRTD in determining the frequency of cancer 

detection. The image results from EIT-GRTD are also closer to 

the settings in the simulation.  

For future research, a more comprehensive comparison of 

the two imaging approaches could be achieved by considering 

the impact of noise. Moreover, the inclusions used in this 

study were of a single size and position; therefore, future 

research should incorporate variations in size and position to 

better assess the EIT-GRTD's reliability. Additionally, future 

studies need to include experimental validation to verify the 

simulation results and ensure that the proposed methods are 

effective in practical applications. 

 

Conclusion 

The comparison between breast cancer recognition by 

electrical impedance tomography implemented with Gaussian 

relaxation time distribution (EIT-GRTD) and conventional EIT 

has been conducted to evaluate the optimal frequency for 

cancer detection 𝑓cancer. The results show that the EIT-GRTD 

is easier to determine the frequency for cancer detection at 

𝑓cancer = 56,234 Hz  than conventional EIT. Quantitatively, 

EIT-GRTD rapidly determines the correct position of cancer 

compared to conventional EIT, showcasing its capability to 

accurately locate the cancerous site. 
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